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Abstract

It is shown that there exists a J-convex subset C of a complex Hilbert space X, such that
the J-convex hull of the set of all Jensen boundaa:y points of C is different from C .
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" In the last ten years, several remarkable results have been established in the geometrical
theory of complex Banach spaces. In [1], A.V.Bukhvalov and A.A.Danilevich have intro-
duced the analytic Radon-Nikodym property (see the definition below) in complex Banach
spaces as the analytlc analogue of the well known Ra,don-leodym property concerning.the
geometncal structure of real Banach spaces. Let X be a complex Banach space; X is said to
have the analytic Radon—leodym property (see [1]) 1f for every umformly bounded analytic
function from the open unit disk with values in X, f:D — X,  f has radlal limits a.e. on the
torus T in X, this means that for almost all # € T, hm f (reg) exists. It is known that every

Banach space with the Radon-Nikodym property has the analytic Radon-Nikodym property,
and the Lebesgue—Bochner integrable functions space L* has the analytic Radon-Nikodym
property (see [2]), as well as the predual of Von Neumann algebra (see [3]) and the predual
of James tree space J.T (see [4]). Let us first recall some basic notions on the geometrical
structure of complex Banach spaces (see [2] for more detailed discussions).

Let X be a complex Banach space and let f be a real function on X. f is plunsubha,rmomc

if f is upper sem1-cont1nuous and if for every z,y € X,
27

- f(x)s f(:v—!—ye’a)»«—-.

Let i be a Borel probability measure on X and zo € X. pis a Jensen measure on X with
barycenter g, if for every plurisubharmonic functlon ¢ on X we have

blao) < / H(o)du(z
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It is easy to see that for every X-valued polynomial

N
P(2) = Zaizi, a; € X, z€C,
=0

the image measure of normalized Lebesgue measure on the torus T = {e®: 8 € [0, 2n]} by
P is a Jensen measure on X with barycenter P(0) = ay. In particular, the Dirac measure
0z is a Jensen measure on X with barycenter = for every z € X. Another obvious fact
about Jensen measures is the following: if f is a continuous linear functional on X and y is
~ a Jensen measure on X .with barycenter zo, then the image measure of u by f is a Jensen
measure on C with barycenter f(zo). We shall use frequently this fact in this paper.

"Let X be a complex Banach space, C a closed bounded subset of X and 2 € C. z is
a Jensen boundary point of C, if the Dirac measure §,, is the only Jensen measure on X
supported -on C with barycenter zo. It is not hard to verify that for every closed bounded
subset C, every strongly PSH-exposed point of C is a Jensen boundary point of C, so the
set of all Jensen boundary points of a nonempty closed bounded subset of a complex Banach
space with the analytic Radon-Nikodym property is not empty. A closed bounded subset C
of X is Jensen convex (J-convex, in short), if the barycenter of any Jensen measure on X
supported on C belongs to C. If D is a bounded subset of X, the J-convex hull of D in X
is defined as the smallest J-convex subset of X containing D.

As every upper seml—contmuous convex function is plurisubharmonic, every closed bounded
convex subset is J-convex; it is known that every PSH-convex subset is J-convex (see [4]).
In [5], we have shown that every closed bounded denumerable subset of a complex Banach
space is J-convex and every point of such subset i is a Jensen boundary pomt We also use
this fact frequently in thls paper.

It is known that a Banach space X has the Radon-Nikodym property if and only if for
every closed bounded convex subset C of X, C is.the closed convex hull of its strongly linear
exposed points (see [6]). The analoguous result in the analytic setting has been obtained in
[4]: A complex Banach space X has the analytic Radon-Nikodym propefty if and only if for
every PSH-convex subset C of X, C is the PSH-convex hull of its strongly PSH-exposed
points. It is natural to ask whether this remains true in the J-convex case, i.e., whether the
analytic Radon-Nikodym property is equivalent to the following property: every J-convex
sebset is the J-convex hull of its strongly P.SH-exposed points (or more generally, its Jensen
boundary points). The aim of this paper is to give a negative answer to this question. We
shall construct a J-convex subset of {*(I) (I is an index set), so that the subset Jr(C)
consisting of all Jensen boundary points of C is not empty and the J-convex hull of Jr(C)
is different from C. We shall use an argument used in [7], where in [7] we have constructed
a J-convex subset C of I*(I) for some index set I, so that 0 € C is not the barycenter of
any Jensen measure on [!(I) supported on the set of all Jensen boundary points of C.

Let w be an abstract element and for each n € N let T, be a copy of T. For different
values of n, m € N, the elements in T, and the elements in T, will be considered different.
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Let I = {w}U ( U Tn) and let X = [2(I) be the complex Hilbert space -

‘=1
l%n'{fIﬂC SO <400}
: iel
with the norm :
o\1/2
I = (C1F@E) s
i€l
I2(I) thus defined has the Radon-Nikodym property (see [6]). Hence I?(J) has also the
analytic Radon-Nikodym property. For every element f € I2(I), the support of f is defined
as the subset {i € I f(i) # 0} of I. Let

= {f e P(I): |f(w)] <1 and for every 0 € D T, f(6)= 0},

n=1
and let ,
C, = {f € 1?(I): the support of f is contained in {w, a1, ag, +++, an},
aiETiforeveryz'::l 2, -+, n, and '
) 1 1

fle) = €, flar) = 262, -, flan) = o™, |f(oa)l € 50}
for n € N. Let

o o0

(G

and let

C'= { f €1*(I): the support of fis contained in
{w; a1, CGg, }7 o € Ty, f( ) wq
and for each n € N, f(a,) = —;:ei-o‘"“ }

We shall work with the subset of 12(T),
g C=C'uC.
From the definition, it is not hard to see that the subset C of [*(I) has the following
elementary properties: ‘
1. For each n € N and for each f € C, there exists at most one element a € T, so that
f (a) # 0.
IHaeT,, ai € Toy, FEC and fla) = -——e“"1 (so there exist no other elements
Be Tn , f(B) # 0), then the only possible element B in Tpy1 such that f(8) #0is o .
3. fa € Ty, f € Cand fla) #0, then there exists a unique element ﬁ € Ty such
that f(8) # 0; in this case, we have f(B) = :

4. If for each a € T, |f(@)| < 3, then for each 8 € |J Ty we have f(0) =
k>n

The main result in this paper is the following | “

Theorem. C is a J-convex subset of lz(I ), Jr(C) is different from C and the J-conver |

hull of Jr(C) is contained in C'.
We shall divide the proof of the theorem above mto three steps.
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Lemma 1. C is closed and bounded in I?(I).

Proof. The boundeness of C is trivial since each element in C has a norm less or equal
to 2. Let f, € Cbea convergmg sequence, f = lim f,, and suppose that f ¢ C.

If there exists a subsequence f,, of f, so thg; c;;k € C, for every k € N, the limit f
of f,, belongs also to C,, since C, is closed in [2(I) . Without loss of generality, we can
suppose that the sequence f, belongs to C\Cw, and there exists, for each n € N, o, € T,
so that

fn(w) = ¢'on, falan) #0
and for & every 9ETy,0 # n, fn(6) =0. As [fa(w)| =1 for n €N, and f = hm fn , one

can find B; € T such that f(w) = e’ﬁl

If there exists a subsequence f,, such that for each k¥ € N,an,, # Bi, and for k #
- h, m, # Qm,, then for each § € Ti, 0 # B1, as a,, converges to B1, we must have
Qm, # 0 when k is big enough. So fn,, () = 0 when k is big enough. This implies that
f(6) = 0. -On the other hand, amy,, # Bi. Hence fr,, (01) = 0 for every k'€ N. We can
deduce that f(8:) = 0. Hence for every 8 € T1, f(f) = 0, there exists N € N such that for
every k > N we have for each 6 € T4, ‘ |

o (O] = 1£(0) — fmy O < 1f = fimg | < 1/ |
This means that f,,, € C; when k > N by the fourth property disccused just before the

theorem. We have for each 6 € |J Ty and k > N, f(0) = 0, i.e., the only § € I such that
k>2
f(B) # 0 is w. This implies that f € C,, C C.

Without loss of generality, we can suppose that the sequence «, is a constant sequence, so
0, = By for every n € N.-For each § € Ty, 6 # By, n € N, we have f,(8) =0, f,(w) = e,
and hence f(0) =0, f(w) = e,

Suppose that for some n € N there exists By G T1, B e Ty, -+, Bn € T, so that for
every k € N, '

fe(w) = f(w) = &
Fu(Br) = F(Br) = 56

™

Fu(Bamr) = F(Bnn) = sy,
1 1

and for every g€ U T4, 9 #w, B, B2y -+ Bu, Fu(6) = f(8) = 0 for every k € N.
k=1 .
Usmg the same argument as in the beginning of the proof and the hypothes1s that f ¢ C,

we can show that there exists a unique B,4+1 € Th41 S0 that for every k € N,

fe(Br) = F(Br) = —--6’ﬁ"+1,

1P| S s (Bl €

and for every 6 € Tpy1, 0 # Brni1, fk(O) = f(0) = 0 for every k € N. This enables us to
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construct inductively a sequence 3; € T; so that for every k € N,. -
fk(w) = flw) = eiﬁl,
fr(B1) = f(Br) = é"ezﬂz,

......

......

and for every 8 € I, 0 # w, Bu, Ba, -+, fu(8) = f(8) = 0 for each k € N. This means
that f is an element of C’ , which leads to a contradiction with the hypothesis that f ¢ C .
Hence f € C, C is closed and bounded.

Lemma 2. C is J-convex in [2(I).

Proof. By Lemma 1, C is closed and bounded. It remains to show that every Jensen
measure on [2(I) supported on C has a barycenter in C. Let x be a Jensen measure on 1?(1)
supported on C with_baryéenter f € (I). Suppose that fécC. o

First note that for each g in C we have |g(w)| < 1, so [f(w)] < 1. If for every 6 €

U Ta, f(6) =0, then f € C, C C; this is impbssible since we have supposed that f ¢ C. .
n=1

There exists then § € |J T, so that f(f) # 0. If § € T, for some n > 2, consider the
¢ =1

projection " ’

Py: 12(I) = C,
g — 9(6),
where Pp is a continuous linear functional on [2(I), the image measure g of i by Py on
C is a Jensen measure with barycenter f(8) # 0. We have pg({0}) = 0 (see [5)), i.e., u is
supported by {g € C: g¢(6) # 0}. By the special structure of C,  is supported by
{g € C: there exists o € T,—; so that g(a) = Wew}.

Let

1. . o
F, = {g €C: gla)= 5T e’e}
for each o € T,_;. We have '

u( U Fa> =1.

. aETn—l
For every o, 3 € Tp—1, a0 # f,

dist(Fo, Fp) = inf{llz ~yll: z€ Fa, y € Fg} > 2in
Since y is a Borel probability measure on {2(I), u is supported on some separable subset of
12(I), and there exist oy, ag, --- € Tp-1 so that u(k@I Fak): 1. This implies that y is
supported by '
{geC: g(c)=0foreveryc € Tn1, 0 #F 1, a2, - }.

We can deduce that f(f) = 0 for every 6 € Tp_1, 0 # au, og, ---. On the other hand, for
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each 7 € N the image measure of y by
P,;: I*(I) - C,
g — g(o)
is a Jensen measure on C supported on {0, 2—,}_76“’}, U, is then a Dirac measure (see [5]
). If for each i € N, o, = o, then u is supported by {g € C: g(a;) = 0} for each i € N.
This implies that u(F,,;) = 0 and so M(G Fa,.) = (, which leads to a contradiction. There
exists then 79 € N so that =

Koy = 6_.

et

In this case, u is supported by

1 .
{g e€C: g(aio) = 2"‘&.16%0},
so the barycenter of y verifies also the same condition: f(a,) = s=re®.

Starting from the hypothesis that there exists § € T, ( for some n > 2) so that f(8) # 0,
we have shown that there exists a;, € Tp—1 s0 that f(a;,) # 0. By 1nduct10n, there exists
8 € Ty so that f(d) # 0. Fix then such a § € T1.

Consider the image measure g of ,u.’by the projection Pg‘
P: P(I)—C,
| g 9(8).
" g is a Jensen measure on C with barycenter f(#) # 0. We must have uy({0}) = 0 (see [5]).
¢ is supported by

E=w60¥d@%%

For every element g in E, g(#) # 0 , by the special structure of C, we have then g(w) = e*.
This implies that y is supported by

{geC: gw)=¢", g(6) #0}
and so f(w) =e®, f(B)=0foreach B Ty, B#6.

Suppose that for some n € N there exists o; € T4, i =1, 2, ---, n, such that
, 1. : 1
f(w) ______ el f(al) — _iewz, e, f(an-—l) — T glon
n
and for every o € U Tk 0 # a1, Qoy = O, f((’) =0,
k=1

and p is supported by

1 . 1 .
A= {g €C: gw)=¢e", glar)= 56“’25 ey glape1) = s e, glan) #0
n _
and for every o € U Tk,0 # a1, 02, **, 0, (o) =0}-

k=1

Using the same argument as in the beginning of the proof and the hypothesis that f ¢ C,

we can show that there exists a1 € Thny1 50 that f(an) = sxe'@+1, f(o) = 0 for every
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0 € Tpy1,0 # 0ny1 , and that p is supported by
, L
AN {g eEC: gloy) = é—gew"“, g(ant1) #0
-and g(0) =0 for each o € Thy1, 0 # an+1}.

This enables us to construct inductively o; € T;, so that

1 1
f(w) = i@ i f(0l1) = -2-81'“2 e, f(an) = Eﬁ-e 1
and for every o # w, ay, ag, ---, f(6) =0, 1ie, f € C’, which leads to a contradiction

with the hypothesis that f ¢ C. Hence f € C, and C is J-convex.

Lemma 3. The set of all Jensen boundary points Jr(C) of C is contained in C' and C'
is J-convez.

Proof. It is clear that every point g € € is not a Jensen boundary point by the special
structure of C, Jr(C) is contained in C'. We are going to show that C' is J-convex.

First note that C' is closed. Indeed, if f, € C' is a converging sequence and f = nll,ngo fas
then f € C since C is closed by Lemma 1. Suppose that f ¢ C/, ie., f € C. There exists
then N € N so that f € C,,UCy. We have for each n > N and for each 6 € T,,, f(8) = 0.
In particular, for each 6 € T N+1, J(8) =0, so | fr(0)] < when k is big enough. This is
a contradiction since Jfr € C’ and each g € C’ verifies the followmg condition: there ex1sts
9 € T4y so that [g(d)] = = sxrr. Hence f € C' and C' is closed.

Let 1 be a Jenseh measure on [?(I) supported on C’ with barycenter f. We have f € C
since C is J-convex by Lemma 2. Suppose that f ¢ C’.

For each a € T let »
Dy={feC" flw)=e"}.
Each D, is closed and for «, 8 € Tl, a#p,
dist(Da, Dp) = inf{llz —yll: z€ Dq, y € Dg} > 1.

u is a Borel measure on [2(I). Then g is supported by some separable subset of (I). This
implies that there exist oy, ag, --+ € T; so that

o) =1

Consider the image measure y,, of u by the projection F,

P, I?(I) - C,
g — 9(w),
It is & Jensen measure on C with barycenter f (w) and p,, is supported by {e?**, ez, ...},

There exists then §; € {a1, a2, -++}, so that p, = §es, (see [5]). This means that u is
supported by Dg, and f(w) = e?.
Suppose that for some n € N there exists §; € T;, 1 =1, 2, --- | n, so that

FW) =, F(B) =56, f(Bar) =
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and for o € LTJ Ti, 0 # b1, B2y +++, Bn, flo) = 0, and p is supported by
i=1
{960 gw) =™, o) = 26, -, g(Barr) = 5ge™ ).

Usmg the same argument as in the begmnmg of the proof and the hypothesis that f ¢ C’,
we can show that there exists 8,41 € Try1 so that

f(Bn) = ___ezﬂn+1
and for every 0 € Ty, 8 # Bn, f(8) =0, and u is supported by

, 1.,
{9 €C't gw)=e?, g(Br)= e

1
) 0(Bamt) = e, g(B) = e},
This enables us to construct inductively 3; € T;, ¢ € N, so that

fw) =, f(Br) =56, e, f(Bn) = e, e
ie., f € C'. This contradicts our hypothesis that f ¢ C'. Hence f € C’, C' is J-convex.
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