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NOETHERIAN GR-REGULAR RINGS ARE REGULAR**

Li Huishi*

Abstract

It is proved that for a left Noetherian Z-graded ring A, if every finitely generated graded
A-module has finite projective dimension (i.e., A is gr-regular) then every finitely generated
A-module has finite projective dimension (i.e., A is regular). Some applications of this result
to filtered rings and some classical cases are also given.
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§0. Introduction

In the study of graded ring theory many ungraded natures have been derived by using

the graded techniques. For instance, let A be a Z-graded ring, then A is graded Noetherian

if and only if A is Noetherian; A has finite graded (homological) global dimension if and

only if A has finite (homological) global dimension; A is a graded maximal order if and only

if A is a maximal order, etc., (see e.g. [7], [2]). However, the question we raise here seems

to be missing in the literature: For a Z-graded ring A, if every finitely generated graded

A-module has finite projective dimension (in this case A is called a left gr-regular ring), does

it follow that every finitely generated A-module has finite projective dimension (i.e., A is a

left regular ring)? In this note we will give a positive answer to this question when the ring

considered is left Noetherian, and some applications will also be given.

§1. Preliminaries

For a general theory of graded rings we refer to [7].

Let A = ⊕
n∈Z

An be a Z-graded ring, where Z is the additive group of integers, and A-gr

the category of graded left A-modules, where the morphisms in A-gr are graded morphisms

of degree zero. Recall that an object P ∈ A-gr is gr-projective if and only if P is a gr-direct

summand of a gr-free object in A-gr; the graded Jacobson radical of A, denoted by Jg(A),

is the largest proper graded ideal of A such that its intersection with A0 is in the Jacobson

radical of A0.
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Lemma 1.1.[7] Let P ∈ A-gr. Then P is a projective object in A-gr if and only if P

is projective as an A-module. Hence for any M ∈ A-gr, the graded projective dimension,

denoted by gr.p.dimAM , is equal to p.dimAM , the usual projective dimension of M as an

A-module.

The following theorem is well known.

Theorem 1.1 (First “Change of Rings” Theorem). Let X be a regular non-invertible

homogeneous normalizing element of A (i.e., XA = AX). Put A∗ = A/XA. If M is an A∗-

module such that p.dimA∗M = n < ∞, then p.dimAM = n+ 1. In particular gl.dimA ≥ 1+

gl.dimA∗ provided that gl.dimA∗ is finite.

Theorem 1.2[4] (Third “Change of Rings” Theorem for graded rings). Let A, X and

A∗ be as in Theorem 1.1 above and suppose now that A is left Noetherian and X ∈ Jg(A).

If M is a finitely generated X-torsionfree graded A-module, then

p.dimA∗(M/XM) = p.dimAM.

We also recall some notions on (Z-) filtered rings. For some details concerning Noetherian

filtered rings we refer to [1], [3] and [4]. Let R be a filtered ring with an increasing filtration

FR = {FnR, FnR ⊆ Fn+1R, FnRFmR ⊆ Fn+mR, n,m ∈ Z}

consisting of additive subgroups of R such that

R = ∪
n∈Z

FnR

(i.e., R is exhaustive). Then there are two graded rings associated with FR: the Rees ring

R̃ = ⊕
n∈Z

FnR

and the associated graded ring

G(R) = ⊕
n∈Z

FnR/Fn−1R.

Since 1 ∈ F0R ⊆ F1R we write X to be the homogeneous element of degree 1 in R̃1 = F1R

represented by 1. Then X is a central regular element in R̃ such that

R̃/XR̃ ∼= G(R)

as graded rings,

R̃/(1−X)R̃ ∼= R and R̃(X)
∼= R[t, t−1],

where R̃(X) is the localization of R̃ at the mutiplicatively closed subset {1, X, X2, · · · }
and R[t, t−1] is the usual ring of finite Laurent series over R in the commuting variable t.

§2. Main Result

Let A = ⊕
n∈Z

An be a Z-graded ring. Consider the polynomial ring A[t] over A in a

commuting variable t. A[t] has the “mixed” Z-gradation defined by

A[t]n =
{ ∑
i+j=n

ait
j , ai ∈ Ai

}
, n ∈ Z.

Obviously, A is a graded subring of A[t] with respect to the “mixed” gradation on A[t].
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Lemma 2.1. Let A and A[t] be as above. Suppose that A is left Noetherian and left

gr-regular. Then for any finitely generated graded left A[t]-module M , p.dimAM < ∞; and

moreover A[t] is left gr-regular with respect to the “mixed” gradation.

Proof. Let M be any finitely generated graded left A[t]-module. Then M ∈ A-gr. Let

M (0) be a finitely generated graded A-submodule of M such that M = A[t]M (0). Put

M (n) =
n∑

i=0

tiM (0)

for positive n ∈ Z. Then obviously M (n), and hence M (n)/M (n−1), is finitely generated in

A-gr. Moreover, since

M (n+1) = tM (n) +M (n),

left multiplication by t gives sequence of graded A-module surjections

M (0) → M (1)/M (0) → M (2)/M (1) → · · · .

Let Kn be the kernel of the resulting map

M (0) → M (n)/M (n−1).

Then Kn is a graded A-submodule of M (0) and {Ki} is an incraesing chain. Hence Kn+l =

Kn for some n and all l. Consequently

M (n+l+1)/M (n+l) ∼= M (n)/M (n−1)

as graded A-modules and

p.dimA(M
(n+l+1)/M (n+l)) = p.dimA(M

(n)/M (n−1)).

Since A is graded regular by assumption, it is then well known that

p.dimAM
(n+l) ≤ sup{p.dimAM

(0), p.dimA(M
(1)/M (0)), · · · , p.dimA(M

(n)/M (n−1))}
= w,

say, hence

p.dimA

( ∞
⊕

n=0
M (n)

)
= w.

However, there is an exact sequece

0 → ⊕M (n) ε→ ⊕M (n) π→ M → 0,

where ε: (m(n)) 7→ (m′(n)) with m′(n) = m(n)−m(n−1) and π: (m(n)) 7→
∑

m(n). Therefore

p.dimAM ≤ w + 1 < ∞.

Now, consider the following exact sequence of A[t]-modules

0 → M [t] → M [t]
e→ M → 0, (2.1)

where

M [t] = A[t]⊗A M, e : ti ⊗m 7→ tim.

Then it is well known (cf. [8] Lemma 9.27.) that

p.dimAM = p.dimA[t]M [t]
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and the exactness of (2.1) yields

p.dimA[t]M ≤ 1 + p.dimA[t]M [t] ≤ 1 + p.dimAM ≤ ∞.

This proves the graded regularity of A[t].

Theorem 2.1. Let A be a left Noetherian Z-graded ring. If A is gr-regular then A is

regular.

Proof. Once again let A[t] be the polynomial ring with the “mixed” gradation. Consider

the (graded) localization A[t](t) of A[t] at the multiplicatively closed subset {1, t, t2, · · · },
then A[t](t) ∼= A[t, t−1] as graded rings, where A[t, t−1] also has the “mixed” gradation:

A[t, t−1]n =
{ ∑
i+j=n

aij
j , ai ∈ Ai

}
, n ∈ Z,

in particular

A[t, t−1]0 =
∑

i+j=0

Ait
j ∼= A.

If M is any finitely generated graded A[t, t−1]-module, say

M =
s∑

i=1

A[t, t−1]ξi,

where all ξi are homogeneous elements of M , then

M0 =
s∑

i=1

A[t]ξi

is a finitely generated graded A[t]-module such that

A[t, t−1]⊗A[t] M0 = M.

It follows from Lemma 2.1 that

p.dimA[t,t−1]M < ∞

and hence A[t, t−1] is gr-regular. Now the equivalence of categories[1]:

A[t, t−1]0−mod ↔ A[t, t−1]−gr

gives the regularity of A.

Question. Is it possible to drop the Noetherian condition in the theorem?

§3. Some Applications

In this section we prove the following theorems.

Theorem 3.1. Let A be a Z-graded ring and X a regular non-invertible homogeneous

normalizing element in A (i.e., XA = AX). Put A∗ = A/XA. Suppose that A is left

Noetherian and X ∈ Jg(A). If A∗ is left gr-regular (hence left regular by the foregoing

theorem) then A is left regular.

Proof. In view of Theorem 2.1. it suffices to prove that A is left gr-regular. Let M be

any finitely generated graded left A-module and put

t(M) = {m ∈ M, Xpm = 0 for some integer p > 0}.
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The sequence

0 → t(M) → M → M/t(M) → 0 (3.1)

is exact in A-gr. Moreover M/t(M) is X-torsion free and Xkt(M) = 0 for some integer

k > 0 since t(M) is finitely generated too. Hence an easy induction on k together with

Theorem 1.1. yields: p.dimAt(M) < ∞. On the other hand, Theorem 1.2. entails

p.dimA(M/t(M)) < ∞.

Hence it follows from the exactness of (3.1) that p.dimAM < ∞. This shows that A is

gr-regular as desired.

With notations as given in section 1, recall from [3] that a filtered ring R with filtration

FR is called a left Zariski ring if the Rees ring R̃ of R is left Noetherian and X ∈ Jg(R̃) (or

equivalently, if F−1R is contained in the Jacobson radical of F0R). In [4] it has been proved

that if G(R) has finite global dimension, then

gl.dimR̃ = 1 + gl.dimG(R).

Now, with satisfaction we mention the following

Theorem 3.2. Let R be a left Zariski ring with filtration FR. Suppose that G(R) is left

gr-regular (hence left regular) then R̃ and R are left regular.

Proof. Since R̃/XR̃ ∼= G(R), it follows immediately from Theorem 3.1 that R̃ is left

regular. The fact that R is left regular has been proved in [1, Corollary 5.8], but here we

may obtain this result directly from the graded ring isomorphism

R̃(X)
∼= R[t, t−1],

where the latter one is strongly Z-graded with the natural gradation:

R[t, t−1]n = Rtn, n ∈ Z.

By using Theorem 3.2 the condition gl.dimG(R) < ∞, mentioned in [5, Theorem 2.4.],

can be replaced by the condition that G(R) is left gr-regular, because in this case R̃ will

be left regular and consequently the localization sequence in [5] works. To be precise, this

result may be rementioned as follows.

Theorem 3.3 ([5, Theorem 2.4.]). Let R be a left Zariski ring with filtration FR such

that G(R) is left gr-regular. Then there is an injection

K0(R) ↪→ K0(G(R))

mapping [R] to [G(R)], where K0(−) denotes the K0-group in the sense of algebraic K-

theory.

Remark 3.1. By using Theorem 3.1, some classical results may be easily recaptured.

For example, let A be a left Noetherian regular ring and σ an automorphism, then the skew

polynomial ring R = A[t, σ], regarded as a graded ring with gradation

Rn = Atn, n ∈ Z,

satisfies the conditions of Theorem 3.1 by putting X = t and hence is left regular. It follows

that each of the following rings is left regular.

(1) A[t, σ, δ], where δ is a σ-derivation of A;
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(2) A[t, t−1, σ];

(3) The crossed product A ∗G of A by G, where G is a poly-infinite cyclic group;

(4) The crossed product A∗U(g) of A by U(g), where R is a k-algebra over a commutative

ring k and g a k-Lie algebra of finite dimension.

We refer to [6] for some details about these rings.
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