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PRIMITIVITY OF SMASH PRODUCT Cq#Bq
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Abstract

It is proved that the Smash product Cq#Bq is a primitive algebra, where Bq is the Hopf-
algebra corresponding to the compact quantum group SqU(2) and Cq is a Hopf-subalgebra of
the topological dual B′

q .
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§0. Introduction

The quantum Lorentz group SqL(2,C) was introduced by Podlés and Woronowicz in

1990. This quantum group is combined with the double group SqU(2) through the Iwasawa

decomposition[3]. Recently, Takeuchi developed a ∗-Hopf algebraic version of their work

and described explicitly all finite dimensional representations of the quantum Lorentz group

SqL(2,C)[4].
In Takeuchi’s work, the ∗-Hopf algebra Bq, which is corresponding to the compact quan-

tum group SqU(2), was defined as the C-algebra generated by a, b, c, d with the following

relations:

b a = q a b, c a = q a c, d b = q b d, d c = q c d,

c b = b c, a d− q−1b c = d a− q b c,

}
(0.1)

where q is a real parameter ̸= 0,±1. The algebra Bq has the following ∗-Hopf algebra

structure:

∆

(
a b
c d

)
=

(
a⊗ 1 b⊗ 1
c⊗ 1 d⊗ 1

)
·
(
1⊗ a 1⊗ b
1⊗ c 1⊗ d

)
, (0.2)

E
(
a b
c d

)
=

(
1 0
0 1

)
, (0.3)

S
(
a b
c d

)
=

(
a∗ c∗

b∗ d∗

)
=

(
d −qb

−q−1c a

)
. (0.4)

Let B′
q =HomC(Bq,C), the topological dual of Bq. [4] defined Cq to be a ∗-subalgebra of B′

q

generated by the following three elements p, p−1 and n, where p was defined as an algebra
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map Bq −→ C decided by

p :

(
a b
c d

)
−→

(
q

1
2 0
0 q−

1
2

)
,

p−1 was the inverse of p in the sense of the convolution product, and n was induced by an

opposite algebra map π : Bq −→ M2(C) :

a 7→
(
q

1
2 0
0 q−

1
2

)
, b 7→

(
0 0
0 0

)
,

c 7→
(
0 q

1
2 (1− q−2)

0 0

)
, d 7→

(
q−

1
2 0

0 q
1
2

)
.

In general,

π(x) =

(
p(x) n(x)
0 p−1(x)

)
, for any x ∈ Bq. (0.5)

Then n ∈ B′
q (but not an algebra map). It was proved that p, p−1 and n satisfy the following

relations:

p∗ p = p p∗, n p = q p n, n p∗ = q p∗n,

[n∗, n] = (1− q−2)(p p∗ − p−1(p−1)∗).

}
(0.6)

Moveover, [4] showed that Cq is a ∗-Hopf subalgebra of B′
q.

In this paper, we first prove that Cq is dense in B′
q. Next, we give a representation of a

Smash product; the result may be viewed as a development of Xu’s theory of the complete

ring of linear transformations[7−8]. Finally, we use this technique to show that the Smash

product Cq#Bq is primitive.

§1 q-Binomial Coefficient and the Density of Cq

We start with a definition of q-binomial coefficient.

Let s and t be two non-negative integers. We define inductively so-called “q-binomial

coefficient”

(
s

t

)
q

as follows:(
s

0

)
q

=

(
s

s

)
q

= 1,(
s+ 1

t

)
q

=

(
s

t− 1

)
q

+

(
s

t

)
q

· q2t, for 0 < t ≤ s. (1.1)

It is well-defined, and we agree on

(
s

t

)
q

= 0 for any s < t. Note that our q-binomial

coefficient is just usual one when q = 1. It is easy to check that(
s

1

)
q

=

(
s

s− 1

)
q

=

s−1∑
i=0

q2i. (1.2)

In the following, we always let e, f, g, h and i, j, k, l be non-negative integers with 0 ≤ i ≤
e, 0 ≤ j ≤ f, 0 ≤ k ≤ g, 0 ≤ l ≤ h and denote(

e f g h
i j k l

)
q

=

(
e

i

)
q

·
(
f

j

)
q

·
(
g

k

)
q

·
(
h

l

)
q

.
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For the sake of convenience, we omit the lower index q in the sequal.

Proposition 1.1. For any positive integers e, f, g, h, we have

∆(ae) =
e∑

i=0

(
e

i

)
aibe−i ⊗ aice−i,

∆(bf ) =

f∑
j=0

(
f

j

)
ajbf−j ⊗ bjdf−j ,

∆(cg) =

g∑
k=0

(
g

k

)
ckdg−k ⊗ akcg−k,

∆(dh) =
h∑

l=0

(
h

l

)
cldh−l ⊗ bldh−l.

Proof. We prove only the first statement by induction, the others can be proved similarly.

If e = 1, the result is clear from (0.2). Now let e > 1 and assume that the statement for

e is correct. Then

∆(ae+1) = ∆(a) ·∆(ae)

= (a⊗ a+ b⊗ c)

( e∑
i=0

(
e

i

)
aibe−i ⊗ aice−i

)

=

e+1∑
i=1

(
e

i− 1

)
aibe+1−i ⊗ aice+1−i +

e∑
i=0

(
e

i

)
q2iaibe+1−i ⊗ aice+1−i

=
e+1∑
i=0

(
e+ 1

i

)
aibe+1−i ⊗ aice+1−i.

Here we have used (1.1). The statement follows by induction.

From the proposition above, one can compute easily

∆(aebfcgdh) = ∆(ae)∆(bf )∆(cg)∆(dh)

=
∑
i,j,k,l

(
e f g h
i j k l

)
qj(e−i)+l(g−k)+(f−j−k)(g−k+l)

· ai+jbe+f−i−jck+ldg+h−k−l ⊗ aibj+lce+g−i−kdf−jakdh−l.

Denote [
e f g h
i j k l

]
=

(
e f g h
i j k l

)
qj(e−i)+l(g−k)+(f−j−k)(g−k+l).

We need to notice that [
e f g h
i j k l

]
̸= 0. (1.3)

Proposition 1.2. For any non-negative integers e, f, g, h, we have

∆(aebfcgdh)

=
∑
i,j,k,l

[
e f g h
i j k l

]
ai+jbe+f−i−jck+ldg+h−k−l ⊗ aibj+lce+g−i−kdf−jakdh−l.

(1.4)
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Proposition 1.3. For any positive integer s, we have

ns(aebfcgdh) ̸= 0 iff f = 0 and g = s.

n∗s(aebfcgdh) ̸= 0 iff f = s and g = 0.

Proof. We use induction for s to show the first statement. In the case of s = 1, from

(0.5), we have

π(aebfcgdh)

= π(dh) · π(cg) · π(bf ) · π(ae)

=

(
q−

1
2 0

0 q
1
2

)h

·
(
0 q

1
2 (1− q−2)

0 0

)g

·
(
0 0
0 0

)f

·
(
q

1
2 0
0 q−

1
2

)e

=

(
p(aebfcgdh) n(aebfcgdh)

0 p−1(aebfcgdh)

)
,

which implies that n(aebfcgdh) ̸= 0 iff f = 0 and g = 1. If s > 1 and the result for s is

correct, then

ns+1(aebfcgdh)

= (ns · n)(aebfcgdh)

=
∑
i,j,k,l

[
e f g h
i j k l

]
ns

(
ai+jbe+f−i−jck+ldg+h−k−l

)
·

· n
(
aibj+lce+g−i−kdf−jakdh−l

)
.

The non-zero term (i, j, k, l) in the summation above occurs only when (i, j, k, l) satisfies the

following equations: {
e+ f − i− j = 0, k + l = s,

j + l = 0, e+ g − i− k = 1.

Noting that 0 ≤ i ≤ e, we get a unique solution (i, j, k, l) = (e, 0, s, 0) and f = 0, g = s+ 1.

Hence, ns+1(aebfcgdh) ̸= 0 iff f = 0, g = s+1. The first statement then follows by induction.

Next, note that (∗◦S)
(
a b
c d

)
=

(
a c
b d

)
from (0.4), and the definition of ∗-structure

on B′
q is

α∗(x) = α(S(x)∗), x ∈ Bq, α ∈ B′
q;

the second statement follows immediately.

Remark. It is easy to see that whether ni(aebfcgdhasdt) equals zero or not has nothing

to do with s and t.

Proposition 1.4. Suppose that s ≤ f or t ≤ g. Then we have

(n∗s · nt)(aebfcgdh) ̸= 0 iff f = s and g = t .
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Proof.

(n∗s · nt)(aebfcgdh)

=
∑
i,j,k,l

[
e f g h
i j k l

]
n∗s(ai+jbe+f−i−jck+ldg+h−k−l

)
·

· nt
(
aibj+lce+g−i−kdf−jakdh−l

)
.

The non-zero term (i, j, k, l) in the summation above occurs only when (i, j, k, l) satisfies the

following equations: {
e+ f − i− j = s, k + l = 0,

e+ g − i− k = t, j + l = 0.

Noting that i ≤ e and s ≤ f or t ≤ g, we get a unique solution (i, j, k, l) = (e, 0, 0, 0) and

f = s, g = t.

Proposition 1.5. Suppose that s ≤ f or t ≤ g. Then

(pm · n∗s · nt)(aebfcgdh) ̸= 0 iff f = s and g = t.

Proof.

(pm · n∗s · nt)(aebfcgdh)

=
∑
i,j,k,l

[
e f g h
i j k l

]
pm

(
ai+jbe+f−i−jck+ldg+h−k−l

)
·

· (n∗s · nt)
(
aibj+lce+g−k−idf−jakdh−l

)
.

Since pm(aebfcgdh) ̸= 0 iff f = g = 0, the non-zero term (i, j, k, l) occurs in the following

case: {
e+ f − i− j = 0, k + l = 0,

j + l = s, e+ g − i− k = t.

We get a unique solution (i, j, k, l) = (e, s, 0, 0) and f = s, g = t.

Denote the non-zero element µ(efgh) = (n∗f · ng)(aebfcgdh). Then the following result

is obtained easily

(pm · n∗f · ng)(aebfcgdh) = µ(efgh) q
m
2 (e+f−g−h). (1.5)

Theorem 1.1. Cq is dense in B′
q.

Proof. We have to prove that for any λ ∈ Bq (λ ̸= 0) there exists x ∈ Cq such that

x(λ) ̸= 0.

From [6], we can write

λ =
∑

e,f,g,h
eh=0

αefgha
ebfcgdh, αefgh ∈ C.

Take

s = min{f | αefgh ̸= 0}, t = min{g | f = s}.
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For any m = 1, 2, · · · , we have

(pm · n∗s · nt)(λ) =
∑
e,h

eh=0

αefghµ(esth)q
m
2 (e+s−t−h). (1.6)

Take

−N = min{e+ s− t− h, 0}.

We see that the polynomial ∑
e,h

eh=0

αesthµ(esth)X
N+e+s−t−h (1.7)

is non-zero, since

N + e+ s− t− h = N + e′ + s− t− h′

forces (e, h) = (e′, h′) in the condition eh = e′h′ = 0.

On the other hand, if (1.6) keeps zero for any m, then Equation (1.7) has infinite number

of solutions, since q is not a root of unity. Hence there exist m, s and t such that

(pm · n∗s · nt)(λ) ̸= 0.

This ends the proof.

§2. A Lemma

To prove the main result, we introduce first an isomorphism theorem for Smash products.

Let H be a Hopf-algebra over a field K. Then EndK(H) is the quantum double of H

in the sense of [3] and [4]. Here, the multiplication as quantum double is the convolution

product induced by the Hopf-algebra structure of H. In the following, notations “·” and

“∗” represent the composite product and the convolution product of linear transformations

of H, respectively. It is easy to see that the dual algebra H ′ =HomK(H,K) can be embeded

in (EndK(H), ∗) in a natual way.

We write a linear transformation ofH on the right. In particular, we write also xu = ⟨x, u⟩
for any u ∈ H ′, x ∈ H.

Let A be a sub-bialgebra of H ′. For any x ∈ H,u ∈ A, we define

x ⇀ u =
∑
(u)

u(1)⟨x, u(2)⟩. (2.1)

Then A becomes an H-module algebra. Therefore, we can form a Smash product A#H.

Let Hσ be the algebra of all right multiplications of H. Then (2.1) can be expressed as

x ⇀ u = xσ · u .
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In fact, for any h ∈ H,

h
(∑

(u)

u(1)⟨x, u(2)⟩
)
=

⟨
h,

∑
(u)

u(1)⟨x, u(2)⟩
⟩

=
∑
(u)

⟨h, u(1)⟩⟨x, u(2)⟩

= ⟨hx, u⟩ = (hx)u

= h(xσ · u),

which implies ∑
(u)

u(1)⟨x, u(2)⟩ = xσ · u.

Lemma 2.1. Let H be a Hopf-algebra over a field K, A a sub-bialgebra of H ′. Then the

Smash product A#H is isomorphic to the subalgebra A ∗Hσ of (EndK(H), ·).
Proof. We first prove that

A ∗Hσ = {u ∗ xσ | u ∈ A, x ∈ H}

is a subalgebra of (EndK(H), · ). Because of the identity map on H, and

I = E ∗ 1σH ∈ A ∗Hσ,

it is enough to show that A ∗Hσ is closed related to the composite product. Indeed, for any

u ∗ xσ, v ∗ yσ ∈ A ∗Hσ,

and h ∈ H, we have

h((u ∗ xσ) · (v ∗ yσ)) = (h(u ∗ xσ))(v ∗ yσ)

=
(∑

(h)

(h(1)u)(h(2)x
σ)
)
(v ∗ yσ)

=
(∑

(h)

⟨h(1), u⟩h(2)x
)
(v ∗ yσ)

=
∑

(h),(x)

⟨h(1), u⟩⟨h(2)x(1), v⟩(h(3)x(2))y
σ

=
∑

(h),(x)

⟨h(1), u⟩⟨h(2), x
σ
(1) · v⟩h(3)(x

σ
(2) · y

σ)

= h
(∑
(x)

(u ∗ xσ
(1) · v) ∗ x

σ
(2) · y

σ
)
.

Therefore,

(u ∗ xσ) · (v ∗ yσ) =
∑
(x)

(u ∗ xσ
(1) · v) ∗ (x

σ
(2) · y

σ). (2.2)

Noting that

u ∗ xσ
(1) · v ∈ A, xσ

(2) · y
σ = (x(2)y)

σ ∈ Hσ,

we complete the proof that A ∗Hσ is a subalgebra of (EndK(H), · ).
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Now, set a map φ : A#H −→ A ∗Hσ as follows :

φ : u#x 7−→ u ∗ xσ, u ∈ A, x ∈ H.

To prove that φ is an algebra isomorphism, it is enough to show that φ remains the multil-

ication operations.

φ((u#x)(v#y)) = φ(
∑
(x)

(u ∗ (x(1) ⇀ v))#(x(2)y))

= φ
(∑
(x)

(u ∗ xσ
(1) · v)#(x(2)y

σ)
)

=
∑
(x)

(u ∗ xσ
(1) · v) ∗ (x(2)y

σ)σ

=
∑
(x)

(u ∗ xσ
(1) · v) ∗ (x

σ
(2) · y

σ)

= (u ∗ xσ) · (v ∗ yσ)
= φ(u#x) · φ(v#y).

Thus, we have proved that (A#H,#) is isomorphic to (A ∗Hσ, · ) as algebras.

§3. Main Theorem

Now we are in a position to give our main result.

Theorem 3.1. Cq#Bq is a primitive algebra.

Proof. By Lemma 2.1, (Cq#Bq,#) is isomorphic to the subalgebra (Cq ∗ Bσ
q , · ) of

(EndC(Bq), · ). Thus, it is equivalent to prove that Cq ∗Bσ
q is primitive for our purpose. The

adventage of such doing is that we get naturally a faithful (right) Cq ∗Bσ
q -module Bq. The

remaining thing is to show that Bq is irreducible as Cq ∗Bσ
q -module, that is, λ(Cq ∗Bσ

q ) = Bq

for any non-zero element λ ∈ Bq.

Firstly, suppose λ = 1, the identity of Bq. In this case, it is clear that

λ̃ = 1(ϵ ∗ λ̃σ)

for any λ̃ ∈ Bq, which shows 1(Cq ∗Bσ
q ) = Bq.

Secondly, suppose that λ has the following form

λ = λm =
m∑
e=0

αe a
ebm−e, αe ∈ C.

In this case, we shall prove 1 ∈ λ(Cq ∗ Bσ
q ) by induction. Then the case is reduced to the

above one.

If m = 1, then λ = αa+ βb. Taking

k =
p(a)

n∗(b)
q−1,

we get

λ(p ∗ dσ − kn∗ ∗ bσ) = αp(a)1;
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hence 1 ∈ λ(Cq ∗Bσ
q ) in the case of α ̸= 0. Otherwise, taking

k =
n∗(b)

p(a)
q,

we have

λ(n∗ ∗ aσ − kp ∗ cσ) = βn∗(b)1;

hence

1 ∈ λ(Cq ∗Bσ
q ).

Suppose m > 1, and

1 ∈ λm−1(Cq ∗Bσ
q ).

Then in the case of λ = λm, take

k =
n∗(am−1b)

p(am)

(
m

1

)
q.
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Thus,

λ(n∗ ∗ bσ − kp ∗ dσ)

=
m∑
e=0

αe

{∑
i,j

[
e m− e
i j

]
n∗(ai+jbm−i−j)aibjce−idm−e−jb

− k
∑
i,j

[
e m− e
i j

]
p(ai+jbm−i−j)aibjce−idm−e−jd

}

= α0

{[
0 m
0 m− 1

]
n∗(am−1b)bm−1db− kp(am)bmd

}
+

m∑
e=1

αe

{([
e m− e
e m− e− 1

]
n∗(am−1b)aebm−e−1d

+

[
e m− e

e− 1 m− e

]
n∗(am−1b)ae−1bm−ec

)
b− kp(am)aebm−ed

}
=

m∑
e=1

αea
e−1bm−e

{(
m− e

1

)
q−(m−e−1)n∗(am−1b)ad

+

(
e

1

)
qm−en∗(am−1b)bc− kp(am)q−(m−e)ad

}
=

m∑
e=1

αea
e−1bm−e

{[((
m− e

1

)
q−(m−e−1) +

(
e

1

)
qm−e+1

)
n∗(am−1b)

− kp(am)q−(m−e)

]
ad−

(
e

1

)
qm−e+1n∗(am−1b)

}
=

m∑
e=1

(−αe)q
m−e+1

(
e

1

)
n∗(am−1b)ae−1bm−e

+
m∑
e=1

αea
e−1bm−e

{(
m

1

)
q−(m−e−1)n∗(am−1b)− kp(am)q−(m−e)

}
ad

=
m∑
e=1

(−αe)q
m−e+1

(
e

1

)
n∗(am−1b)ae−1bm−e

=

m−1∑
e=0

α′
ea

ebm−1−e

= λm−1,

where

α′
e = −αe+1q

m−e

(
e+ 1

1

)
n∗(am−1b), e = 0, 1, · · · ,m− 1.

There exists an element x′ in Cq ∗ Bσ
q such that λm−1x

′ = 1 by the inductive assumption.

Take x = (n∗ ∗ bσ − kp ∗ dσ)x′. Then 1 = λx ∈ λ(Cq ∗Bσ
q ).

Finally, λ has the following form in the general case

λ =
∑

e,f,g,h
eh=0

αefgha
ebfcgdh, αefgh ∈ C.
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Take T = max{e+ f | αefgh ̸= 0}. If T = 0, then

λ =
∑
g,h

αghc
gdh.

If T > 0, then

λ(n∗T ∗ 1σ)

=
∑

e,f,g,h
eh=0

αefgh

∑
i,j,k,l

[
e f g h
i j k l

]
n∗T (ai+jbe+f−i−jck+ldg+h−k−l

)
·

· aibj+lce+g−i−kdf−jakdh−l

=
∑

e+f=T
eh=0

αefghn
∗T (bT dg+h)ce+gdf+h.

There is no similar term to be merged in the condition of e+ f = T and eh = 0, this shows

that λ(n∗T ∗ 1σ) is non-zero. Thus, without loss of the generality we can assume that

λ =
∑
g,h

αghc
gdh, αgh ∈ C.

Take T = max{g + h | αgh ̸= 0}. Then

0 ̸= λ(nT ∗ 1σ)

=
∑
g,h

αgh

∑
k,l

[
g h
k l

]′
nT

(
ck+ldg+h−k−l

)
blcg−kakdh−l

=
∑

g+h=T

αghn
T (cT )bhag.

So the case is reduced to the above ones.

This completes the proof of Theorem 3.1.

Remark. We have denoted[
e f
i j

]
=

[
e f 0 0
i j 0 0

]
and

[
g h
k l

]′
=

[
0 0 g h
0 0 k l

]
in the proof of Theorem 3.1.
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