SUPPLEMENT TO "PASSAGE, BLOCKADE, SINK AND SOURCE OF A PLANAR DYNAMICAL SYSTEM"

YE YANQIAN*

Abstract

A Theorem is given on the number of passages passing through a multiply-connected region, which corrects a wrong conjecture in a former paper of the author.

Keywords Passage, Multiply-connected region, Critical point, Saddle point.1991 MR Subject Classification 34C05.

In [1] we have given a conjecture on the number of passages of a planar dynamical system D through a multiply-connected region G. Now, we find that the number conjectured is incorrect. Instead, we give a theorem as follows:

Theorem. For an n-multiply-connected region $G (n \ge 2)$ with outer boundary L_1 and inner boundaries L_2, \dots, L_n , the σ_i and ν_i denote the number of inner and outer contact points on L_i (as a boundary of G) with respect to the trajectories of D, respectively. Assume now

$$\nu_1 = 2m, \ \sigma_1 = 0, \ \nu_i = 0$$

for $i = 2, 3, \dots, n$,

$$\sum_{i=2}^{n} \sigma_i = 2(m+k),$$

where $m \ge 1$, $0 \le k \le n-2$ are integers, so that the sum of indices of critical points in G is k+2-n. We assume that there are exactly n-k-2 saddle points in G. Then the number of passages is at least

$$p = 2(m+2+k-n)$$

when $2 \le n < m + 2 + k$; except the case m = 1, n = 2, k = 0, in which we have p = 1. There may exist no passage when

$$n \ge m + 2 + k.$$

Manuscript received May 9, 1992.

^{*}Department of Mathematics, Nanjing University, Nanjing 210008, China

Proof of the Second Part (the idea comes from Fig. 13 in [1]). When $n \ge m + 2 + k$, we have $m + k \le n - 2 < n - 1$. We may take

$$\sigma_2 = \sigma_3 = \dots = \sigma_{m+k+1} = 2,$$

and let l_1 , l_2 be two trajectories such that each of them contacts $L_2, L_3, \dots, L_{m+k+1}$ externally at one point and both of them go into the interior of L_{m+k+2} as shown in Fig. 1. Evidently, there is no passage in G.

When m = 1, n = 2, we must have k = 0; the theorem reduces to Theorem 3 in [1].

Proof of the First Part. When 2 < n < m+2+k we have m+k > n-2 > 0. Assume that $\sigma_2 = \cdots = \sigma_{n-1} = 2$ and $L_2, L_3, \cdots, L_{n-1}$ all contact l_1 and l_2 ; moreover, l_1 and l_2 both go into L_n . Now,

$$\sigma_n = 2(m+k-(n-2));$$

it is easily seen that there will be 2(m+k+2-n) passages passing through L_1 and L_n , as is shown in Fig. 2 in case n = 4, k = 1 and m = 3, so p = 4. In case n = 2, there is only inner boundary, we need not consider l_1 and l_2 . Fig. 2

Notice that Fig. 2 gives the least number of passages under the condition n < m + 2 + k. If instead of Fig. 2, we have less inner boundaries like L_2 , more inner boundaries like L_n , then the number of passages will be greater than 2(m - n + 2 + k). See Fig. 3, where

n = 4, m = 3, k = 0, 2(m - n + 2 + k) = 2,but p = 3.

Fig. 3 **Remark 1.** Fig. 4 shows that the assumption $\sigma_1 = 0$ in the theorem cannot be dropped. n = 3, m = 2, k = 0, $L_1: \sigma_1 = \nu_1 = 3;$ $L_2: \sigma_2 = \nu_2 = 1;$ $L_3: \sigma_3 = \nu_3 = 0.$ 2(m - n + k + 2) = 2,

but p = 0.

Fig. 4

If we notice the picture in Fig. 4 and the proof of the theorem, we see at once that the theorem remains true if the conditions on the ν_i and σ_i are changed into:

$$\nu_1 - \sigma_1 = 2m,$$

$$\sum_{i=2}^n (\sigma_i - \nu_i) = 2(m+k), \quad m \ge 2.$$

Under these conditions we have in Fig. 4:

 $m=k=0, \ n=3>2,$

so there is no passage.

Remark 2. Fig. 5 shows that the condition $k \le n-2$ cannot be dropped. **Remark 3.** Fig. 6 shows that the condition $k \ge 0$ cannot be dropped.

$n = 2, \ k = 1, \ m = 1, \ k + 2 - n = 1$	m = 3, n = 2, k = -2, n < m + 2 + k
n < m+2+k, p = 4,	p = 2(3 + 2 - 2 - 2) = 2
only two passages	only one passage
Fig. 5	Fig. 6

References

[1] Ye Yanqian, Passage, blockade, sink and source of a planar dynamical system, *Chin. Ann. of Math.*, **13B:** 3(1992), 257-265.