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EXISTENCE AND UNIQUENESS OF THE ENTROPY

SOLUTION TO A NONLINEAR HYPERBOLIC EQUATION
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Abstract

This work is concerned with the proof of the existence and uniqueness of the entropy weak

solution to the following nonlinear hyperbolic equation: ut+div(vf(u)) = 0 in RI N ×[0, T ], with
initial data u(·, 0) = u0(·) in RI N , where u0 ∈ L∞(RI N ) is a given function, v is a divergence-free
bounded function of class C1 from RI N × [0, T ] to RI N , and f is a function of class C1 from RI
to RI . It also gives a result of convergence of a numerical scheme for the discretization of this

equation. The authors first show the existence of a “process” solution (which generalizes the
concept of entropy weak solutions, and can be obtained by passing to the limit of solutions of
the numerical scheme). The uniqueness of this entropy process solution is then proven; it is

also proven that the entropy process solution is in fact an entropy weak solution. Hence the
existence and uniqueness of the entropy weak solution are proven.

Keywords Nonlinear hyperbolic equation, Process solution, Existence and uniqueness,

Convergence of finite volume scheme.
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§1. Introduction

The present work is concerned with the existence of an entropy weak solution u ∈
L∞(RI N×]0, T [) to the following nonlinear hyperbolic equation with initial data:

ut(x, t) + div(vf(u(x, t))) = 0, x ∈ RI N , t ∈ [0, T ], (1.1)

u(x, 0) = u0(x), x ∈ RI N , (1.2)

where T > 0, ut denotes the partial derivative of u with respect to time variable t, div

denotes the divergence operator with respect to the space variable x = (x1, · · · , xN ), and

under the following assumptions on the data T,v, f, u0:

v = (v1 · · · , vN ) ∈ C1(RI N × [0, T ], RI N ), (1.3)

sup
(x,t)∈RI N×[0,T ]

|v(x, t)| = V < +∞, (1.4)
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divv(x, t) =
N∑
i=1

∂x1vi(x, t) = 0, for all (x, t) ∈ RI N × [0, T ], (1.5)

f ∈ C1(RI ,RI ), u0 ∈ L∞(RI N ). (1.6)

Remark 1.1. Note that assumption (1.4) is crucial in the sequel: it ensures the property

of “propagation in finite time” which is needed for the uniqueness of the solution. The

assumption (1.5), on the other hand, is only considered for the sake of simplicity. The result

of existence and uniqueness presented below is easily extendable to the case divv ̸= 0.

A function u ∈ L∞(RI N×]0, T [) is said to be an entropy weak solution to Problem (1.1)-

(1.2) if it satisfies∫
RI N

∫ T

0

(
η(u(x, t))φt(x, t) + Φ(u(x, t))v(x, t) · gradφ(x, t)

)
dtdx

+

∫
RI N

η(u0(x))φ(x, 0)dx ≥ 0, ∀φ ∈ C1
c (RI

N × [0, T [, RI +), (1.7)

for any convex function η ∈ C1(RI ,RI ), and Φ ∈ C1(RI , RI ) such that Φ′ = f ′η′ (where

C1
c (E,F ) denotes the set of functions C1 from E to F, with compact support in E).

Note that existence and uniqueness results are aleardy known for the entropy weak so-

lution of problem (1.1), under different assumptions than assumptions (1.3)-(1.6) (see e.g.

[11, 15]). In particular, these results were obtained with a nonlinearity F (in our case

F = vf) of class C3. The methods which were used in [11] require a regularization of the

function u0, in order to take advantadge of compactness properties in spaces smaller than

L∞(RI N×]0, T [) (the “BV space” of functions having locally bounded variation in the sense

of Tonelli-Cesaro; indeed bounded sets of L∞ ∩BV are compact in L1
loc).

The existence of solutions to problem similar to (1.1)-(1.2) was already proven by passing

to the limit on solutions of an appropriate numerical scheme. This was done in the work of

[12] in the case of a single space variable, which was generalized to several space dimensions[4].

The work of [4] uses a finite difference scheme on a uniform rectagular grid, and requires that

the initial condition u0 (and thus, the solution to Problem (1.1)-(1.2)) have locally bounded

variation in the sense of Tonelli-Cesaro. Here we only assume u0 ∈ L∞(RI N×]0, T [) and we

may also work with more general meshes, for instance triangular mesh in the case N = 2.

For each of these reasons, the BV framework may not be used. The lack of compactness

forces us to work with the weak star convergence in L∞ of a family of approximate solutions.

Passing to the limit with the solutions given by a finite volume scheme gives the existence

of a so-called “process solution” (which is defined below) to Problem (1.1)-(1.2). For an

introduction to finite volume schemes, see e.g. [10, 7] and [1, 2, 14] for convergence results

and error estimates.

Uniqueness results have recently been proven[5,13,9]. The proofs of these results rely

on one hand on the concept of measure valued solutions and on the other hand on the

existence of an entropy weak solution. The direct proof of the uniqueness of a measure

valued solution (i.e., without assuming any existence result of entropy weak solutions) leads

to a difficult problem involving the application of the theorem of continuity in means. This
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difficulty is overcome by the introduction of this new concept of solution (namely entropy

process solution), which generalizes the concept of measure valued-solution. The proof of the

uniqueness of the entropy process solution which is given here strongly uses the properties

related to the weak star convergence in the space L∞(RI N×]0, T [).

Let us now define the entropy process solutions.

Definition 1.1. A function µ ∈ L∞(RI N×]0, T [×]0, T [, RI ) is an entropy process solution

of problem (1.1) if µ satisfies∫
RI N

∫ T

0

∫ 1

0

(
η(µ(x, t, α))φt(x, t) + Φ(µ(x, t, α))v(x, t) · gradφ(x, t)

)
dαdtdx

+

∫
RI N

η(u0(x))φ(x, 0)dx ≥ 0, ∀φ ∈ C1
c (RI

N × [0, T [, RI +), (1.8)

for any convex function η ∈ C1(RI ,RI ), and Φ ∈ C1(RI ,RI ), a function such that Φ′ = f ′η′.

Remark 1.2. From an entropy weak solution u(x, t) to problem (1.1)-(1.2), one may

easily construct an entropy process solution to problem (1.1)-(1.2) by setting µ(x, t, α) =

u(x, t) for any α ∈ [0, 1]. Reciprocally, if µ is an entropy process solution to problem

(1.1)-(1.2) such that there exists u ∈ L∞(RI n×]0, T [) such that µ(x, t, α) = u(x, t), for a.e.

(x, t, α) ∈ RI N×]0, T [×]0, T [×]0, 1[, then u is an entropy weak solution to problem (1.1)-(1.2).

The name “entropy process solution” was derived from the notion of bounded measurable

process, that is a measurable mapping from a probability space into a space of bounded

measurable functions.

Here, the probability space consists in the interval ]0, 1[, with the borelian σ-algebra and

the Lebesgue measure, and the set of bounded measurable functions is the bounded subset

of L∞(RI N×]0, T [) defined by

{µ(·, ·, α), α ∈]0, 1[; ∥µ(·, ·, α)∥∞ ≤ C},

where C > 0 is independent of α.

The first aim of this work is to prove the following result of existence and uniqueness

of the entropy process solution to problem (1.1)-(1.2). We then also obtain existence and

uniqueness of the entropy weak solution and also Lploc strong convergence for any finite p of

the finite volume scheme.

Theorem 1.1. Under the assumptions (1.3)-(1.6), there exists a unique entropy pro-

cess solution µ of problem (1.1)-(1.2), as defined by relation (1.8). Moreover, there exists

a function u ∈ L∞(RI N×]0, T [) such that u(x, t) = µ(x, t, α), for almost any (x, t, α) ∈
RI N×]0, T [×]0, 1[. The function u is thus the unique entropy weak solution to Problem (1.1)-

(1.2).

The existence of an entropy process solution will be proven by the study of numerical

schemes of finite volume type in section 2. The uniqueness of such a solution is proven in

section 3, and a by-product of this proof is that the values of the entropy process solution

µ(x, t, α) do not depend on α, so that finally the entropy process solution is therefore an

entropy weak solution to problem (1.1)-(1.2).

Let us conclude this introduction by a characterization of an entropy process solution

(which is an adaptation of the wellknown Kruzkov entropies to process solutions):
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Proposition 1.1. A function µ ∈ L∞(RI N×]0, T [×]0, 1[, RI ) is an entropy process solution

of problem (1.1)-(1.2) if and only if for any k ∈ RI one has∫
RI N

∫ T

0

∫ 1

0

(|µ(x, t, α)− k|φt(x, t) + F (µ(x, t, α), k)v(x, t) · gradφ(x, t))dαdtdx

+

∫
RI N

|u0(x)− k|φ(x, 0)dx ≥ 0, ∀φ ∈ C1
c (RI

N × [0, T [, RI +), ∀k, l ∈ RI , (1.9)

where F (k, l) = sign(l − k)(f(l)− f(k)).

This is a well known result for the classical entropy weak solutions. The characterization

(1.9) can be obtained from (1.8), by using regularizations of the function |·−k|. Reciprocally,
(1.8) may be obtained from (1.9) by approximating any convex function η ∈ C1(RI ,RI ) by

function of the form: ηn(·) =
n∑
i=1

α
(n)
i | · −k(n)i |, with α(n)

i ≥ 0.

This characterization will be essential for the proof the uniqueness of the entropy process

solution of Problem (1.1)-(1.2).

§2. Existence of an Entropy Process Solution

This section is devoted to the proof of the existence of an entropy process solution of

problem (1.1)-(1.2), i.e., of a function µ ∈ L∞(RI N×]0, T [×]0, 1[, RI ) satisfying (1.8). In

order to construct such a solution, we use a property of probability measures and a passage

to the limit on the solutions given by a numerical scheme: indeed, passing to the limit for

approximate solutions which are obtained by a numerical scheme yields the existence of

measure valued solutions. This method is described in recent articles [1,2,14]. For the prob-

lem obtained here, one may for instance adapt the proof given in [1], using a decomposition

f(u) = f1(u) + f2(u), with f
′
1(u) ≥ 0 and f ′2(u) ≤ 0. We omit the proof here (for a detailed

proof, one should notice that the key estimate in [1] which is called “weak BV estimate”

can be obtained here by multiplying the equation by u). One could also use the methods of

[2] or [14]. Using a property of probability measures, we shall deduce below the existence of

an entropy process solution of Problem (1.1)-(1.2).

2.1. A Property of Probability Measures

Let m be a probability measure on RI and define, for any function g ∈ Cb(RI ,RI ),

m(g) =

∫
RI

g(k)dm(k)

(where Cb(RI ,RI ) is the space of bounded continuous function from RI to RI ). Let Fm : RI →
[0, 1] be the repartition function of the measure m, defined for any x ∈ RI by

Fm(x) = sup{m(g), g ∈ Cb(RI ,RI ), g ≤ 1]−∞,x[}. (2.1)

(Recall that 1]−∞,x[(t) = 1 if t ∈]−∞, x[,1]−∞,x[(t) = 0 otherwise).

Let Mm :]0, 1[→ RI be the function defined by

Mm(α) = inf{x ∈ RI , Fm(x) > α}, for any α ∈]0, 1[. (2.2)

We may then state the following result:
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Propoition 2.1. Let m be a probability measure on RI and Mm defined by (2.1) and

(2.2). One has

m(g) =

∫ 1

0

g(Mm(α))dα, ∀g ∈ Cb(RI ,RI ). (2.3)

Proof. Since the function Fm is non-decreasing and left-continuous, it is easily seen that

sup{α ∈]0, 1[, Mm(α) < x} = Fm(x), for any x ∈ RI such that Fm(x) > 0. (2.4)

Hence the function Mm is non-decreasing, right-continuous, and it is the reciprocal of the

function Fm if it is continuous. Hence∫ 1

0

1]−∞,x[(Mm(α))dα = Fm(x), (2.5)

for any x ∈ RI such that Fm(x) > 0. Therefore, the repartition function of the measure defined

by g →
∫ 1

0
g(Mm(α))dα is also the function Fm. Hence, the measure g →

∫ 1

0
g(Mm(α))dα

is identical to the measure m, which ends the proof of relation (2.3).

2.2. A Property of Bounded Sequence of L∞∞∞(RIRIRI NNN×]0,T [)

Proposition 2.2. Let (un)n∈N be a bounded sequence of L∞(RI N×]0, T [). There exists

a subsequence of (un)n∈N (which will be denoted by (un)n∈N) such that, for any function

g ∈ C(RI ,RI ), the sequence (g(un))n∈N converges in L∞(RI N×]0, T [) for the weak star topology

towards a function Ug ∈ L∞(RI N×]0, T [).

Furthermore, there exists µ ∈ L∞(RI N×]0, T [×]0, 1[) such that for any function g ∈
C(RI ,RI ), ∫

]0,1[

g(µ(x, t, α))dα = Ug(x, t),

for almost any (x, t) ∈ RI N×]0, T [, which is equivalent to

lim
n→∞

∫
RI N×]0,T [

g(un(x, t))φ(x, t)dxdt =

∫
RI N×]0,T [×]0,1[

g(un(x, t))φ(x, t)dxdtdα, (2.6)

for any function φ ∈ L1(RI N×]0, T [).

Proof. Let (un)n∈N be a bounded sequence of L∞(RI N×]0, T [) and r ≥ 0 such that

∥un∥∞ ≤ r, ∀n ∈ N.
Step 1. Thanks to the separability of the set of continuous functions defined from [−r, r]

into RI (endowed with the uniform norm) and the sequential weak star relative compactness of

the bounded sets of L∞(RI N×]0, T [), there exists (using a diagonal process) a subsequence

(which will still be denoted by (un)n∈N) such that, for any function g ∈ C(RI ,RI ), the

sequence (g(un))n∈N converges in L∞(RI N×]0, T [) for the weak star topology towards a

function Ug ∈ L∞(RI N×]0, T [).

Step 2. In this step, we prove the existence of a family of probabilities

(m(x,t))(x,t)∈RI N×]0,T [

defined on RI with support in [−r, r], such that for any g ∈ C(RI ,RI ),

m(x,t)(g) =

∫
gdm(x,t) = Ug(x, t)
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for a.e. (x, t) ∈ RI N×]0, T [. This is a classical result on Young measures and we only sketch

the proof for the sake of completeness. Let y = (x, t) ∈ RI N×]0, T [ and

Fy = {g ∈ C([−r, r], RI ); lim
h→0

∫
/
B(y,h)

Ug(z)dz exists in RI }.

If g ∈ Fy, we set

Ug = lim
h→0

∫
/
B(y,h)

Ug(z)dz.

We define Ty from Fy in RI by Ty(g) = Ug(y). It is easily seen that Fy is a vector space

which contains the constants and Ty is a linear positive form over Fy. Hence using a modified

version of Hahn-Banach’s theorem, one can prolonge Ty into a positive linear form T y defined

over C([−r, r], RI ). By Riesz’ theorem, there exists a (positive) measure νy on the borelian

sets of [−r, r] such that

T y(g) = Ug(y) =

∫ r

−r
gdνy, ∀g ∈ C([−r, r], RI ). (2.7)

The function g ≡ 1 is in Fy, and for g ≡ 1, Ug(y) = 1. Hence, from (2.7) νy is a probability

over [−r, r], and therefore a probability over RI by prolonging it by 0 outside of [−r, r]. In

order to complete this step, one should remark that if g ∈ C(RI ,RI ), then for a.e. y ∈
RI N×]0, T [, Ug(y) = Ug(y).

Step 3. From relation (2.3), one has

m(x,t)(g) =

∫ 1

0

g(Mm(x,t)
(α))dα, ∀g ∈ C(RI ,RI ).

Defining µ by µ(x, t, α) = Mm(x,t)
(α) for (x, t, α) ∈ RI N × [0, T ] × [0, 1], we obtain µ ∈

L∞(RI N×]0, T [×]0, 1[) and for any function g ∈ C(RI ,RI ),∫
]0,1[

g(µ(x, t, α))dα = Ug(x, t),

for almost any (x, t) ∈ RI N×]0, T [.

2.3. Existence of an Entropy Process Solution

We now prove the following existence result:

Theorem 2.1. Under assumptions (1.3)-(1.6), there exists an entropy process solution

to problem (1.1)-(1.2).

Proof. Under assumptions (1.3)-(1.6), the results presented in [2, 3, 4, · · · ] allow, by

means of finite volume schemes, the construction of a sequence (un)n∈N ⊂ L∞(RI N×]0, T [)

such that

– there exists r > 0, such that

∥un∥∞ ≤ r, ∀n ∈ N;

– for any function g ∈ C(RI ,RI ), the sequence (g(un))n∈N converges in L∞(RI N×]0, T [) for

the weak star topology towards a function Ug ∈ L∞(RI N×]0, T [);

– for any convex function η of class C1 from RI to RI , and Φ such that Φ′ = f ′η′, and for
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any function φ ∈ C1
c (RI

N×]0, T [, RI +), one has∫
RI N

∫ T

0

(
Uη(x, t)φt(x, t) + UΦ(x, t)v(x, t) · gradφ(x, t)

)
dtdx

+

∫
RI N

η(u0(x))φ(x, 0)dx ≥ 0. (2.8)

Hence, from the results of the above section, a function µ ∈ L∞(RI N×]0, T [×]0, 1[) satisfying

(2.6) may be constructed. From (2.6) and (2.8) one can deduce∫
RI N

∫ T

0

∫ 1

0

(
η(µ(x, t, α))φt(x, t) + Φ(µ(x, t, α))v(x, t) · gradφ(x, t)

)
dtdxdα

+

∫
RI N

η(u0(x))φ(x, 0)dx ≥ 0, (2.9)

for any convex function η of class C1 from RI to RI , and Φ such that Φ′ = f ′η′, and for any

function φ ∈ C1
c (RI

N × [0,+∞[, RI +). The function µ is therefore an entropy process solution,

in the sense of relation (1.8) and (1.9).

§3. Uniqueness of the Entropy Process Solution

In this section, the uniqueness of the entropy process solution to problem (1.1)-(1.2) is

proven, under asumptions (H1). Here we follow the method which was introduced in [9].

Note, however, that in [9], the existence of an entropy weak solution was assumed; hence

stronger assumptions were needed in order to use previous results of existence of an entropy

weak solution, such as [11].

Let us now give the uniqueness result:

Theorem 3.1. Under the assumptions (1.3)-(1.6), the entropy process solution µ of

problem (1.1)-(1.2), as defined by relation (1.8), is unique. Moreover, there exists a function

u ∈ L∞(RI N×]0, T [) such that u(x, t) = µ(x, t, α), for almost any (x, t, α) ∈ RI N×]0, T [×]0, 1[.

Hence, with Theorem 2.1 and Remark 1.2, there exists a unique entropy weak solution to

problem (1.1)-(1.2).

Proof. The proof can be decomposed into four steps. Denote by µ and ν two entropy

process solutions to problem (1.1)-(1.2), and rµ, rν their respective L∞(RI N×]0, T [×]0, 1[)

norms.

In step 1, the initial condition is proven to be satisfied in the following sense:

lim
τ→0

1

τ

∫ τ

0

∫
BN,a

∫ 1

0

|µ(x, t, α)− u0(x)|dαdxdt = 0, ∀a > 0, (3.1)

where Bp,r = {x ∈ RI p, |x| ≤ r} for any r > 0 and any p ∈ N.
The same property is clearly also verified if µ is replaced with ν.

In step 2, it is shown that∫ T

0

∫
RI N

∫ 1

0

∫ 1

0

(|µ(x, t, α)− ν(x, t, β)|φt(x, t)

+ F (µ(x, t, α), ν(x, t, β))v(x, t) · gradφ(x, t))dαdβdxdt
≥ 0, ∀φ ∈ C1

c (RI
N×]0, T [, RI +). (3.2)
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Then, for a given a > 0, define A(t) for 0 < t < inf
(
T, aω

)
by

A(t) =

∫
BN,a−ωt

∫ 1

0

∫ 1

0

|µ(x, t, α)− ν(x, t, β)|dαdβdx, (3.3)

where ω = VMf , with Mf = sup
s∈[−b,b]

|f ′(s)| and b = sup(rν , rµ).

It is shown in step 3 that A is a.e. non-increasing, i.e.,

A(t1) ≤ A(t2) for a.e. t1, t2 ∈
[
0, inf

(
T,
a

ω

)]
, t1 ≥ t2. (3.4)

In step 4, it is deduced from (3.4) and (3.1) that∫ 1

0

∫ 1

0

|µ(x, t, α)− ν(x, t, β)|dαdβ = 0,

for a.e. (x, t) ∈ RI N×]0, T [, and we prove that one may define u(x, t), such that

µ(x, t, α) = ν(x, t, α) = u(x, t)

for a.e. (x, t) ∈ RI N×]0, T [, and (α, β) ∈]0, 1[×]0, 1[.

Step 1. Proof of Relation (3.1)

In order to prove relation (3.1), a sequence of mollifiers is now introduced for the space

dimension. This technique will also be used for step 2 below.

For p ∈ N, define ρp ∈ C∞
c (RI p, RI ) satisfying the following properties:

supp(ρp) = {x ∈ RI p, ρp(x) ̸= 0} ⊂ Bp,1 = {x ∈ RI p; |x| ≤ 1}; (3.5)

ρp ≥ 0; (3.6)

ρp(−x) = ρp(x), ∀x ∈ Bp,1; (3.7)∫
Bp,1

ρp(x)dx = 1. (3.8)

For n ∈ N, n ≥ 1 define ρp,n = npρp(nx). In the present step, the value of p will be p = N.

In the following step, the values p = 1 and p = N will be used.

Let τ ∈ N such that 0 < τ < T and ρ be defined by

ρ(t) =

{
τ−t
τ if 0 ≤ t ≤ τ,

0 if t > τ.
(3.9)

Let a > 0 and ψ ∈ C∞
c (RI N , RI +) such that ψ(x) = 1, ∀x ∈ BN,a, and let y ∈ RI N . Take

φ(x, t) = ψ(x)ρN,n(x− y)ρ(t) (this is possible by means of regularizations of the function ρ)

and k = u0(y) in (1.9); integrating the resulting relation over RI N with respect to y yields

the following relation:

T1nτ + T2nτ + T3n ≥ 0, (3.10)

with

T1nτ = −1

τ

∫ τ

0

∫
RI N

∫
RI N

∫ 1

0

|µ(x, t, α)− u0(y)|ψ(x)ρN,n(x− y)dαdxdydt, (3.11)

T2nτ

=

∫ τ

0

∫
RI N

∫
RI N

∫ 1

0

F (µ(x, t, α), u0(y))ρ(t)v(x, t) · grad(ψ(x)ρN,n(x− y))dαdxdydt,
(3.12)
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and

T3n =

∫
RI N

∫
RI N

|u0(x)− u0(y)|ψ(x)ρN,n(x− y)dxdy. (3.13)

Using the change of variables: x = x′, y = x′ − y′

n in (3.11) and denoting again by (x, y) the

new variables (x′, y′) yield

T1nτ = −1

τ

∫ τ

0

∫
RI N

∫
RI N

∫ 1

0

∣∣∣µ(x, t, α)− u0

(
x− y

n

)∣∣∣ψ(x)ρN,1(y)dαdxdydt, (3.14)

and therefore, denoting by Kψ the support of ψ, one has∣∣∣T1nτ + 1

τ

∫ τ

0

∫
RI N

∫ 1

0

|µ(x, t, α)− u0(x)|ψ(x)dαdxdt
∣∣∣

≤
∫
BN,1

∥∥∥u0(· − y

n

)
− u0(·)

∥∥∥
L1(Kψ)

∥ψ∥∞ρN,1(y)dy. (3.15)

The same upper bound, independent of τ, also applies to T3n.

Let ε > 0; by the theorem of continuity in mean, there exists n0 such that∫
BN,1

∥∥∥u0(· − y

n

)
− u0(·)

∥∥∥
L1(Kψ)

∥ψ∥∞ρN,1(y) ≤
ε

3
.

Since the integrand of the right-hand-side of (3.12) is bounded (for fixed n = n0), one may

choose τ0 > 0, such that for any τ ≤ τ0 one has |T2(τ, n0)| ≤ ε
3 .

Hence, from relations (3.10) and (3.15),

0 ≤ 1

τ

∫ τ

0

∫
RI N

∫ 1

0

|µ(x, t, α)− u0(x)|ψ(x)dαdxdt ≤ ε, ∀τ ≤ τ0.

Since ψ(x) = 1, ∀x ∈ BN,a, the relation (3.1) is proven.

Step 2. Proof of Relation (3.2)

Taking regularizations of φ, it is sufficient to prove (3.2) for φ ∈ C∞
c (RI N×]0, T [, RI +).

The sequence of mollifiers (ρp,n)n∈N which was introduced in step 1 will be now used with

p = 1 and p = N.

Let ψ ∈ C∞
c (RI N×]0, T [, RI +) and c > 0, such that for any t ∈]0, c[∪]T − c, T [, and for

any x ∈ RI N , one has ψ(x, t) = 0. Let n ∈ N such that 1/n < c (n is chosen such that the

support of the test functions does not require the use of the initial condition).

Define, for (x, t) ∈ RI N×]0, T [ and (y, s) ∈ RI N×]0, T [,

φ(x, t, y, s) = ψ
(x+ y

2
,
t+ s

2

)
ρN,n(x− y)ρ1,n(t− s). (3.16)

The function φ hence defined satisfies φ(·, ·, y, s) ∈ C∞
c (RI N×]0, T [, RI +) and ψ(x, t, ·, ·) ∈

C∞
c (RI N×]0, T [, RI +).

Let ν be an entropy process solution; hence ν satisfies∫
RI N

∫ T

0

∫ 1

0

(
|ν(x, t, α)− k|)|φt(x, t) + F (ν(x, t, α), k)v(x, t) · gradφ(x, t)

)
dαdtdx

+

∫
RI N

|u0(x)− k|φ(x, 0)dx ≥ 0, ∀φ ∈ C1
c (RI

N×]0, T [, RI +). (3.17)

Let (y, s) ∈ RI N×]0, T [ and β ∈]0, 1[. Taking φ = φ(·, ·, y, s) where φ(x, t, y, s) is defined

in (3.16) and k = µ(y, s, β) in (3.17) and integrating over E3 = RI N×]0, T [×]0, 1[ for the
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Lebesgue measure dydsdβ (note that the integrand is integrable for this measure) yield∫
E3×E3

[
|ν(x, t, α)− µ(y, s, β)|φt(x, t, y, s)

+ F (ν(x, t, α), µ(y, s, β))v(x, t) · gradxφ(x, t, y, s)
]
dxdtdαdydsdβ ≥ 0.

(3.18)

One may then swap µ with ν and (x, t) with (y, s) in (3,18). Hence∫
E3×E3

[
|ν(x, t, α)− µ(y, s, β)|φs(x, t, y, s)

+ F (ν(x, t, α), µ(y, s, β))v(y, s) · gradyφ(x, t, y, s)
]
dxdtdαdydsdβ ≥ 0.

(3.19)

Let us now compute the derivatives of the function φ. For any (x, t) ∈ RI N×]0, T [ and

(y, s) ∈ RI N×]0, T [, one has

φt(x, t, y, s) = ρN,n(x− y)
(1
2
ψt

(x+ y

2
,
t+ s

2

)
ρ1,n(t− s)

+ ψ
(x+ y

2
,
t+ s

2

)
ρ′1,n(t− s)

)
, (3.20)

φs(x, t, y, s) = ρN,n(x− y)
(1
2
ψt

(x+ y

2
,
t+ s

2

)
ρ1,n(t− s)

− ψ
(x+ y

2
,
t+ s

2

)
ρ′1,n(t− s)

)
, (3.21)

gradxφ(x, t, y, s) = ρ1,n(t− s)
(1
2
gradψ

(x+ y

2
,
t+ s

2

)
ρN,n(x− y)

+ ψ
(x+ y

2
,
t+ s

2

)
gradρN,n(x− y)

)
, (3.22)

and

gradyφ(x, t, y, s) = ρ1,n(t− s)
(1
2
gradψ

(x+ y

2
,
t+ s

2

)
ρN,n(x− y)

− ψ
(x+ y

2
,
t+ s

2

)
gradρN,n(x− y)

)
. (3.23)

Using these relations and summing (3.18) and (3.19), one has

X1n +X2n +X3n ≥ 0, (3.24)

with

X1n =

∫
E3×E3

|ν(x, t, α)− µ(y, s, β)|ψt
(x+ y

2
,
t+ s

2

)
· ρN,n(x− y)ρ1,n(t− s)dxdtdαdydsdβ, (3.25)

X2n =

∫
E3×E3

F (ν(x, t, α), µ(y, s, β))
1

2
[v(x, t) + v(y, s)]

· gradψ
(x+ y

2
,
t+ s

2

)
ρN,n(x− y)ρ1,n(t− s)dxdtdαdydsdβ, (3.26)

X3n =

∫
E3×E3

F (ν(x, t, α), µ(y, s, β))[v(x, t)− v(y, s)]

· ψ
(x+ y

2
,
t+ s

2

)
gradρN,n(x− y)ρ1,n(t− s)dxdtdαdydsdβ. (3.27)
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Perform in (3.25)-(3.27) the change of variables

x′ =
1

2
(x+ y), y′ = n(x− y), t′ =

1

2
(t+ s) and s′ = n(t− s);

denote the new variable x′.t′, y′, s′ by x, t, y, s and

E6 = RI N×]0, T [×]0, 1[×BN,1 ×B1,1×]0, 1[.

Then

X1n =

∫
E6

∣∣∣ν(x+
y

2n
, t+

s

2n
, α

)
− µ

(
x− y

2n
, t− s

2n
, β

)∣∣∣
ψt(x, t)ρN (y)ρ1(s)dxdtdαdydsdβ, (3.28)

X2n =

∫
E6

F
(
ν
(
x+

y

2n
, t+

s

2n
, α

)
, µ

(
x− y

2n
, t− s

2n
, β

))
1

2

[
v
(
x+

y

2n
, t+

s

2n

)
+v

(
x− y

2n
, t− s

2n

)]
· gradψ(x, t)ρN (y)ρ1(s)dxdtdαdydsdβ, (3.29)

X3n =

∫
E6

F
(
ν
(
x+

y

2n
, t+

s

2n
, α

)
, µ

(
x− y

2n
, t− s

2n
, β

))
ψ(x, t)

[
v
(
x+

y

2n
, t+

s

2n

)
− v

(
x− y

2n
, t− s

2n

)]
· ngradρN (y)ρ1(s)dxdtdαdydsdβ. (3.30)

From (3.28)∣∣∣X1n −
∫
RI N×]0,T [×]0,1[×]0,1[

|ν(x, t, α)− µ(x, t, β)|ψt(x, t)dxdtdαdβ
∣∣∣

≤
∫
BN,1×B1,1×]0,1[×]0,1[

[∥∥∥ν(·+ y

2n
, ·+ s

2n
, α

)
− ν(·, ·, α)

∥∥∥
L1(Kψ)

+
∥∥∥µ(· − y

2n
, · − s

2n
, β)− µ(·, ·, β)

∥∥∥
L1(Kψ)

]
∥ψt∥∞ρN (y)ρ1(s)dydsdαdβ,

(3.31)

where Kψ is the (compact) support of ψ. Applying the theorem of continuity in mean to

the measurable bounded (and therefore integrable on bounded sets) functions ν(·, ·, α) and
µ(·, ·, β) yields

X1n →
∫
RI N×RI ×]0,1[×]0,1[

|ν(x, t, α)− µ(x, t, β)|ψt(x, t)dxdtdαdβ as n→ +∞. (3.32)

Let us now turn to X2n, defined in (3.26). From (3.29), using the fact that

v ∈ C1(RI N×]0, T [, RI N )
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and is therefore Lipschitz over the compact Kψ, one has∣∣∣X2n −
∫
RI N×]0,T [×]0,1[×]0,1[

F (ν(x, t, α), µ(x, t, β))v(x, t) · gradψ(x, t)dxdtdαdβ
∣∣∣

≤ VMf

∫
BN,1×B1,1×]0,1[×]0,1[

[∥∥∥ν(·+ y

2n
, ·+ s

2n
, α

)
− ν(·, ·, α)

∥∥∥
L1(Kψ)

+
∥∥∥µ(· − y

2n
, · − s

2n
, β

)
− µ(·, ·, β)

∥∥∥
L1(Kψ)

]
∥gradψ∥∞ρN (y)ρ1(s)dydsdαdβ

+
1

n
C(v, ψ,Mf , rν , rµ), (3.33)

where C(v, ψ,Mf , rν , rµ) depends only on v, ψ,Mf , rν , rµ. Hence, by the theorem of conti-

nuity in mean,

X2n →
∫
RI N×]0,T [×]0,1[×]0,1[

F (ν(x, t, α), µ(x, t, β))v(x, t) · gradψ(x, t)dxdtdαdβ

as n→ +∞. (3.34)

Let us now study X3n, defined in (3.27). First note that, thanks to the properties of the

support of ρN , and since divv = 0, one has∫
BN,1

v
(
x+

y

2n
, t
)
· gradρN (y)dy =

∫
BN,1

v
(
x− y

2n
, t
)
· gradρN (y)

= 0, for a.e. (x, t) ∈ RI N×]0, T [. (3.35)

Hence

X4n =

∫
E6

F (ν(x, t, α), µ(x, t, β))
[
v
(
x+

y

2n
, t+

s

2n

)
− v

(
x− y

2n
, t− s

2n

)]
· ngradρN (y)ρ1(s)dxdtdαdydsdβ

= 0. (3.36)

Next, since v is Lipschitz over the support of the test functions, the expression

n
[
v
(
x+

y

2n
, t+

s

2n

)
− v

(
x− y

2n
, t− s

2n

)]
is bounded uniformly w.r.t. y ∈ BN,1 and s ∈ B1,1. Hence, by the theorem of continuity in

mean, X3n −X4n → 0 as n→ +∞. Therefore X3n → 0, as n→ ∞.

Passing to the limit in (3.24) yields (3.2), which concludes the proof of step 2.

Step 3. Proof of Relation (3.4)

The aim here is to prove that the function A defined in (3.3) is almost everywhere non-

decreasing. Let a ≥ 0 and recall that ω = VMf , let

0 < t1 < t2 < min
(
T,
a

ω

)
, 0 < ε < min

(
t1,min

(
T,
a

ω

)
− t2

)
,

and δ > 0. Let ψ ∈ C1
c (RI

N , [0, 1]) such that ψ(r) = 1, ∀[0, a], ψ(r) = 0, ∀r ∈ [a + δ,+∞[,

and ψ′ ≤ 0. Define rε by

rε(t) =


0 if 0 ≤ t ≤ t1 − ε,
t−(t1−ε)

ε if t1 − ε ≤ t ≤ t1,
1 if t1 ≤ t ≤ t2,
(t2+ε)−t

ε if t2 + ε ≤ t ≤ +∞,
0 if t2 ≤ t < +∞.

(3.37)



No.1 R. Eymard, T. Gallouët et al. SOLUTION TO NONLINEAR HYPERBOLIC EQUATION 13

Let |x| denote the Euclidean norm of x in RI N ; one can take in (3.2) the test function

φ(x, t) = ψ(|x| + ωt)rε(t). Indeed, this is easily seen by considering regularizations of the

functions rε. This yields

1

ε

∫ t1

t1−ε

∫
RI N

∫ 1

0

∫ 1

0

(|ν(x, t, α)− µ(x, t, β)|ψ(|x|+ ωt)dαdβdxdt

− 1

ε

∫ t2+ε

t2

∫
RI N

∫ 1

0

∫ 1

0

(|ν(x, t, α)− µ(x, t, β)|ψ(|x|+ ωt)dαdβdxdt

≥ E, (3.38)

with

E = −
∫ T

0

∫
RI N

∫ 1

0

∫ 1

0

[
ω|ν(x, t, α)− µ(x, t, β)|+ F (ν(x, t, α), µ(x, t, β))

v(x, t) · x
|x|

]
ψ′(|x|+ ωt)rεdαdβdxdt. (3.39)

From ∣∣∣F (ν(x, t, α), µ(x, t, β))v(x, t) · x|x|

∣∣∣ ≤MfV |ν(x, t, α)− µ(x, t, β)|, (3.40)

and since MfV = ω and ψ′ ≤ 0, we deduce that E ≥ 0. Letting δ → 0 (and noting that the

mapping

(x, t) 7→
∫ 1

0

∫ 1

0

|ν(x, t, α)− µ(x, t, β)|dαdβ

is in L∞(RI N×]0, T [)), (3.38) yields

1

ε

∫ t1

t1−ε

∫
BN,a−ωt1

∫ 1

0

∫ 1

0

|ν(x, t, α)− µ(x, t, β)|dαdβdxdt

− 1

ε

∫ t2+ε

t2

∫
BN,a−ωt2

∫ 1

0

∫ 1

0

|ν(x, t, α)− µ(x, t, β)|dαdβdxdt

≥ 0, (3.41)

that is,

1

ε

∫ t1

t1−ε
A(t)dt− 1

ε

∫ t2+ε

t2

A(t)dt ≥ 0. (3.42)

Note that

A ∈ L1(]0, T [) (0 ≤ A(t) ≤ (rν + rµ)meas(BN,a−ωt));

let t1 and t2 be Lebesgue points of the function A such that

0 < t1 ≤ t2 < min
(
T,
a

ω

)
,

one deduces from (3.42), letting ε tend to 0, A(t1) ≥ A(t2). This concludes the proof of

Relation (3.4).

Step 4. Conclusion of the Proof
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First remark that∫
BN,a

∫ 1

0

∫ 1

0

|ν(x, t, α)− µ(x, t, β)|dαdβdx

≤
∫
BN,a

∫ 1

0

|ν(x, t, α)− u0(x)|dαdx+

∫
BN,a

∫ 1

0

|µ(x, t, β)− u0(x)|dαdx.
(3.43)

Then, from (3.1) and (3.43),

lim
τ→0

1

τ

∫ τ

0

∫
BN,a

∫ 1

0

∫ 1

0

|ν(x, t, α)− µ(x, t, β)|dαdβdxdt = 0, (3.44)

and therefore,

1

τ

∫ τ

0

A(t)dt→ 0 as τ → 0.

Thus, since A is a.e. non-increasing on ]0, τ [, and A(t) ≥ 0 for a.e. t ∈]0,min
(
T, aω

)
[, one

has A(t) = 0 for a.e. t ∈]0,min
(
T, aω

)
[; since a is arbitrary,∫ 1

0

∫ 1

0

|ν(x, t, α)− µ(x, t, β)|dαdβ = 0 for a.e. (x, t) ∈ RI N×]0, T [. (3.45)

Therefore

• there exists u(x, t) such that µ(x, t, α) = ν(x, t, β) = u(x, t), for a.e. α and β,

• the function u is the weak entropy solution to problem (1.1)-(1.2).

This concludes the proof of the theorem.
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