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Abstract

Required by the application in the investigation of the Cauchy integral operators on Lipschitz
surfaces, the classical martingales are generalized to ones defined with respect to Clifford algebra
valued measures. Meanwhile, very general Φ-equivalences between S(f) and f∗, the same as in
the classical case, are established too.
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§1. Introduction

As well known, martingale theory plays a remarkable role in analysis, especially in har-

monic analysis: the former was a source from which many ideas and methods in analysis come

out. Recently, R. Coifman, P. Jones and S. Semmes[1] gave a simple proof of L2-boundedness

of the Cauchy integral operator on Lipschitz curves by making use of martingale theory that

presents a typical example of this role. In [1], the martingales are not the classical ones, but

ones with respect to complex measures. Since the Cauchy integral operators on surfaces are

defined by Clifford valued integrals, this leads to the investigations of Clifford martingales.

This is the motivation of this paper. For the sake of completeness, the results given in this

paper are not restricted to the usage in investigating the Cauchy integral operators, but also

in some more aspects: the equivalences between S(f) and f∗ should be the same as in the

classical case, but not only L2-equivalence.

Let (Ω,F , ν) be a nonnegative σ-finite measure space, ψ be a bounded Clifford valued

measurable function. Consider the Clifford valued measure dµ = ψdν. The martingales

we now consider are with respect to the measure dµ and a family {Fn}+∞
−∞ of sub-σ-fields

satisfying

{Fn}+∞
−∞ nondecreasing,F = ∨Fn, ∩nFn = trivial one,

(Ω,Fn, ν) complete, σ -finite, ∀n.
(1.1)
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And the estimates we will do will be in terms of the integrals with respect to ν. Before we

proceed, some basic facts of Clifford algebra should be recalled.

Let e1, · · · , en be the basis vectors of IRn. For each subset A of {1, 2, · · · , n} (ordered

increasingly) we correspond a vector eA to it, with identification e{i} = ei, i = 1, 2, · · · , n.
Denote eϕ = e0 = 1. Then the Clifford algebra A(n) shall be the algebra consisting of the

real linear spaces generated by {eA} with the mulitiplication subject to the relations

eiej = −ejei, e2i = −1, i, j = 1, · · · , n.

eA1eA2 = (−1)n(A1∩A2)(−1)p(A1,A2)eA1△A2 , (1.2)

λµ =
∑
A,B

λAµBeAeB, for λ =
∑
A

λAeA, µ =
∑
B

µBeB , (1.3)

where n(A) denotes the element number of A, and

p(A1, A2) =
∑
j∈A2

n({i ∈ A1 : i > j}),

and ∆ is the symmetric difference of sets. Obviously A(n) is an associative but not commu-

tative algebra, called Clifford algebra. A conjugate operation is defined in A(n):

eA = (−1)
n(A)(n(A)+1)

2 eA, A ⊂ {1, · · · , n}, (1.4)

λ =
∑
A

λAeA, for λ =
∑
A

λAeA. (1.5)

For this operation, we have

e0 = e0, ei = −ei, i = 1, · · · , n,
eAeB = eA eB , eAeA = eAeA = e0.

For the simplicity we will use the following norm in A(n):

|λ| =
(∑

A

λ2A

) 1
2

, λ =
∑
A

λAeA. (1.6)

For it, we have

|λµ| ≤ k|λ||µ|, ∀λ, µ ∈ A(n). (1.7)

Here k is a constant depending only on n. When at least one of λ, µ, say λ, is of form

λ =

n∑
i=0

λiei, (it is just the element of IRn+1, usually it is called Clifford number) we have

k−1|λ||µ| ≤ |λµ|, one of λ, µ is in IRn+1. (1.8)

In what follows we often use the fact that for a =
4∏

i=1

ai, ai ∈ IRn+1 we have |a| ≈
4∏

i=1

|ai|.

§2. Clifford Conditional Expectations, Clifford Martingales

We begin with the definition of conditional expectations. (Ω,F , ν) is a σ-finite measure

space, dµ = ψdν is an IRn+1 valued measure the domain of which is not F when |Ω|ν = ∞,

but a subring of F . This does not bring us any trouble for the definition of conditional
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expectations. Let J be a sub-σ-field of F such that (Ω,J , ν) is σ-finite and complete.

Denote the conditional expectations with respect to ν and µ by Ẽ and E respectively. The

definition of Ẽ is standard and Ẽ has all the good properties as in the classical case. Assume

that ψ is bounded. Then

Ẽ(ψ|J ) =
n∑

i=0

Ẽ(ψi|J )ei, with ψ =
n∑

i=0

ψiei.

Furthermore, assume Ẽ(ψ|J ) ̸= 0, a.e. Then for Clifford valued (or say A(n) valued)

functions, define

lE(f |J ) = Ẽ(ψ|J )−1Ẽ(ψf |J ), ∀A(n) valued f ∈ L1
loc(ν), (2.1)

rE(f |J ) = Ẽ(fψ|J )Ẽ(ψ|J )−1, ∀A(n) valued f ∈ L1
loc(ν). (2.1)′

Obviously, E has the following properties (a)—(f).

(a) lE is right Clifford linear, left and right real linear, and

lE(fg|J ) = lE(f |J )g, provided g is J -measurable Clifford valued.

And similarly for rE.

(b) lE(1|J ) = 1 = rE(1|J ).

(c) Both lE(f |J ) and rE(f |J ) are J -measurable, and∫
A

lE(f |J )dlµ =

∫
A

fdlµ, ∀A ∈ J , ∀f ∈ L1(A, ν), (2.2)

∫
A

rE(f |J )drµ =

∫
A

fdrµ, ∀A ∈ J , ∀f ∈ L1(A, ν), (2.2)′

where ∫
A

fdlµ =

∫
A

ψfdν,

∫
A

fdrµ =

∫
A

fψdν. (2.3)

(d) When J1 ⊂ J2, we have (denoting lE or rE by E)

E(E(f |J2)|J1) = E(f |J1). (2.4)

As a result of (2.4), we have (E = lE or rE)

E(E(f |J2)− E(f |J1)|J1) = 0. (2.5)

Now assume that we have a nondecreasing family {Fn}∞−∞. In the classical case, as an

important result of (2.4), the martingale difference operator ∆̃n, ∆̃n = Ẽn − Ẽn−1, Ẽn =

Ẽ(·|Fn) are orthorgonal:

Ẽ(∆̃nf∆̃mg|Fk) = 0, n ̸= m, n,m ≥ k,∀f, g ∈ L2. (2.6)

In Clifford algebra case, because of the noncommutability, only the following substitution

holds. Let ⟨, ⟩ denote the following “inner-product”

⟨f, g⟩ =
∫
Ω

fψgdν, ∀A(n) valued nice f, g. (2.7)

Then we have



510 CHIN. ANN. OF MATH. Vol.15 Ser.B

(e) Let {Fn}∞−∞ be nondecreasing and (Ω,Fn, ν) be complete and σ-finite, and Ẽ(ψ|Fn) ̸=
0, a.e. ∀n. With r∆n, l∆m naturally defined, we have

Ẽ(r∆nfψl∆mg|Fk) = 0, n ̸= m,n,m ≥ k, (2.8)

especially

⟨r∆nf, l∆mg⟩ = 0, ∀n ̸= m. (2.8)′

The typical case of ψ is the case where ψ is complex valued and dµ is absolutely continuous

with respect to dν. In this case, |ψ| = 1, a.e. So in this paper, we assume the condition

C−1
0 ≤ |ψ| ≤ C0, a.e. Thus we have

(f) Let 1 ≤ p ≤ ∞ and J be any sub-σ-field we consider. Then E(= lE(·|J ) or rE(·|J ))

is Lp-bounded, if and only if

C−1C−1
0 ≤ |Ẽ(ψ|J )| ≤ CC0, a.e.

Now we turn to the inverstigation of Clifford martingales. Let (Ω,F , ν) be a σ-finite (but
not finite ) space endowed with a nondecreasing family {Fn}∞−∞ satisfying (1.1). From the

property (f), it is natural to assume

C−1
0 ≤ |Ẽ(ψ|Fn)| ≤ C0, a.e. ∀n. (2.9)

The definitions of martingales and the related operators are similar to ones in the classical

case. Let f = (fn)
∞
−∞ be an A(n) valued process. It is said to be an l- or r-martingale, if

for E = lE or rE respectively

fn = E(fn+1|Fn), a.e. ∀n. (2.10)

For martingale f = (fn)
∞
−∞ (l-, or r-), the maximal and square functions are defined respec-

tively by

f∗n = sup
k≤n

|fk|, f∗ = f∗∞, (2.11)

Sn(f) = (|f−∞|2 +
n∑

−∞
|∆kf |2)

1
2 , S(f) = S∞(f), (2.12)

where f−∞ = lim
n→−∞

fn pointwise. f = (fn)
∞
−∞ is called Lp-bounded, 1 ≤ p ≤ ∞, if

∥f∥p = sup ∥fn∥p <∞. (2.13)

All arguments in what follows are the same for l− and r− martingales, so we omit the

subscript. We want to show that ∗ is of type (p, p) for 1 < p ≤ ∞, and weak type (1,1).

And for 1 < p ≤ ∞, each Lp-bounded martingale f = (fn)
∞
−∞ is generated by some function

f ∈ Lp(ν) , i.e.,

fn = E(f |Fn), ∀n. (2.14)

And for 1 ≤ p ≤ ∞, all Lp-bounded martingales have pointwise limits lim
n→∞

fn and lim
n→−∞

fn.

We state these as propositions.

Proposition 2.1. Let 1 < p ≤ ∞. Then ∗ is of type (p,p) and weak type (1, 1). And for

1 < p ≤ ∞, each Lp-bounded martingale f = (fn)
∞
−∞ is generated by some f ∈ Lp(ν), with

∥f∥p ≈ sup
n

∥fn∥p.
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Proof. Let f = (fn)
∞
−∞ be a martingale, say a left one. Then

fn = E(fn+1|Fn) = Ẽ(ψ|Fn)
−1Ẽ(ψfn+1|Fn), ∀n,

fn = E(fn+2|Fn) = Ẽ(ψ|Fn)
−1Ẽ(Ẽ(ψfn+2|Fn+1)|Fn), ∀n,

and hence

Ẽ(ψfn+1|Fn) = Ẽ(Ẽ(ψfn+2|Fn+1)|Fn), ∀n,

which means that (Ẽ(ψfn+1|Fn))
∞
−∞ is a martingale (with respect to the measure ν) and it

is Lp-bounded, since

Ẽ(ψfn+1|Fn) = Ẽ(ψ|Fn)fn.

Now the type (p, p) and weak type (1,1) of ∗ follows from the corresponding assertions in the

classical case. Now for 1 < p ≤ ∞, for anyM > 0, decompose Ω = ∪Ωk,Ωk ∈ F−M , |Ωk|ν <
∞. Since ∀k, (Ẽ(ψfn+1|Fn)χΩk

)n≥−M are classical (although Clifford algebra valued) Lp-

bounded martingales, we can get some ψf ∈ Lp(Ωk, ν), such that on Ωk

Ẽ(ψfn+1|Fn) = Ẽ(ψf |Fn), n ≥ −M.

Thus

fn = Ẽ(ψ|Fn)
−1Ẽ(ψfn+1|Fn)

= Ẽ(ψ|Fn)
−1Ẽ(ψf |Fn)

= E(f |Fn), n ≥ −M.

Let M → ∞, then (2.14) follows. In addition, we have obviously ∥f∥p ≈ sup
n

∥fn∥p (and

hence the two meanings of ∥f∥p are essentially the same). The proof of the proposition is

finished.

Proposition 2.2. Let 1 ≤ p ≤ ∞, f = (fn)
∞
−∞ be Lp-bounded martingale. Then the

following hold a.e.

lim
n→∞

fn = f, for 1 < p ≤ ∞, and lim
n→∞

fn exists, for p = 1, (2.15)

lim
n→−∞

fn = 0, for 1 ≤ p <∞. (2.15)′

Proof. Let Ω = ∪Ωk,Ωk ∈ F0, |Ωk| <∞, for all k. Then both of (Ẽ(ψ|Fn)χΩk
)n≥0 and

(Ẽ(ψfn+1|Fn)χΩk
)n≥0 are Lp-bounded martingales with respect to

(Ωk,F ∩ Ωk, ν|Ωk
, {Fn ∩ Ωk}n≥0),

and have their limits respectively

lim
n→∞

Ẽ(ψ|Fn) = ψ, a.e. on each Ωk,

lim
n→∞

Ẽ(ψfn+1|Fn) = ψg, a.e. on each Ωk,

where g = f, when 1 < p ≤ ∞. Thus

lim
n→∞

fn = lim
n→∞

Ẽ(ψ|Fn)
−1Ẽ(ψfn+1|Fn)

=

{
g, for p = 1,

f, for 1 < p ≤ ∞.
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Now prove (2.15)’. Denote θ(ω) = lim
n→−∞

|fn|. Then θ(ω) ≤ f∗(ω), and θ(ω) is ∩Fn

measurable, and hence θ(ω) = a ≥ 0, a.e. By the weak type (p, p) of ∗, for 1 ≤ p < ∞, we

have

|{θ(ω) > λ}|ν ≤ |{f∗ > λ}|ν ≤
(C
λ
∥f∥p

)p

, ∀λ > 0.

So, a = 0. This proves the assertion (2.15)’. The proposition is proved.

Remark. In the classical case, for 1 < p < ∞, the assertion lim
n→−∞

fn = 0, a.e, was

proved in Edward-Gaudry[3].

§3. L2-Equivalence Between f and S(f) for Clifford Martingales

Now we have (Ω,F , ν, {Fn}∞−∞) as our underlying space, ψ an IRn+1 valued measurable

function satisfying

C−1
0 ≤ |Ẽ(ψ|Fn)| ≤ C0, a.e. ∀n, (3.1)

and f = (fn)
∞
−∞ an A(n) valued martingale with respect to dµ = ψdν (we call such a

martingale as Clifford martingale in what follows). In this section, we want to establish

∥f∥L2(ν) ≈ ∥S(f)∥L2(ν), ∀f = (fn)
∞
−∞.

At first, we do the argument on the underlying space (Ω,F , ν, {Fn}n≥0). We want to show

that all the related inequalities and the assertions only depend on the C0 in (3.1), but not on

{Fn}n≥0, neither the martingales under consideration. Once it is shown to be the case, then

for {Fn}n≥−M , we have the same inequalities and assertions with the involved coefficients

independent of M . Then a limint argument goes to the case {Fn}∞−∞.

The following is the conditioned L2-equivalence between S(f) and f .

Theorem 3.1. Let (Ω,F , ν, {Fn}n≥0) and an IRn+1 valued ψ be as above, and f =

(fn)n≥0 be a Clifford l- or r-martingale. Then we have

CẼ(S(f)2|F0)

≤ Ẽ(|f |2|F0)

≤ CẼ(S(f)2|F0), (3.2)

with C depending only on C0 (and the dimension n of A(n), but we ignore this dependence

in what follows).

Proof. Consider the l-martingale case. Let f = (fn)n≥0 be L2-bounded. We have

∆nf = (Ẽ(ψ|Fn)
−1 − Ẽ(ψ|Fn−1)

−1)Ẽ(ψf |Fn−1)

+ Ẽ(ψ|Fn)
−1(Ẽ(ψf |Fn)− Ẽ(ψf |Fn−1)),

|∆nf |2 ≤ C|∆̃n(ψf)|2 + C|Ẽ(ψf |Fn−1)|2|∆̃n(ψ)|2, ∀n ≥ 0. (3.3)

Here the facts

a−1 − b−1 = a−1(b− a)b−1

= b−1(b− a)a−1,

|a1a2a3a4| ≤ k3|a1||a2||a3||a4|
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have been used. So,

Ẽ
( ∞∑
n=0

|∆nf |2|F0

)
≤ CẼ

( ∞∑
n=0

|∆̃n(ψf)|2|F0

)
+ CẼ

( ∞∑
n=1

|Ẽ(ψf |Fn−1)|2|∆̃n(ψ)|2|F0

)
≤ CẼ(|f |2|F0) + CJ,

J = Ẽ
( ∞∑
n=1

Ẽ∗
n−1(ψf)

2
( ∞∑
k=n

|∆̃kψ|2 −
∞∑

k=n+1

|∆̃kψ|2
)
|F0

)
= Ẽ

( ∞∑
n=1

Ẽ
( ∞∑
k=n

|∆̃kψ|2|Fn

)
(Ẽ∗

n−1(ψf)
2 − Ẽ∗

n−2(ψf)
2)|F0

)
≤ C∥ψ∥2∞Ẽ

( ∞∑
n=1

(Ẽ∗
n−1(ψf)

2 − Ẽ∗
n−2(ψf)

2)|F0

)
≤ C∥ψ∥2∞Ẽ(|f |2|F0).

Thus, we have proved that for l-, or r-martingale f ,

Ẽ(S(f)2|F0) ≤ CẼ(|f |2|F0), (3.4)

with desired C. Now prove the reciprocal of (3.4). We have

Ẽ(|f |2|F0)
1
2 ≤ CẼ(|ψf |2|F0)

1
2

= C sup
g:Ẽ(|g|2|F0)≤1

|Ẽ(gψf |F0)|

= C sup
g

|Ẽ(
∞∑
0

r∆ngψl∆nf |F0)|

≤ C sup
g
Ẽ(rS(g)

2|F0)
1
2 Ẽ(lS(f)

2|F0)
1
2

≤ CẼ(lS(f)
2|F0)

1
2 ,

where the orthogonality (2.8) and the inequality (3.4) have been used. The theorem is

proved.

Remark. [1] obtained the result in the case A(2) = C1.

§4. Φ-Equivalence Between S(f) and f*

Let Φ be a function from IR+ to IR+, which is nondecreasing, continuous, and of moderate

growth in the sense

Φ(2u) ≤ C1Φ(u), ∀u ≥ 0, (4.1)

and Φ(0) = 0. In what follows, we will call such Φ general ones. At first, we want to establish

a general Φ-inequality between S(f) and f∗ for those martingales f which are predictably

dominated in the sense

|∆nf | ≤ Dn−1, ∀n, (4.2)
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where D = (Dn) is a nonnegative nondecreasing and adapted process. Still, we need only

to consider the case {Fn}n≥0. (In this case for any process λ = (λn)n≥0, we define λ−1 = 0,

so any f which fits (4.2) must satisfy f0 = 0. This is not an essential restriction, of course).

Theorem 4.1. Let f = (fn)n≥0 be an l- or r-martingale which satisfies (4.2), Φ be

general one. Then ∫
Ω

Φ(S(f))dν ≤ C

∫
Ω

Φ(f∗ +D∞)dν, (4.3)

∫
Ω

Φ(f∗)dν ≤ C

∫
Ω

Φ(S(f)+D∞)dν, (4.3)′

with the implied constants depending only on C0, C1.

Proof. We will use the stopping time argument and the good λ-inequality method as in

[4]. Let α be an arbitrary real number that is bigger than 1 and β > 0 to be determined

later and λ > 0 be any level. Notice that

|fn| ≤ |fn−1|+ |∆nf | ≤ f∗n−1 +Dn−1 = ρn−1, ∀n ≥ 0.

Define a stopping time by

τ = inf{n : ρn > βλ},

and the associated stopped martingale

f (τ) = (f (τ)n )n≥0 = (fn∧τ )n≥0.

Then we have

{τ <∞} = {ρ∞ > βλ}, f (τ)∗ = sup
n

|fn∧τ | ≤ f∗τ ≤ ρτ−1 ≤ βλ.

Now consider the adapted process (Sn(f
(τ)))n≥0, and define another stopping time

T = inf{n : Sn(f
(τ)) > λ}.

Then we have

{T <∞} = {S(f (τ)) > λ}, ST−1(f
(τ)) ≤ λ.

Thus, we have

{S(f) > αλ} ⊂ {τ <∞} ∪ {S(f (τ))2 − ST−1(f
(τ))2 > (α2 − 1)λ2}, (4.4)

and

Ẽ(χ{S(f(τ))2−ST−1(f(τ))2>(α2−1)λ2}|FT )

≤ 1

(α2 − 1)λ2
Ẽ(S(f (τ))2 − ST−1(f

(τ))2|FT ).
(4.5)

Now consider a new underlying space (Ω,F , ν, {Jn}n≥0) with Jn = FT+n, and a new Clifford

martingale

g = (gn)n≥0 with gn = f
(τ)
T+n − f

(τ)
T−1.

Then we have

∆ng = f
(τ)
T+n − f

(τ)
T−1 − (f

(τ)
T+n−1 − f

(τ)
T−1) = ∆T+nf

(τ), ∀n ≥ 0,
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and

S(g)2 =
∞∑

n=0

|∆ng|2 =
∞∑

n=0

|∆T+nf
(τ)|2

=
∞∑

k=T

|∆kf
(τ)|2 = S(f (τ))2 − ST−1(f

(τ))2.

By making use of (3.4), we get

Ẽ(S(f (τ))2 − ST−1(f
(τ))2|FT )

= Ẽ(S(g)2|J0) ≤ CẼ(|g|2|J0)

= CẼ(|f (τ) − f
(τ)
T−1|

2|FT ) ≤ Cβ2λ2.

Now, since {S(f (τ)) > αλ} ⊂ {T <∞}, we have

|{S(f (τ)) > αλ}|ν ≤
∫
{T<∞}

Ẽ(χ{S(f(τ))2−ST−1(f(τ))2>(α2−1)λ2}|FT )dν

≤ Cβ2

α2 − 1
|{S(f (τ)) > λ}|ν

≤ Cβ2

α2 − 1
|{S(f) > λ}|ν ,

and hence

|{S(f) > αλ}|ν ≤ |{ρ∞ > βλ}|ν + C
β2

α2 − 1
|{S(f) > λ}|ν ,

which is the desired good λ-inequality of the couple (S(f), f∗+D∞). The one for (f∗, S(f)+

D∞) is similar. From them, we get (4.3) and (4.3)’. The theorem is proved.

Now we want to get rid of D∞ in (4.3) and (4.3)’ in the following two cases: one is the

case when Φ is convex, the other is the case when (Ω,F , ν, {Fn}∞−∞) is regular in some

sense. For the simplicity, we consider only the simplest regularity, i.e., the dyadic type one:

each Fn is atomic with its atom I(n) = I
(n+1)
1 ∪ I(n+1)

2 satisfying ||I(n+1)
1 |µ| ≈ ||I(n+1)

2 |µ| ≈
||I(n)|µ|, ∀n, although a little more generality as in Long[4] will also do. We have

Theorem 4.2. Let (Ω,F , ν, {Fn}∞−∞) and dµ = ψdν be as above, and Φ(u) be moderately

convex. Then we have∫
Ω

Φ(S(f))dν ≈
∫
Ω

Φ(f∗)dν, ∀ Clifford martingales f. (4.6)

For the dyadic type case, we have, for general Φ,∫
Ω

Φ(S(f))dν ≈
∫
Ω

Φ(f∗)dν, ∀ Clifford martingales f. (4.7)

Here all the equivalence constants depend only on C0, C1.

Proof. Only consider the dyadic type case. We claim that in such case (4.2) is always

true for every mantingale f = (fn)
∞
−∞ (with some suitably defined D = (Dn)

∞
−∞). In fact,

for any f = (fn)
∞
−∞,

Dn−1|I(n−1) = sup
k≤n

max(|∆kf ||I(k)
1
, |∆kf |I(k)

2
) (4.8)

is a nonnegative, nondecreasing, and adapted process s.t.

|∆nf | ≤ Dn−1,
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and

D∞ ≤ Cmin(f∗, S(f)).

Only the last inequality should be verified. This is because of∫
I(k−1)

∆kfdµ = 0 =⇒
∫
I
(k)
1

∆kfdµ = −
∫
I
(k)
2

∆kfdµ

=⇒ ∆kf |I(k)
1

|I(k)1 |µ = −∆kf |I(k)
2

|I(k)2 |µ

=⇒
|∆kf ||I(k)

1

|∆kf ||I(k)
2

=
||I(k)2 |µ|
||Ik1 |µ|

,

and hence, on I(k−1)

max(|∆kf ||I(k)
1
, |∆kf ||I(k)

2
) ≤ C|∆kf |,

so,

D∞ ≤ C sup
k

|∆kf | ≤ Cmin(S(f), f∗).

Thus, the theorem has been proved.

Remark. In the case of A(2), the result for Φ(u) = up, 1 < p <∞, has been obtained in

Cowling-Gaudry-Qian[2].
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