NOETHERIAN GR-REGULAR RINGS ARE REGULAR**

LI HUISHI*

Abstract

It is proved that for a left Noetherian \mathbb{Z} -graded ring A, if every finitely generated graded A-module has finite projective dimension (i.e., A is gr-regular) then every finitely generated A-module has finite projective dimension (i.e., A is regular). Some applications of this result to filtered rings and some classical cases are also given.

Keywords Graded ring, Regular ring, Projective dimension.1991 MR Subject Classification 16W50, 26E10.

§0. Introduction

In the study of graded ring theory many ungraded natures have been derived by using the graded techniques. For instance, let A be a \mathbb{Z} -graded ring, then A is graded Noetherian if and only if A is Noetherian; A has finite graded (homological) global dimension if and only if A has finite (homological) global dimension; A is a graded maximal order if and only if A is a maximal order, etc., (see e.g. [7], [2]). However, the question we raise here seems to be missing in the literature: For a \mathbb{Z} -graded ring A, if every finitely generated graded A-module has finite projective dimension (in this case A is called a left gr-regular ring), does it follow that every finitely generated A-module has finite projective dimension (i.e., A is a left regular ring)? In this note we will give a positive answer to this question when the ring considered is left Noetherian, and some applications will also be given.

§1. Preliminaries

For a general theory of graded rings we refer to [7].

Let $A = \bigoplus_{n \in \mathbb{Z}} A_n$ be a \mathbb{Z} -graded ring, where \mathbb{Z} is the additive group of integers, and A-gr the category of graded left A-modules, where the morphisms in A-gr are graded morphisms of degree zero. Recall that an object $P \in A$ -gr is gr-projective if and only if P is a gr-direct summand of a gr-free object in A-gr; the graded Jacobson radical of A, denoted by $J^g(A)$, is the largest proper graded ideal of A such that its intersection with A_0 is in the Jacobson radical of A_0 .

Manuscript received June 1, 1992. Revised May 28, 1993.

^{*}Department of Mathematics, Shaanxi Normal Univrsity Xi'an 710062, China.

^{**}Project supported by the Science Foundation of State Education Committee

Lemma 1.1.^[7] Let $P \in A$ -gr. Then P is a projective object in A-gr if and only if P is projective as an A-module. Hence for any $M \in A$ -gr, the graded projective dimension, denoted by $gr.p.dim_A M$, is equal to $p.dim_A M$, the usual projective dimension of M as an A-module.

The following theorem is well known.

Theorem 1.1 (First "Change of Rings" Theorem). Let X be a regular non-invertible homogeneous normalizing element of A (i.e., XA = AX). Put $A^* = A/XA$. If M is an A^* module such that $p.dim_{A^*}M = n < \infty$, then $p.dim_AM = n + 1$. In particular gl.dim $A \ge 1 +$ gl.dim A^* provided that gl.dim A^* is finite.

Theorem 1.2^[4] (Third "Change of Rings" Theorem for graded rings). Let A, X and A^* be as in Theorem 1.1 above and suppose now that A is left Noetherian and $X \in J^g(A)$. If M is a finitely generated X-torsionfree graded A-module, then

$$p.\dim_{A^*}(M/XM) = p.\dim_A M.$$

We also recall some notions on $(\mathbb{Z}$ -) filtered rings. For some details concerning Noetherian filtered rings we refer to [1], [3] and [4]. Let R be a filtered ring with an increasing filtration

$$FR = \{F_nR, F_nR \subseteq F_{n+1}R, F_nRF_mR \subseteq F_{n+m}R, n, m \in \mathbb{Z}\}$$

consisting of additive subgroups of R such that

$$R = \bigcup_{n \in \mathbb{Z}} F_n R$$

(i.e., R is exhaustive). Then there are two graded rings associated with FR: the Rees ring

$$\widetilde{R} = \bigoplus_{n \in \mathbb{Z}} F_n R$$

and the associated graded ring

$$G(R) = \bigoplus_{n \in \mathbb{Z}} F_n R / F_{n-1} R.$$

Since $1 \in F_0 R \subseteq F_1 R$ we write X to be the homogeneous element of degree 1 in $\widetilde{R}_1 = F_1 R$ represented by 1. Then X is a central regular element in \widetilde{R} such that

$$\widetilde{R}/X\widetilde{R}\cong G(R)$$

as graded rings,

$$\widetilde{R}/(1-X)\widetilde{R} \cong R$$
 and $\widetilde{R}_{(X)} \cong R[t, t^{-1}],$

where $\widetilde{R}_{(X)}$ is the localization of \widetilde{R} at the mutiplicatively closed subset $\{1, X, X^2, \dots\}$ and $R[t, t^{-1}]$ is the usual ring of finite Laurent series over R in the commuting variable t.

§2. Main Result

Let $A = \bigoplus_{n \in \mathbb{Z}} A_n$ be a \mathbb{Z} -graded ring. Consider the polynomial ring A[t] over A in a commuting variable t. A[t] has the "mixed" \mathbb{Z} -gradation defined by

$$A[t]_n = \Big\{ \sum_{i+j=n} a_i t^j, \ a_i \in A_i \Big\}, \ n \in \mathbb{Z}.$$

Obviously, A is a graded subring of A[t] with respect to the "mixed" gradation on A[t].

Lemma 2.1. Let A and A[t] be as above. Suppose that A is left Noetherian and left gr-regular. Then for any finitely generated graded left A[t]-module M, $p.dim_A M < \infty$; and moreover A[t] is left gr-regular with respect to the "mixed" gradation.

Proof. Let M be any finitely generated graded left A[t]-module. Then $M \in A$ -gr. Let $M^{(0)}$ be a finitely generated graded A-submodule of M such that $M = A[t]M^{(0)}$. Put

$$M^{(n)} = \sum_{i=0}^{n} t^{i} M^{(0)}$$

for positive $n \in \mathbb{Z}$. Then obviously $M^{(n)}$, and hence $M^{(n)}/M^{(n-1)}$, is finitely generated in A-gr. Moreover, since

$$M^{(n+1)} = tM^{(n)} + M^{(n)},$$

left multiplication by t gives sequence of graded A-module surjections

$$M^{(0)} \to M^{(1)}/M^{(0)} \to M^{(2)}/M^{(1)} \to \cdots$$

Let K_n be the kernel of the resulting map

$$M^{(0)} \to M^{(n)} / M^{(n-1)}.$$

Then K_n is a graded A-submodule of $M^{(0)}$ and $\{K_i\}$ is an increasing chain. Hence $K_{n+l} = K_n$ for some n and all l. Consequently

$$M^{(n+l+1)}/M^{(n+l)} \cong M^{(n)}/M^{(n-1)}$$

as graded A-modules and

$$p.\dim_A(M^{(n+l+1)}/M^{(n+l)}) = p.\dim_A(M^{(n)}/M^{(n-1)})$$

Since A is graded regular by assumption, it is then well known that

$$p.\dim_A M^{(n+l)} \le \sup\{p.\dim_A M^{(0)}, p.\dim_A (M^{(1)}/M^{(0)}), \cdots, p.\dim_A (M^{(n)}/M^{(n-1)})\} = w,$$

say, hence

$$p.\dim_A\left(\underset{n=0}{\overset{\infty}{\oplus}} M^{(n)} \right) = w.$$

However, there is an exact sequece

$$0 \to \oplus M^{(n)} \xrightarrow{\varepsilon} \oplus M^{(n)} \xrightarrow{\pi} M \to 0,$$

where ε : $(m^{(n)}) \mapsto ({m'}^{(n)})$ with ${m'}^{(n)} = m^{(n)} - m^{(n-1)}$ and π : $(m^{(n)}) \mapsto \sum m^{(n)}$. Therefore

$$p.\dim_A M \le w+1 < \infty.$$

Now, consider the following exact sequence of A[t]-modules

$$0 \to M[t] \to M[t] \stackrel{e}{\to} M \to 0, \tag{2.1}$$

where

 $M[t] = A[t] \otimes_A M, \quad e: \ t^i \otimes m \mapsto t^i m.$

Then it is well known (cf. [8] Lemma 9.27.) that

$$p.\dim_A M = p.\dim_{A[t]} M[t]$$

and the exactness of (2.1) yields

 $p.\dim_{A[t]} M \le 1 + p.\dim_{A[t]} M[t] \le 1 + p.\dim_A M \le \infty.$

This proves the graded regularity of A[t].

Theorem 2.1. Let A be a left Noetherian \mathbb{Z} -graded ring. If A is gr-regular then A is regular.

Proof. Once again let A[t] be the polynomial ring with the "mixed" gradation. Consider the (graded) localization $A[t]_{(t)}$ of A[t] at the multiplicatively closed subset $\{1, t, t^2, \cdots\}$, then $A[t]_{(t)} \cong A[t, t^{-1}]$ as graded rings, where $A[t, t^{-1}]$ also has the "mixed" gradation:

$$A[t,t^{-1}]_n = \left\{ \sum_{i+j=n} a_i j^j, \ a_i \in A_i \right\}, \ n \in \mathbb{Z},$$

in particular

$$A[t, t^{-1}]_0 = \sum_{i+j=0} A_i t^j \cong A.$$

If M is any finitely generated graded $A[t, t^{-1}]$ -module, say

$$M = \sum_{i=1}^{s} A[t, t^{-1}]\xi_i,$$

where all ξ_i are homogeneous elements of M, then

$$M_0 = \sum_{i=1}^s A[t]\xi_i$$

is a finitely generated graded A[t]-module such that

$$A[t,t^{-1}]\otimes_{A[t]} M_0 = M.$$

It follows from Lemma 2.1 that

 $p.\dim_{A[t,t^{-1}]}M < \infty$

and hence $A[t, t^{-1}]$ is gr-regular. Now the equivalence of categories^[1]:

$$A[t, t^{-1}]_0 - \text{mod} \leftrightarrow A[t, t^{-1}] - \text{gr}$$

gives the regularity of A.

Question. Is it possible to drop the Noetherian condition in the theorem?

§3. Some Applications

In this section we prove the following theorems.

Theorem 3.1. Let A be a \mathbb{Z} -graded ring and X a regular non-invertible homogeneous normalizing element in A (i.e., XA = AX). Put $A^* = A/XA$. Suppose that A is left Noetherian and $X \in J^g(A)$. If A^* is left gr-regular (hence left regular by the foregoing theorem) then A is left regular.

Proof. In view of Theorem 2.1. it suffices to prove that A is left gr-regular. Let M be any finitely generated graded left A-module and put

$$t(M) = \{ m \in M, X^p m = 0 \text{ for some integer } p > 0 \}.$$

The sequence

$$0 \to t(M) \to M \to M/t(M) \to 0 \tag{3.1}$$

is exact in A-gr. Moreover M/t(M) is X-torsion free and $X^k t(M) = 0$ for some integer k > 0 since t(M) is finitely generated too. Hence an easy induction on k together with Theorem 1.1. yields: $p.\dim_A t(M) < \infty$. On the other hand, Theorem 1.2. entails

$$p.\dim_A(M/t(M)) < \infty.$$

Hence it follows from the exactness of (3.1) that $p.\dim_A M < \infty$. This shows that A is gr-regular as desired.

With notations as given in section 1, recall from [3] that a filtered ring R with filtration FR is called a left Zariski ring if the Rees ring \tilde{R} of R is left Noetherian and $X \in J^g(\tilde{R})$ (or equivalently, if $F_{-1}R$ is contained in the Jacobson radical of F_0R). In [4] it has been proved that if G(R) has finite global dimension, then

$$\operatorname{gl.dim} R = 1 + \operatorname{gl.dim} G(R).$$

Now, with satisfaction we mention the following

Theorem 3.2. Let R be a left Zariski ring with filtration FR. Suppose that G(R) is left gr-regular (hence left regular) then \widetilde{R} and R are left regular.

Proof. Since $R/XR \cong G(R)$, it follows immediately from Theorem 3.1 that \widetilde{R} is left regular. The fact that R is left regular has been proved in [1, Corollary 5.8], but here we may obtain this result directly from the graded ring isomorphism

$$R_{(X)} \cong R[t, t^{-1}],$$

where the latter one is strongly \mathbb{Z} -graded with the natural gradation:

$$R[t, t^{-1}]_n = Rt^n, \quad n \in \mathbb{Z}.$$

By using Theorem 3.2 the condition $gl.\dim G(R) < \infty$, mentioned in [5, Theorem 2.4.], can be replaced by the condition that G(R) is left gr-regular, because in this case \widetilde{R} will be left regular and consequently the localization sequence in [5] works. To be precise, this result may be rementioned as follows.

Theorem 3.3 ([5, Theorem 2.4.]). Let R be a left Zariski ring with filtration FR such that G(R) is left gr-regular. Then there is an injection

$$K_0(R) \hookrightarrow K_0(G(R))$$

mapping [R] to [G(R)], where $K_0(-)$ denotes the K_0 -group in the sense of algebraic K-theory.

Remark 3.1. By using Theorem 3.1, some classical results may be easily recaptured. For example, let A be a left Noetherian regular ring and σ an automorphism, then the skew polynomial ring $R = A[t, \sigma]$, regarded as a graded ring with gradation

$$R_n = At^n, \quad n \in \mathbb{Z},$$

satisfies the conditions of Theorem 3.1 by putting X = t and hence is left regular. It follows that each of the following rings is left regular.

(1) $A[t, \sigma, \delta]$, where δ is a σ -derivation of A;

(2) $A[t, t^{-1}, \sigma];$

(3) The crossed product A * G of A by G, where G is a poly-infinite cyclic group;

(4) The crossed product $A * U(\mathbf{g})$ of A by $U(\mathbf{g})$, where R is a k-algebra over a commutative ring k and \mathbf{g} a k-Lie algebra of finite dimension.

We refer to [6] for some details about these rings.

References

- Asensio, M. J., Van den Bergh, M. & Van Oystaeyen, F., A new algebraic approach to microlocalization of filtered rings, *Trans. Amer. Math. Soc.*, **316**: 2, (1989), 537–555.
- [2] Le Bruyn, L., Van den Bergh, M. & Van Oystaeyen, F., Graded orders, Birkhauser Verlag, 1988.
- [3] Li Huishi, & Van Oystaeyen, F., Zariskian filtrations, Comm. Alg., **17**: 12 (1989), 2945–2970.
- [4] Li Huishi, & Van Oystaeyen, F., Global dimension and Auslander regularity of Rees rings, Bull. Math. Soc. Belgique, (serie A), Tome XLIII, (1991).
- [5] Li Huishi, Van den Bergh, M. & Van Oystaeyen, F., Note on the K_0 of rings with Zariskian filtration, K-Theory, **3**(1990), 603–606.
- [6] McConnell, J. C. & Robson, J. C., Noncommutative Noetherian rings, J. Wiley, Chichester, New York, 1987.
- [7] Năstăsescu, C. & Van Oystaeyen, F., Graded ring theory, Math. Library, 28, North Holland, Amsterdam, 1982.
- [8] Rotman, J. J., An introduction to homological algebra, New York, 1979.