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Abstract

A Fourier pseudospectral-finite difference sheme is proposed for solving two-dimensional
vorticity equations. The generalized stability and the convergence are proved. The numerical
results are given.
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¢1. Introduction

In the past twenty years, spectral and pseudospectral methods developed rapidly. Since
both of them have the accuracy of “infinite” order, they have been widely applied to compu-
tational fluid dynamics (see [1-6]). On the other hand, some authors used various filtering
techniques to weaken the nonlinear instability in computation (see [5,7-10]).

In studying the flow in tub and other related problems we meet unilaterally periodical
boundary conditons (see [11-15]). Such problems could be solved numerically by spectral-
finite difference method or Fourier-Chebyshev spectral method as in [11-13, 16-18], provided
that the domain is rectangular. Otherwise it is better to use spectral-finite element method
(see [19-21]).

As we know, pseudospectral approximation can be performed more easily than spectral
one. In particular, it is easier to deal with nonlinear terms. Clearly, if the domain is
rectangular and the boundary condition is unilaterally periodical, then it is natural to apply
pseudospectral-finite difference method. But when the viscosity is small, the computation is
less stable than spectral-finite difference method. Thus it is reasonable to adopt the filtering
technique as in [22].

Now, let &(z1,xa,t) and 1(x1,x2,t) be the vorticity function and the stream function
respectively. v > 0 is the coefficient of viscosity. fi(x1,z2,t) and &y(x1,x2) are given. Let

T={x|0 <z <1}, T={m]0<zy<2r}, Q=1IxI.
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We consider the two-dimensional vorticity equation
2 2 3
%+ﬂﬁ_ﬂ£_y(%+%):fl, in Qx (0,77,

ot Oxo Ox1 Oz Oxo

2 2 .
=k =S i 9 [0,7], 1)
{(xl,xz,O) = 60(561,1‘2), in Q.

Suppose that all funcitons have the period 27 for the variable zs, but they are not
periodical for the variable 1. We propose a Fourier pseudospectral-finite difference scheme
with the filtering technique in Section 2. The key point is the use of skew symmetric
decomposition of nonlinear convection terms. In this case, the numerical solution keeps
the semi-discrete energy unchanged. This is a reasonable analogy of the conservation in
continuous model. Moreover such decomposition assures that the main nonlinear error terms
vanish. In Section 3, we present the numerical results. We list some lemmas in Section 4
and then prove the error estimations in Sections 5-6. In particular, all estimations include
the errors on the boundary, which effect the accuracy seriously in practical problems. But
most of papers in this field neglected this factor. In the final section, we consider the steady
problem.

§2. The Scheme and the Conservations

Hereafter all functions have the period 27 for the variable z5. Let h = % be the mesh
spacing, M being a positive integer and

In={x1=jh1<j<M-1}, Qy=1I,x1.
Let 7 be the mesh spacing of ¢, and
S, ={t=krlk=0,1,2,--- .}.

Define
1
Ugq ($1,I2,t) = E(u(xl + h,l‘g,t) - U($1,I27t)),
U/fl (.’L‘],.’L‘Q,t) = U/wl (.T] - h,l‘Q,t),
1
ug, (T1,22,1) = 5(%1(3617962,15) +uz, (v1,22,1)),
2u
AU(.T],.’IJQ,t) = Uz 74 (.’131,.172,1‘/') + 72(33171:2’1”7
0x}
u (T, T2, 1) = ;(u(xl,xg,t—i—T) — u(wy, w2, 1)).
Let

Vi = span{e""*?||n| < N}

and Py be the orthogonal projection from L?(I) onto Vy, i.e., for any u € H'(I),
/~(PNU —w)vdxg =0, Vv € Vy.
T

For the pseudospectral approximation, we consider the nodes
21y
2N +1’

2 =

0<j<2N
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and let P. be an interpolation operator such that for u € C (f ),
Poau(a$) = u(=Y), 0<j<2N.

Define P, = Py P.. We also use the filtering operator R, with r > 1 (see [5]). If u(z2) € Vi
has the Fourier coefficients {u,,}, then

Rou(za) = Z (1 — ’%|T>unei"“. (2.1)

[n|<N

The key point for constructing the scheme is to simulate the conservations. Indeed the
solution of (1.1) possesses several conservations (see [17]). To simulate them, let o =
(a1,9,a3), 00 > 0,01 + s + ag = 1 and define

ow ou
Jl,c(u7w) = Pc(aixguil — Wi, 87@)’

ot = (2], - 2 1)),

Toelw) = 5 [Pu(uws,) = [P(was)]

and

J(“) (u, w) Zalch u, W) (2.2)

Now, let n™) and ¢¥) be the approximations to & and ¢ respectively,

N (@, w0, t) = Y a0, oM (@r,2a,0) = D oV (w1, 1)
In<N In<N

The pseudospectral-finite difference scheme for solving (1.1) is the following

1™ + RIS (R (™) + 6m™)), Rpp™)

—vA(™ + o™y = P.fi, (2.3)
—A(p(N)—T](N), |
77(N) (0) = ch()a

where § and o are parameters and 0 < §,0 < 1. When § = o = 0, this is an explicit scheme.
But even if § = 0 and o # 0, the coefficients of V) (z,t) and ) (z,t) are still separated
from the others. Thus we only have to solve linear algebraic equations with three diagonal

matrix.
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We next check the conservations. We introduce the following scalar products and norms

1
(u(z,t),v(x1,t)) = o /~u(x1,zg,t)ﬁ(xl,xQ,t)dIQ,
T

[u(z, )||2~=( (z1,8), u (xl,t))jv

(u(wa, ), v(w, 1)), = h Y u(wy, 2, 1)0(21, 72, 1),
r1€lp
HU(% )II?,L = (u(z2,1), u(x%t))fhv
( =h Z .%'1, v xlvt))fv ||u(t)H2 = (u(t)vu(t))v
z1 €l
1 1 ou
u(t)|f = §||uacl(7f)||2 + 5 lluz, @I+ IIf(t)sz
o 1 2 2 2 U2
) = s, 1 + i (O + g O +
h 2 h 2
+ Z Z Hufrlfrl (x17t)Hf+ Z Z Huflfl (1‘1715)”7.
h<z1<1—2h 2h<z1<1l—h
We have
(uilav) + (Uilvu) = ;{1 (ua ”U) (24)
where

A(u,v) = %[(U(l)vv(l —h)g+ (u(l = h),v(1)7 = (u(h), v(0))7 = (w(0),v(h))F].
Assume that u,v,w € V. Then (see [7])

(Pe(uv)(t), w(t)) = (u(t), Pe(vw)(t)). (2.5)
By (2.4) and (2.5), we obtain
(1 e, w), 1) = (%‘;um) + <<%)Iu) — Ay (u,w), (2.6)
where A (u,w) = A; (u, ) Similarly, we have
(Ja.o(,w), 1) = (Pc<g—;l;u)il, 1) = A (u, w) (2.7)
with
As(u, w)
- %K”(l)’ %(1))7+ (u(l h), gxg (1- h))fi (“(h)’ %(h))fi (“(O)’ %(0))7}'
Also
(Js.0(u,w),1) = —Zl( 552 1) = —Ay(w,u) = As(u, w). (2.8)
Therefore
(J (u,w),1) = a1 Ay (u, w) + (ag + az) Ag(u, w). (2.9)

On the other hand, (2.4) and (2.5) lead to

(Pc<g—;02ujl),v> + (<P0<g—;l;v>)él,u) = As(u,v,w),
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where As(u, v, w) = A (u,Pc(g—gv)). Thus
(J1,c(u, w),v) + (J2,c(v,w), u) = Az(u, v, w). (2.10)
Similarly, from (2.4) and (2.5) we have

_<Pc(w%)il,v) - (%7Pc(wuil)) = Ay(u,v,w),

where
~ Ou
Ag(u,v,w) = — A4 (Pc(a—uw),v). (2.11)
Hence
v ou
(T, (uy w), ) + (Tm,Pc(wu@l)) - (Tm,Pc(wu@l)) = Ay(u,v,w). (2.12)

The combination of (2.10) with (2.12) tells us that for a; = ao,
(& (u,w), 0) + (I (0, w), )
= a1 Az(u, v, w) + a1 Az (v, u, w) + agAs(u, v, w) + agAs(v, u, w). (2.13)
In particular, for a; = ao,
(I (u, w),u) = a1 As(u, u, w) + azAa(u, u, w). (2.14)
It is easy to show that

(00 280) + 5 (s ) + 3 1 0m) + (5 20) = Blaso) (215)
where
Blu,v) = 5(u(1) + w1~ B), vz, (1)7 — 3 (u(h) + u(0), vz, (0))7.
In particular,
(u, Au) + |ulf = B(u,u). (2.16)

We now check the conservations. Firstly, from (2.9) and (2.15) we have

N ®, ) +7 Y AR 0N () +0mn ™ ), Bee™ (3)

yES,
y<t—7

+ (a2 + a3) Ao (R, (1) (9) + 57 (9), Rep ™ (1)) = vB(L 1™ (9) + o7 ()]

= (™M), ) +7 > (Pefa(t), D).

yEST
y<t—7

Secondly by putting § = 0 = 1, a1 = ap and /M) () = (™) () + ™) (¢ + 7)), we get from
(2.14) and (2.15)

M @ +2r Y [VIﬁ(N)(y)\?+alAs(Rrﬁ(N)(y),Rrﬁ(N)(y),Rrso(N)(y))

yEST
y<t—T1

+ g As (Bl ™ (), Rl ™ (), Rep™ () = B ™ (), 1Y) (9)|
= [n™MO)> + 27 > (Pefiw), 7™ ().

yEST
y<t—r
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The above two equalities are reasonable analogies of the corresponding conservations in
continuous model.

§3. Numerical Results

In this section, we present numerical results. For describing the errors, we introduce

~ 27g .
Ih = {"1}'2‘.@2 = T_{_l,o S] S 2N},
h !
BO) = (357 X l@nant -,z 0P?)

(x1,22) €Ly x T},
where 7 is the PS-D (pseudospectral-finite difference) or difference approximation to £. All
computations are carried out by explicit scheme, i.e., d = ¢ = 0. In practical problems,
we only know the values of ¢ and g—ﬁ for 1 = 0,1. Thus we have to use some methods to
calculate the approximate values of ¢ for 1 = 0, 1. They induce the errors. But for simplicity
of mathematical analysis, some authors considered the model with the given values of £ on
the boundary (see problem 6.3 of [23]). Here we follow this approximate model.
Example 3.1. Let

&(x1, 22,t) = Aexp{Bsin(Cry + x2) + wt},
P(z1, 22,1) = Aexp{wt} sin Czq sin x,.

Table 3.1 shows the results of scheme (2.3) with A = B =w =0.1,C = 3.0,v = 1073, 7 =
0.05, h = 0.1, N = 4 and r = 1. Obviously, the choice vy = as gives better numerical
results.

Table 3.1. Errors of Scheme (2.3)

(a17a27a3) (%7%70) (%7%7%) (1’070)
E(1) 0.9098E-02 |0.9084E-02 |0.9184E-02
E(3) 0.2990E-01 |0.2979E-01 |0.3041E-01
E(5) 0.4891E-01 |0.4845E-01 |0.5133E-01

Table 3.2 is for the numerical results of scheme (2.3) with A = B = w = 0.1,C = 0.5,
v=10"%7=10"3%h =01,N =4 and a; = ap = 3. Clearly the filtering technique
provides better numerical results.

Table 3.2. Errors for PS-D Scheme (2.3)

r=1 r=2>5 T = 00

E(0.2) |0.1935E-03 |0.3008E-03 |0.3199E-03
E(0.6) |0.6046E-03 [0.9372E-03 |0.9953E-03
E(1.0) |0.1050E-02 [0.1617E-02 |0.1715E-02
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Example 3.2. Let
&(x1, 29,t) = Aexp{Bsin(Cxy + x2) + wt},
P(x1, z2,t) = Aexp{wt}(Cxy + sinxa).
For comparison of pseudospectral-finite difference scheme with full finite difference scheme,

let h = 21311 and €2}, be the set of mesh points in 2. We define

Uy, (T1, X2, 1) = %(u(ml,xg + h,t) —u(xy, 0, 1)),

Uz, (71, T2, ) = Us, (21, T2 — A, 1),

Uz, (X1, Ta,t) = %(Uzz(fﬂl,l’g,t) + Uz, (71, 2, 1))
Aqu(x1, T2, t) = Ug,z, (1, T2, 1) + Usyz, (T1, T2, 1)

and

S~

’E(u7 w) = wﬁ2uil - wi1u§f27
J2 E(’U,/LU) = (wizu)il - (wi’lu)i’w

)

nu,w) = (wuz, )z, — (Wuz,)s,,

Let nﬁ and gpﬁ be the finite difference approximations to & and v respectively. The difference
scheme is (see [24])
ni(6) + I (g + o7, o) — vAG" + omf) = fF, in Q' xSy,
—Apph =l + fh, in QxS
The numerical experiments are for A = B = 0.1,C = 0.2,w = 0.3,v = 107%, 7 = 0.005,
h=0.1,h=0.25N =4,01 = ay = 5 and r = 1. Table 3.3 shows that scheme (2.3) gives
better numerical results than scheme (3.1).

(3.1)

Table 3.3. Errors of Scheme (2.3) and (3.1)

scheme (2.3) |scheme (3.1)
E(1) | 0.1755E-02 | 0.1897E-02
E(3) | 0.9015E-02 | 0.9338E-02
E(5) | 0.2713E-01 | 0.3457E-01

¢4. Some Lemmas

In order to estimate the errors, we need some lemmas.
Lemma 4.1. For all u(z1,z2,t), we have

2(u(z1,t), ur(21, )7 = (lules, e — 7llue (s, )3,
2(u(t), ur(t)) = [lu()]I — 7llue®)]]*.
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Lemma 4.2. If u(xy, x5 + 27, t) = u(x1,22,t), then
2(ur(t), Au(t)) + (Ju(t)D)e — Tlur(8)[F = 2B (ue(t), u(t)),
2(u(t), Aug(t)) + ([u(®)[})e = Tlue(6)[F = 2B(u(t), uq(t)).
Lemma 4.3. If u(zq,z9,t) € Viy for all zq € Iy, and t € S, then
0
52 O < N u)]*

Lemma 4.4. For all u(z1,z2), we have

4 4
Juz, ||I” < ﬁHUH2 + hlug, (0)]13, [t ||” < ﬁlluﬂ2 + hlluz, (1)]13,
and
4 2 4 2
oz 17 < gl + 2 a2, T I < o llul + (1) 2

Lemma 4.5. If u(xy,23) € Vi for all 1 € I, and u(0,z2) = u(1l,22) =0, then
[ul? < Cilfulf + S(u)],
where Cy is a positive constant depending only on the domain Qy, and

() = (o) = g (u(h), u(B)7 + o (u(1 — ), u(l — B

Lemma 4.6. If u(z1,72) € Vi for all x1 € I}, and u(0,x2) = u(1,x3) = 0, then

h 1/, 0u ou
2 _ 2t 2 - 2y (2= 201221 — 2
1Aul]” = fulz + 7 (1uwye, ()7 + Juzz (DIIF) + h(llam2 (W% + II(%C2(1 h)l\,)

Lemma 4.7. If h < 2¢, then for all 5 € Iy,
lu(@DIF < ellluz, |1* + [luz, [I*) + Cole)[[ull*

where Cy(g) is a positive constant depending only on € and the domain .
Lemma 4.8. If u(x1,x2),v(x1,32) € Vi for all x1 € Iy, then

lu(zi)v(@)[F < @N + 1)[[ul@) o) |3,

1
Jutw2)o(ea) B, < ¢ llulz) B, o),
2N +1
el < 255l el

Lemma 4.9. If u(xy,z2) € HB(IN) and v(xy,x2) € Vi for all xy € Ty, then
|Pyu(er) - w(@)l oy < CoN*Pllu()llgs 7y, 0< s < B,
|Pau(zr) — w(@)l oy < CoN*Bllu(@)llgs sy, 0< s < 8,8 1,
[Rev(ar) = o)l ry < N u@n)ll gy 0<s<B, 13 8—s,
where Cy ~ Cy are positive constants.
The proof of Lemma 4.9 is given in [25,26]. The others could be found in [27].

§5. Error Estimation for Dirichlet Boundary Condition

In this section, we suppose that a; = as, h = O(%) and 7 = O(%) Let f; and & be

the errors of f; and &y. The right side of the first formula of (2.3) has the error P, fo. Also
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assume that n(N)(Oa ant) = P65(07x27t) = cho, n(N)(la'T27t) = ch(la $27t> = e and
that go and g; have the errors jo and §;. They induce the errors of n(™) and ) denoted
by 7N and V). For simplicity, we assume that ¢N) (0, 2q,t) = ™) (1, 25,¢) = 0. Then
i + R d O (R (i + 67, Reo™ + R g ™)
+ Ry () (Re (™) - 6mni™), Rp™N0) —vAGN + o7if™Y)) = Pefi,
=A™ =) + P fy,
ﬁ(N) (O) = Pc§~0~

Let ¢ > 0 and C denote a positive constant which may be different in different cases. Let

(5.1)

m be an undetermined positive constant. By taking the scalar product of the first formula
of (5.1) with 27(N) 4- 7”/17'77751\])(07 we obtain from (2.13)-(2.15) and Lemmas 4.1 and 4.2 that

171 +7m = 1= )l O + 207 OF +vr(e + AN OR):

5 4
+V7’2(ma—a—— i (¢ |1+ZG1 )+ Y D)+ Y Bi(t)
=1 =1

<M @)+ 1+ < )||f1\|2, (5-2)

where

G1(t) = (R (2™ (8) + mri™ (1)), I (R (n™ () + 6™ (1)), Ro N (1)),
Ga(t) = (R (27 (8) + mri™ (1)), I (RN () + o7 (1)), Ro ™ (1)),
G(t) = 7(m — 20)(R, 7" (t), IS (R, 7N (t), R, g ™M (1)),

Dy(t) = 201 A3(R,ii™ (1), Rei ™ (8), RN (1)),
Dy(t) = 2a3 A4 (R, ij"™ (t), Ref ™ (8), R g™ (1)),
Ds(t) = 20107 As (Roi™ (), Roi™ (1), R g™ (1))
+ 20087 A3 (R 7™ (8), Ryt (8), RN (1)),
Da(t) = 20507 A4 (Ryiit™ (8), Ryif ™ (), Ry g™ (1))
+ 20307 A3 (R i (8), Ry (t), RN (1)),

Ds(t) = mday Az (R,iiy ™ (1), Rty (1), R g™M(1))

+mbast? Ay (R, (1), Reilt™ (8), Re@™ (1)),

Bi(t) = —2vBAM (), 71N (1), Ba(t) = —2vorBH™M (1), 7™ (1)),
Bs(t) = —mwB(i"V (1), 7™ (1)), Ba(t) = —mvor*B@GNY (), 7 (1))

By taking the scalar product of the second formula of (5.1) with R23(V)(t), we have from
(2.16) and Lemma 4.5 that

RN (1)} + SRN (1) < N (1) + |1 2. (5.3)
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We now estimate |G;(t)|. We use the following notations

5@ = llgo@IIF + gL (013 15 @)1 = 32 O + 11 52 @112,

30 (OI2 = oo 2 + N2 g = mase fu(t) woagen-
t<T
We have
Gao) < il @1+ ¢ (14 (14 )1 Ren N @)
Tm? ~
+0(1+ )R 1. (5.4)

The estimation for Gy(¢) is a little difficult. We have
Ga(t) = 2(R, 7™ (1), JE (R, ™ (1), R ™ (1))
+mdr? (R ™) (1), 1) (R (1), Ryp™ (1))
+20r (R ™ (6), L (Reif™ (1), Reo™ (1))
(R (1), I (Ryif ™ (0), R ¢<N> (1))).
Furthermore
(RN (2), JEN (R, 7™ (8), RN (1)))] < ev|™ (0)[F + gIIIRrw(N)H\§,OOI|77(N)(t)|I2~
Let A = N? + ;5. By e-inequality, Lemma 4.4 and Lemma 4.5,
1257 (Reif ™ (), L (o™ (), Reip™ (1))
< erllaf™ @1 + ZUR e NN T O + Cralgo)
We can estimate the other two terms similarly and so
|Ga(t)]

v i C N
< (3er + R ) IO + i O + R0 5 (0

z (N) Tha2 G, ()12
+O(14+ 2R BL) (13O + Thllg0)]12). (5.5)
By Lemma 4.8,
CTN(m —26)?, _ = _
Ga0)] < erlli™ O + ————— (T O + 1)V OF.  (5.6)
We now estimate |D;(t)|. Firstly, we have
5 OR,pWN) _
Di(t) = M (1,1), P 22— (1 — M1 -
) = on [(RA™ (0. P (F5 0= (0= b RN M= k) )
OR,pWN) _
F(N) (1 — iy (N)
+( (1 h,t), P, ( G (LR (1,t)>)7
~ OR.3™N) ~
(Rrﬁ N (h,1), (W(O,t)an(m(O,t)))f
_ OR,¢W) _
= (Ri™00.0, P (ZgE— 0 RN (0,0)) ]
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By Lemma 4.8,
OR,.¢WM)
7 (N) T _ N (1 —
‘(Rm (17t)>Pc( oy h7t)Rm (1 h,t)))f‘

ChN 6RT
< 01 = ) + S| 22

2
SR OI WEAGI

We can deal with the other terms in Dl(t) snmlarly and thus by Lemma 4.6 and Lemma
4.7,
ChN

D1 (8)] < evS@™ () + —— g 177 O + 1 22])- (5.7)
By an argument similar to the estimation for | Dy (t)|, we get
ChN 04 -
Da(0)] < SN 0) + T (19OIE + 152 1) AV O + 152 69

1D3(t)] < evSHEMN (1)) + evr?S (77 (1))

+ R (1g012+ 21a T O + 151 5:9)
ID4(0)] < rSGEN0) + S 0) + T (I + 1 52 012
210012 + I Q) (17 @1 + 1517, (5.0
ChNT?

1Ds(1)] < evr?S (i (1)) +

g ~
(hae(@) 1+ 152 OIZ) QA O + 1507 (511
We now estimate B;(t). It can be verified that

Ba(t) > 205 (1)) — < an) (5.12)

Ba(t) + Ba(t) > vr (o + 2 ) [SGN @0 —vr (o + ) S (1)
—ar S (1) - SN (1)

S lae i+ rh2a o)1), (5.13)
Bi(t) > movr S (1) — “7 g ()2 (5.14)
By substituting (5.4)-(5.14) into (5.2), we obtain
A + 7 (m 1~ 6e — YR ENE ) IV O + i )
+vr(o+ ) AN OR) +vr? (mo — o = 2 )1 O +v(2 - 5 SGN(1))
+vr(o+ ) @)+ v (mo — o~ 7= 1) 8™ (1))

< Ho@)lIn™ (0)* + Hy (0|7 ()13 + R(1), (5.15)
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where
(1) = (14 ) A B o+

a0l + 215 012)),

#1,(0) = —v + e+ SN2 1200 (2 (o)),

R(t) = C(1+ 2 101 + 1R

R ™300 /- _
(14 ) (a1 + TR0 )12
hN g 0g =
7= (18O + 15 O + 713013+ 71 57 013 101
8.’E2
Let 7 and € be suitably small, and choose the value of m as follows. If o > %, then we take

20 + 8¢
7,1+p0+66), po > 0.
20— 1

|HRT90(N)”|%,OO hN (. _ 2 g 2
— T ?<||9(t)||j + ||87x2(t)|\7

1F2()I1 + i(llé(t)I@ﬂL Th?)|g.(t)3)

m > my = max(
Then (5.15) leads to
1N ONF + por ™ 12 + w7 O + SGN (1))
+vr (o +5) (3N @) + 6N (1),

< HyOli™ @®)* + H(@®)1™ @©)F + R(2). (5.16)
If o = %, then we take
1 o YT 2evt
m>m2:1+po+§V7N +m+7h2 + 6e.
By Lemma 4.3 and Lemma 4.4,
N (N 2
A OF < (N + )1 O + 2301, (5.17)
~(N N
SE(0) < gl O] (5.18)

Thus

m., .
(m—1-— 6€)||77(N) O +vr*(mo — o — 5)\%” (O
9 . m (N)
+ur (ma -5 4€>S(77t (1))

Cr, .
= por ™ O = 5~ 13:0)I1% (5.19)

Hence (5.16) holds still. If ¢ < 3 and 7 < then we take

4h?
v(1—20)(9+2N2h2)>

vor  2evT 1
m>m3:(1—|—p0+1/07']\72—|— o2 + 2 —|—6€>(1+I/TN2(O'—§>

+aa(e=3))

By (5.17)-(5.18), the estimation (5.19) still holds and so (5.16) follows also.
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Now put
EM @) = |7 @) + vr (150 @)1 + SGN (1))
+7 3 worlla™ 12 + vli™ )2 + vS@EN (1)),

yEST
y<St—7
N ~
AN @ = 1O +7 Y R).
yeEST
y<t—r

By summing (5.16) up for ¢ € S;, we get
EM@ < oMb +7 > (How) BN (y) + Hiw)li™ )I?). (5.20)

yEST
y<t—r

In particular, if

maq, for o > %,
20 > < ma, for o =1, (5.21)
ms, for o < %,

then we take m = 26 and so Hy(t) = —v + ev < 0. Finally we apply Lemma 4.16 of [28] to
(5.20) to get the result.

Theorem 5.1. Assume that the following conditions are satisfied:

(i) h=0(%), 7=0(7z) and o1 = as,

.e 2

(i) 0 > 5 or T < =5y (oranERT

(iii) for allt < T,

~ - ag N
1201 < ba, IGOIF+ 15O < b o1 (8) < bo.
Then for allt <T,
EN(1) < baet oM (1), (5.22)

where by are positive constants depending only on || Ren™ |1 .00, || Rrp™|||2,00 and v. In

particular, if (5.21) holds, then for all pgN) (t) and t, (5.22) holds.

Remark. If a; = as, then the main nonlinear error terms
(2(0), RIS (R, 2(1), R g™ (1)) 2 = 7™ or ™)
depend only on the boundary errors. If in addition, there is no error on the boundary, then
both of them vanish.
Now, we consider the convergence. Let
¢ = pPyg, W) = Py,
EN) = () _ eN) - (N) — (5 (N) ()
By (1.1) and (2.3),
N 4 R I (R (€ 4 678, Ry () 4 D))
R JED (B (€ 4 07N, RPN — v AE) 4 oM
=Pfi—Pnfi— lil M, (5.23)

—AYpWIN) = ¢N) _ ppe.
EMN(0) = P&y — Pnéo.
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where
Ny W)
My =" = T
oY 06 Oy O
My = R J@ (RN R o)y _ py (9% 08 0% 98
2 = RS (B8, e T) N(axg Or1  Omy axz)’
My = 67 R, J) (Ro&™), Rap™),
0%¢ N
M4 = Vaix% - nggcl:f?n
My = l/O'TAft(N),
92 (N) N
MG = 8,1% - ;1%1'
Next, we estimate the terms at the right side of (5.23). Firstly
3
T IMIP<Cr Y &) - 5 oI
2= 2%
2 0%¢ 1
<Cr ||@||L2(0,T;L2(Q))~
3

We have My = > oy F}, where

i=1

o oY 06 O 9¢

F = RrJz(,c)(er(N)a Rr¢(N)) - PN(@@ - 671872)

Obviously
6
OR,£W) oY 0
F=Y Ko RTPC<(RTw(N))5C17£) + PN(—w—g), (5.24)
=1

3x2 Bxl 81'2

o (ORAW) OR ™) OREN)
Kl—RTPC(sz(er ):i1)_RTPC( Oxo Oxq >7
_ IR, Y™ OR, €M) OR, ™) 9™
KQ_RTPC( Oxs Oxy >_ " C(TCQ Oz, )7
b (OR™N) e) v oe)
K?’*R’"PC(TJ“Q 0, )7 " C( Oxa  Omy )7
B o) e dpN) 9™
K4—RTPC(Tm Dy )- C(TuTm)’
(N) 5¢(N) (N) §e(N)
K5:Pc<a¢ o€ ) PvN) EN)
Ory Oz, Ore 011

B oy geV) o O
Ko =5 orr ~ (G50
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Let 8 > % and p > 0. By Lemma 4.9 and embedding theory, we have
1KLL < ORI s @ lIE™ Blls g oy
< ORIl = @M 3 gy
1Kl < CN Pl ™ [[ler @) IEM e
< ON |l e @€y 0m gy

1Kl < ONTPN ™ gr oo @y 1E™ e .22y
< CNl|] 1

(I,HF(I))

2+u Hﬁ”rl([ H|5H| 2+u(1 L2( ))

1Kl < EN PN g 7o iy NE M 1. peo iy

-8
<CN |||7/’|||H%+u(] Hﬁ+1([~))H|§H|H%+“(1 HAD))’

VS < ON N e g o iy € oy

||K6|| S CN ﬂ|||§|| |H%+“(I,Hﬁ(1~)) | ||/l/}|| |H%+#(I,Hg+1('f))'

We can estimate the last two terms of (5.24) and || Fz||, ||F5||. Thus
105]) < CON2 4 12) (M=o + €N 0 s gross )+ I gy
+ |||§|||H%+”(I,L2(f))) (lemHzJﬂ‘(Q) + HW”|H%+M(I,H3+1(7))

M50 oy I 3 o)
It is easy to verify that

23 23
il

15 < Crll ™ oy (115 1y gem gy oy + W Mrdon sy

M) < CRIEN o r pty < CREN oy gy

23 23
HM5|| S CT(|||§|HH%+H(1 LQ(T)) + |||§|HH%+N(]’H2(T))>’

1Ml < CRAINon(r oy < CRIGI 3y o

By an argument as in Theorem 5.1, we come to the following conclusion.
Theorem 5.2. Let the conditions (i) and (ii) of Theorem 5.1 hold. In addition, § >
©>0 and
&% € C(0,T; H*#(Q) 0 Ha (1, HPHN(T)) 0 HE (1, HP (1)) 0 H> (I, L*(T))),
_ 2
gﬁ € C(0,T; H> (I, H*(I)) n H3+1(1, L*(1))), % € L*(0,T; L*(9)),
f1 € CO,T; H2 (I, HA(D),  go, g1 € C(0,T; HTH(I)),
Then for all t <T, we have
le() =™ O < 0" (72 + bt + N7,

where b* is a positive constant which depends on the norms mentioned above.
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§6. Error Estimations for Other Unsteady Problems

In this section, let b > 0 and consider the following boundary condition
(0,29, 8) + LM (0, 29, ) + 1™ (h, 22, 1))

= Po(—£5(0, 2, 1) + b&(0, 2, 1))

= P.go(wa,t), (6.1)
ne, >(1 22,8) + 5 (™) (1,22, 8) + N (1 = by, 1))

—P( - (1,22, t) + bE(1, 22, 1))

= cgl(x%t)

For simplicity, we assume that

and
N0, m,t) = ¢ (1, 22,1) = 0
as before. By an argument as in Section 5, we have
ENM @ +7(m =1 = )i @O + 217 ()

o+ 5 ) (MO, +w2(mo— - 2 ) OF

+ Dy (t) + Gu(t) + Gs(t +ZBl

2
< 17 ()12 MTTN 72 '
< OO+ (1+ 55 1Al (6:2)
where D1 (t), B,(t) are the same as in the previous section, and
Ga(t) = 7™M (&) + mri™ (£), RpJS (R ™ (1), Ry g™ (8))
+ R (RN (t), Rrp™(1))),
Gs(t) = mr (i) (8), Rp T (Ryif ™ (1), Rig™ (1)),
We first suppose that b = 0. By Lemma 4.4 and Lemma 4.8,
Ga(®)] < el O + evli™ 1)
c i . i
+ (1 RN oo + IR MO ) TN @1 + 11 £211* + 7RI F113),

XD ORUTV O + 17217
By Lemma 4.7 and Lemma 4.8, for any z1, 2}, ) € I,
|(u(zy, 1), v(z), hw (@Y, 1))
< llu(zr, )13+ N, )| Hlw (=], )]
< elu(t)[} + Cllu®)|* + N(elo(t)[T + Cllo@)[I*) (elw®) [ + [lw(®)]?).
Thus Lemma 4.6 and the second formula of (5.1) lead to
[D1(t)] < C(L+ N[0 + N f2(6) ) (ev[7(t)F + [In(t)]?)- (6.5)

1G5(1)] < er|lat™ ()]% +
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Next by Lemma 4.7,
4

N C -
> 18] < @li® @ + errla™ of + S o)
=1

+ 72| O + 131 + 725 (O1)-
Theorem 6.1. Assume that
(i) b=0, h:O(%), T:O<$>, 02% or T < #‘M’
(i) || f2(6)]12 < b and pSV(t) < & for all t <T.
Then for allt < T,
B (1) < bse®pi™ (1),

where

N ~ ~(N ~
ESN @) = 1a™ @) +vrla™ @R+ Y orllid™ @)1 + vla™ ()13),

S
N -
P @) = 1N+ T WA+ 1G@)1E + 7213 w) 1)
yEST
y<t—7

We next consider the case b > 0. Let
S (NV(1) = (||77 20,6) + 73 (b, )[1F + 17N (1 — Ry t) + 70 (L, )]12).
By (6.1),
N . C .
17890, 112 + 1757 (1,2 < e85 G (1)) + < 13(0) 12
As the derivation of (6.3) and (6.4), we have
_ C
Ga(®)] + 1G5 ®)] < erllie™ @2 +evli™ @) + = (1R
+ | Rrp™ 13 0 + 1) (N @12 + 2011 + rhS™* (7™ (2))

CTNI??( YORUTN @ + 1 F20)1).

+Thlg(6)[1%) +
On the other hand,

Bi(t) > b1~ 95 (1) — a0

b(m + 20) bur?(m + 20)
4

SN (1) = (L + 95" (i (1)
=~ Slae R+ g o)1),

bvoT?m v ~(N Cr? .
Bi(t) > =5 (1 =98 (i (1)) — 3 (0)]I3
By an argument as in Theorem 5.1, we reach the following conclusion.
Theorem 6.2. Assume that
2

(1) b>0, h= O(i)’ = O(NL)’ 0>jzorT< 1/(1—20)(241N2h2+b)7
(if) || f2(1)]? < e ndp (1) < b for allt <T.

By (t) + Bs(t) >
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Then for allt < T,
E() < biae”= oM (1)
where

EM () = 17N @) + w(|ﬁ<N>< 812 + 5N (1))

+7 3 worlli™ W12 + i )2 + vS (7 (),
yesr
N = - -
pM(t) = Hn‘N)( W2+ S ARG+ 1302+ 725 w)]12).
yEST
y<t—7

We can prove the convergence for b =0 and b > 0 as in Theorem 5.2.

§7. The Steady Problem

In this section, we consider the steady problem

9y ¢ oy 9¢ 9% | 9% _ ;
szﬁ*ﬁ@*”(ﬁJrj)*fh in Q,

-S¥ -2 =¢ in Q. 71)
For simplicity, suppose that £ = ¢ =0 for 1 = 0,1. Let
H = {u|u(0,z2) = u(1,22) = 0, u(z1,z2) € Viy for x1 € I}
with the scalar product and the norm as follows:
(10) = s ) + s v) + (5 20) o (), w07
+ g (u(1 = ), o1 = )y,
lullZy = lulf + S(u).
The Fourier pseudospectral-finite difference scheme for (7.1) is
{ R (Rop™), Rop™) — vAgN) = P.fy, (72)
—ApWN) = (),

For any fixed w € H, (w, P.f1) is a linear functional in H and so there exists F' € H such
that

(Fyw) = (w, Pefr),  [(w, Pef)| < [[Flla|[w]a
Theorem 7.1. Let oy = a2 and |F||ar be bounded uniformly for N and h. Then (7.2)

has at least one solution which is bounded uniformly for N and h.

Proof. From (7.2) and (2.15) we have
vin'™,w) + (w, B JE (B ™), By g ™)) = (Pefr,w).

For any fixed ™ and o), (w, RTJC(O‘)(Rm(N), R,¢™)) is a linear functional in H and
thus there exists An™) € H such that

(An™N, w) = (w, Ry I (Ren™), Rep™)). (7.3)
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Hence (7.2) is equivalent to the following operator equation

1
n™M X AN —F) =0, A==,

14

Assume that the sequence {nn } satisfies

_ApN) — V)

n

and

I =™y =0 as n — oo.
If n is large enough, then [|[n$™ ||z and [|o$" || 5 are uniformly bounded. Let

Zmm = (AnN) — AN qp).

Then by (2.13),

| Zinnl < C* ) =0 N l|w
and so

1A — A < Ol = 0l

Thus A is a continuous operator. On the other hand, from (7.3) and (2.13) it follows that
for A € (0, 1] the possible solution satisfies

N N N
™2 < ANl Pl < o3I

and thus HnE\N) ||z is bounded. Finally the conclusion follows from Browder’s theorem.
Let
2”2

ullis = Jlu Jult o = Huxlllﬁ +5 ||U:c1||z4 + |l

g
We can prove as in [21] that |lul/}, < C5(||uH2 + |ul?).
Theorem 7.2. If a1 = ag and v? > Cg||f1|, then (7.2) has only one solution where
Cs = ClC%(Q + 201)3, and Cy is the same as in Lemma 4.5.
Proof. Let n™), ™) and n(N) gpgN) be the solutions of (7.2) and
7N = 771 NY @) (N = SN ()

$1
Then
ReJE (Ryf™), Ry g™ + RypN))
+ R, I (Rep™, R, gN)) — wARN) =0, in Q,
. 5 : (7.4)
—ApWN) = (V)| in Q,
7N = gWV) =0, for z1 =0, 1.
Since

(N, Re J( (Ron™), R, ™M) = —(nf™), R, T (R, 7™, R, (M)),
from (7.4) we have

R =R T

vlallE < lln 7
1 1, . - 1
< G ™2 17 @™ ( ||7](N)H2
+ MM} + 1631 (7.5)



488 CHIN. ANN. OF MATH. Vol.15 Ser.B

Therefore by the second formula of (7.4), Lemma 4.5 and Lemma 4.6,

L 3 1 -
(v = CECH2+2C) 7 [n™ )71 < 0. (7.6)

On the other hand, by (7.2),

™ E < 1™ NA < VCalln™ |zl .

By the technique as in [5], we have the following results.
Theorem 7.3. Let fi be the error of fi. If the conditions of Theorem 7.2 are fulfilled,

then |73 < CILA17

18

[1

[2]
(3]

[4]
(5]

(6]
(7]

[8

(9]
(10]
(11]

12]
(13]

(14]
(15]
[16]
(17]
(18]

(19]

Theorem 7.4. If the conditions of Theorem 7.2 hold, then the iteration

=0+ rlvan(Y - RO (R Rep™) + Pofi], 7>0, n>0,

—ApMN) =M.
convergent, and there exists a positive constant 0 < 8 < 1 such that

) — ™2 < 7 |lnf™) — N2,

n
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