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SEPARATRIX LOOPS IN SUPERCRITICAL CASES
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Abstract

In paper [4] the existence of bifurcation to separatrix loops in supercritical cases on the plane
is studied. This note is a continuation of [4]. The author proves the uniqueness of limit cycles
in a neighborhood of the separatrix loop, and the results strengthen the relevant conclusions in

[1-6].
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§1. Introduction

In this paper we consider the two-dimensional system in the general vector form

Ẋ = F (X) + αG(X, δ), (1.1)

or, in coordinates,

ẋ = F1(x, y) + αG1(x, y, δ),

ẏ = F2(x, y) + αG2(x, y, δ), (1.1)′

where |α| << 1, F and G are sufficiently smooth, and F (0) = G(0, δ) = 0, the parameter

δ ∈ Rm, m ∈ N+. We make the following hypothesis on the unperturbed system.

(A) σ0 = divF (0) = 0, and, for α = 0, (1.1) possesses a separatrix loop L0 passing

through the hyperbolic saddle point 0. Set L0 = {X0(t)| −∞ < t <∞}.
In our preceding paper [4] we studied the existence of the bifurcation to the separatrix

loop L0 for the system (1.1) in the supercritical case. In the present paper we will study the

uniqueness of the bifurcation to separatrix loop L0 in the supercritical case. The analogous

issues were considered by [5] for the critical case.

Let

σ =

∫ ∞

−∞
divF (X0t)dt,

M1(δ) =

∫ ∞

−∞
exp

(
−
∫ t

0

divF (X0(s))ds
)
F (X0(t)) ∧G(X0(t), δ)dt,

Mk(δ) =

∫ ∞

−∞
exp

(
−
∫ t

0

divF (X0(s))ds
)
F (X0(t)) ∧DG(X0(t), δ)Xk−1(t)dt (k ≥ 2)

(1.2)
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in which

Xk−1(t) =

{
Xs

k−1(t), t ∈ [0,∞),
Xu

k−1(t), t ∈ (−∞, 0]
(1.3)

and Xs
k−1, X

u
k−1(t) satisfy the following equations:

Ẋ∗
k = DF (X0(t))X

∗
k +DG(X0(t), δ)X

∗
k−1,

Ẋ∗
1 = DF (X0(t))X

∗
1 +G(X0(t), δ) (k ≥ 2), (1.4)

where t ∈ [0,∞) as ∗ = s and t ∈ (−∞, 0] as ∗ = u (see [4]).

We obtain the following main results.

Theorem 1.1. In addition to the hypothesis (A), suppose that σ0 = 0, σ ̸= 0, L0

is counter-clockwise and there exists a δ0 ∈ Rm such that Mk(δ0) = 0, k = 1, · · · , n −
1, Mn(δ0) ̸= 0. Then for 0 < |α| << 1, ∥δ − δ0∥ << 1, the system (1.1) has a unique limit

cycle if σαnMn(δ) < 0 and no limit cycle if σαnMn(δ) > 0 near L0. And the limit cycle is

stable as σ < 0 and unstable as σ > 0.

The paper is organized as follows: the preliminaries are given in Section 2; Section 3 is

devoted to the proof of our main results and corollary; finally, in Section 4 we show how our

results are applied to an example.

§2. Preliminaries

Under our assumptions, the origin is still a hyperbolic saddle point of (1.1) for α near

zero. Up to a linear change of coordinates, the system (1.1) can be written in the form

ẋ = λ1x+ f1(x, y) + αλ̄1(δ)x+ αg1(x, y, δ),

ẏ = −λ2y + f2(x, y)− αλ̄2(δ)y + αg2(x, y, δ), (2.1)

in which λ1 = λ2 > 0, λ̄i(δ) > 0 for ∥δ∥ small, fi and gi vanish at the origin together with

their first derivatives, i = 1, 2.

Moreover, according to the results of [7], we have the following

Lemma 2.1. There exists a C3-transformation in a neighborhood of the origin such that

the system (1.1) can be changed into the form

ẋ = λ1x+ αλ̄1(δ)x+ x2yh1(x, y) + αx2yR1(x, y, δ) = xP (x, y, α, δ),

ẏ = −λ2y − αλ̄2(δ)y + xy2h2(x, y) + αxy2R2(x, y, δ) = yQ(x, y, α, δ), (2.2)

where hi and Ri are continuous functions, i = 1, 2, near the origin.

Suppose that T (X) is the transformation changing (1.1) into (2.2) in a neighborhood of

the origin. We have

T (X) = T0(X) + T1(X),

where T0 is an invertible linear transformation and T1 satisfies

T1(0) = 0, DT1(0) = 0.

Let µ : R2 → [0, 1] be a C∞-function defined by

µ(X) =

{
1, ∥X∥ ≤ 1

2 ,
0, ∥X∥ ≥ 1
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and

T ∗(X) =

{
T0(X) + T1(Xµ(X/ε)), ∥X∥ ≤ ε,
T0(X), ∥X∥ ≥ ε,

S(X) = T ∗(X)− T0(X).

It follows that ∥DS(X)∥ can be arbitrarily small when ε is sufficiently small, for all X ∈ R2.

Thus, T ∗ is a C3-diffeomorphism in R2, provided ε is small enough. Therefore, we have

Lemma 2.2. There exists a coordinate transformation of R2 which is linear outside a

neighborhood of the origin such that the system (1.1) can be changed into system (∗) which

has the form (2.2) near the origin.

Consequently, in what follows we suppose that the system (1.1) has the property of the

system (∗).
It is clear that the local stable manifold of the origin is W s

loc = {(x, y)|x = 0, |y| < ε}.
The unstable manifold of the origin isWu

loc = {(x, y)||x| < ε, y = 0} which is included in the

stable manifold of the origin ultimately for the unperturbed system (1.1)α=0. Let W s
α,δ(0)

and Wu
α,δ(0) be respectively the stable and unstable maniflods of the origin for (1.1) when

α near zero. It is easy to see that ε > 0 can be chosen sufficiently small so that x = ε and

y = ε are cross-sections of the vector field (1.1). We can take ε = 1, by scaling X = εX1.

Let d(α, δ) be the separation of the manifoldsW s
α,δ(0), W

u
α,δ(0) on the cross-section x = 1.

Then from our paper [4] we have

Lemma 2.3.

d(α, δ) =
1

∥F (1, 0)∥

n∑
k=1

αkMk(δ) + o(αn+1), (2.3)

where Mk(δ) (k = 1, 2, · · · , ) satisfy the formula (1.2).

We define the Poincaré map P : l → l, where l = {(x, y)|x = 1, 0 < y << 1} is a cross-

section as above. Let A1 = ye2 + A0, A2 = β(y, α, δ)e2 + A0, y > 0, where e2 = (0, 1); A0

is the point (1, 0) if d(α, δ) > 0, and A0 is the first intersection point of the stable manifold

W s
α,δ(0) with l if d(α, δ) < 0. A2 is the first intersection point of the orbit passing through

A1 with l. Note that the stable manifold lies inside (outside) of the unstable manifold if

d(α, δ) < 0 (> 0).

For the Poincaré map P : (1, y) → (1, β(y, α, δ)), we have

Lemma 2.4. If σ0 = 0, then for |α| sufficiently small and any fixed δ ∈ Rm we have

1) β(0, α, δ) = d(α, δ), if d(α, δ) ≤ 0;

2) β(0, α, δ) = Kd(α, δ) + o(α) > 0, if d(α, δ) > 0;

where K = ∥F (1, 0)∥/∥F (0, 1)∥.
Proof. 1) It is trivial.

2) Consider the Poincaré map P : (1, 0) → (1, β(0, α, δ)), which can be decomposed to

π1 : (1, 0) → (d′, 1) and π0 : (d′, 1) → (1, β(0, α, δ)),

where

d′ =
n∑

k=1

αkMk(δ)/∥F (0, 1)∥+ o(αn+1) = Kd(α, δ).



496 CHIN. ANN. OF MATH. Vol.15 Ser.B

In order to study the map π0, we consider the flow defined by the linearization of (1.1)

about the origin, which is given by

x(t) = d′ exp(λ1 + αλ̄1)t,

y(t) = exp(−(λ2 + αλ̄2)t). (2.4)

The time of flight, T0, needed from the point (d′, 1) to (1, β(0, α, δ)), is given by

T0 = − 1

λ1 + αλ̄1
ln d′.

Thus, the linear part πL
0 of π0 is defined by

πL
0 : (d′, 1) →

(
1, (d′)

λ2+αλ̄2
λ1+αλ̄1

)
.

So,

PL = πL
0 ◦ π1 : (1, 0) →

(
1, (Kd)

λ2+αλ̄2
λ1+αλ̄1

)
.

According to the continuity of the solutions with respect to the functions on the right hand

side and the parameter α for the system (1.1), we can take the map PL as the approximate

of the Poincaré map P. Therefore, we have

β(0, α, δ) = (Kd)
λ2+αλ̄2
λ1+αλ̄1 + o(α) = Kd+ o(α),

for α near zero, because σ0 = λ1 − λ2 = 0. Also, clearly, β(0, α, δ) > 0. This prove the

lemma.

§3. Proof of the Main Theorem and Corollary

The existence and nonexistence of the limit cycle can be obtained from our paper [4].

We begin on the proof of the uniqueness of the limit cycle. In order to be specific in the

following discussion, we assume that σ < 0, αnMk(δ0) > 0. Let Lα,δ be any limit cycles

generated by the separatrix loop L0 for the system (1.1) when 0 < |α| << 1, ∥δ− δ0∥ << 1.

Lα,δ → L0 as α→ 0, δ → δ0.

The characteristic exponent of the limit cycle Lα,δ is

γα,δ =

∮
Lα,δ

divF (X)dt+ α

∮
Lα,δ

divG(X, δ)dt ≡ I1 + I2. (3.1)

We claim that

γα,δ → σ as α→ 0, δ → δ0. (3.2)

If the above claim holds, we yield

γα,δ = σ + o(|α|+ ∥δ − δ0∥) for 0 < |α| << 1, ∥δ − δ0∥ << 1,

so any limit cycles Lα,δ generated by the separatrix loop L0 must have the same stability as

L0. Hence, the system (1.1) has a unique limit cycle near L0, which is stable and unstable

as σ < 0 and σ > 0, respectively.

To prove the above claim, we first prove
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Lemma 3.1.

I1 =

∮
Lα,δ

divF (X)dt→ σ as α→ 0, δ → δ0. (3.3)

Proof. As shown in Fig. 1, let

l = {(x, y)|x = 1, y > 0}

as before, l′ = {(x, y)|x > 0, y = 1}.
A0 = (1, 0) ∈ l ∩WS

α,δ(0), B0 = (0, 1) ∈
l′ ∩WS

α,δ(0). The points A,A1, B1 and C1

are taken on the limit cycle Lα,δ, A1 ∈
l∩Lα,δ, B1 ∈ l′∩Lα,δ.Without loss of gen-

erality, we can assume that A → 0, A1 →
A0, B1 → B0 and C1 → C0 as α→ 0, δ →
δ0.

I1 =

∫
⌢

A1C1+
⌢

C1B1

+

∫
⌢

B1A

+

∫
⌢

AA1

.

From the normal form (2.2), we have Fig. 1

divF (X) = xyh(x, y), h ∈ C (3.4)

in a neigborhood of the origin. Suppose that the parameter representation of the trajectory

segments
⌢

B1A and
⌢

AA1 are, respectively.
⌢

B1A : x = φ(y), yA ≤ y ≤ 1

and
⌢

AA1 : y = ψ(x), xA ≤ x ≤ 1.

Clearly, φ→ 0, ψ → 0 as α→ 0, δ → δ0.

It follows that∫
⌢

B1A

=

∫
⌢

B1A

xyh(x, y)dt =

∫ 1

yA

− φh(φ, y)

Q(φ, y, α, δ)
dy → 0, as α→ 0, δ → δ0;∫

⌢
AA1

=

∫
⌢

AA1

xyh(x, y)dt =

∫ 1

xA

ψh(x, ψ)

P (x, ψ, α, δ)
dx→ 0, as α→ 0, δ → δ0.

Therefore,

I1 →
∫

⌢
A0C0+

⌢
C0B0

=

∮
L0

divF (X)dt = σ.

Secondly, we have

Lemma 3.2.

I2 = α

∮
Lα,δ

divG(X, δ)dt→ 0 as α→ 0, δ → δ0. (3.5)

Proof. From the normal form (2.2), in a neighborhood of the origin divG(X, δ) takes

the following form:

divG(X, δ) = λ̄1 − λ̄2 + xyR(x, y, δ), R ∈ C. (3.6)
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It is easy to show that

−I2 = α

∫
⌢

A1B1

divG(X, δ)dt+ α

∫
⌢

B1C1+
⌢

C1A1

divG(X, δ)dt.

Clearly, the second integral can be reduced to a definite integral with respect to the variable

y, which is a bounded continuous function of all its arguments. Moreover, for the first

integral, we have∫
⌢

A1B1

divG(X, δ)dt

=

∫
⌢

A1B1

[(λ̄1 − λ̄2) + xyR]dt

=

∫ 1

yA1

[
− λ̄1 − λ̄2
(λ2 + αλ̄2)y

+
λ̄1 − λ̄2

yQ(x, y, α, δ)
+

λ̄1 − λ̄2
(λ2 + αλ̄2)y

]
dy +

∫
⌢

A1B1

xyRdt

=
λ̄1 − λ̄2
λ2 + αλ̄2

ln yA1 +

∫ 1

YA1

(λ̄1 − λ̄2)(λ2 + αλ̄2) + (λ̄1 − λ̄2)Q

(λ2 + αλ̄2)yQ
dy +

∫
⌢

A1B1

xyRdt

=
λ̄1 − λ̄2
λ2 + αλ̄2

ln yA1 +

∫
⌢

A1B1

λ̄1 − λ̄2
λ2 + αλ̄2

[xyh2 + αxyR2]dt+

∫
⌢

A1B1

xyRdt.

Set

R(x, y, α, δ) =
λ̄1 − λ̄2
λ2 + αλ̄2

(h2 + αR2) +R.

It follows that ∫
⌢

A1B1

divG(X, δ)dt =
λ̄1 − λ̄2
λ2 + αλ̄2

ln yA1 +

∫
⌢

A1B1

xyRdt. (3.7)

Similarly to the proof of Lemma 3.1, we can show that∫
⌢

A1B1

xyRdt→ 0, as α→ 0, δ → δ0.

Clearly,

λ̄1(δ)− λ̄2(δ)

λ2 + αλ̄2(δ)
→ λ̄1(δ0)− λ̄2(δ0)

λ2
, as α→ 0 δ → δ0.

By Lemma 2.4, we have yA1 > β(0, α, δ) > 0.Without loss of generality, suppose that α > 0.

Then α lnβ(0, α, δ) < α ln yA1 < 0. By Lemmas 2.3 and 2.4 we get

α lnβ(0, α, δ) = α ln
[ 1

∥F (0, 1)∥

n∑
k=1

αkMk(δ) + o(αn+1)
]

∼ α ln[αkMk(δ)] → 0, as α→ 0, δ → δ0.

So α ln yA1 → 0, as α→ 0, δ → δ0.

Hence we have proved that

−I2 =
λ̄1(δ)− λ̄2(δ)

λ2 + αλ̄2(δ)
α ln yA1 + α

∫
⌢

A1B1

xyRdt+ α

∫
⌢

B1C1+
⌢

C1A1

divG(X, δ)dt

→ 0, as α→ 0, δ → δ0.

The proof of this lemma is finished.

Similar to Theorem 1.1, we have
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Theorem 3.1. In addition to the hypothesis (A), suppose that σ0 = 0, σ ̸= 0, L0 is

clockwise and there exists a δ0 ∈ Rm such that Mk(δ0) = 0, k = 1, · · · , n− 1, Mn(δ0) ̸= 0.

Then for 0 < |α| << 1, ∥δ − δ0∥ << 1, the system (1.1) has a unique limit cycle if

σαnMn(δ) > 0 and no limit cycle if σαnMn(δ) < 0 near L0. And the limit cycle is stable

as σ < 0 and unstable as σ > 0.

From the proof of Theorem 1.1, we have

Theorem 3.2. Suppose that, in addition to the hypothesis (A), σ0 = 0, σ ̸= 0, and

there exists a δ0 ∈ Rm such that σα(δ0) = αdivG(0, δ0) = 0. Then at most one limit cycle is

generated by the separatrix loop L0 in the system (1.1) for 0 < |α| << 1, ∥δ − δ0∥ << 1.

Remark. Our results strengthen the relevant theorems in [1-6].

§4. An Example

In this section, we apply the above theorems to the following system:

ẋ = 2y − µ(y2 − x2 + x3)(2x− 3x2),

ẏ = 2x− 3x2 + µ(y2 − x2 + x3)(2y) + αy2,

i.e.,

Ẋ = F1(X) + µF2(X) + αG(X) = F (X,µ) + αG(X), (4.1)

where X = (x, y)T ∈ R2, µ and α are real parameters.

For α = 0, the system (4.1) has a hyperbolic saddle 0 and a separatrix loop L0 oriented

clockwise, given by

X0(t) = (sech2t,−sech2ttht). (4.2)

In [4], we studied the existence of bifurcation to separatrix loop L0. We determine the

uniqueness of the bifurcation near L0 here.

Clearly, for the system (4.1), σ0 = 0, σα = 0. And we can obtain easily

σ =

∫ ∞

−∞
divF (X0(t), µ)dt

=

∫ ∞

−∞
µ[(2x− 3x2)2 + (2y)2]|X0(t)dt

= aµ, (4.3)

where a is a positive constant. Thus, from Theorem 3.2, we get

Theorem 4.1. If µ ̸= 0, the system (4.1) has at most one limit cycle generated by

separatrix loop L0 for α near zero.

By [4], we have

M1 = 0 + o(µ),

M2 =

∫ ∞

−∞
4sech3t · th2t · y(t)dt+ o(µ) ≡ b+ o(µ)

in which

y(t) = φ(t)p2(t) + ψ(t)q2(t)
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and

φ(t) =
21

32
+

15π

8
− 3cht+

5

2
shtcht+

105

32
secht− 5

4
sech2t+

5

16
sech3t

+
15

16
tsech3ttht− 15

32
tsechttht− 15

16
arcsin et,

ψ(t) = secht · th3t− sech3t · tht+ arcsin tht,

p2(t) = 2sech2t− 3sech4t,

q2(t) = −1

4
shtcht− 45

16
sech2ttht+

15

8
tsech2tth2t− 15

16
tsech4t.

Hence,

d =
α2b

∥F1((X0(0))∥
+ o(µ)α+ o(µ)α2 + o(µα3). (4.4)

Thus, we obtain the following result, which is more precise than Theorem 4.1.

Theorem 4.2. For 0 < |µ| << |α| << 1, the system (4.1) has a unique limit cycle near

L0 if µb > 0 and no limit cycle if µb < 0. Moreover, the limit cycle is stable (unstable) as

µ < 0 (> 0).
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