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TRIPLE INTERACTIONS OF CONORMAL WAVES FOR
HIGHER ORDER SEMILINEAR HYPERBOLIC EQUATIONS

FANG DAOYUAN*
Abstract

The interaction of three conormal waves for semi-linear strictly hyperbolic equations of third
order is considered. Let 5, i = 1,2,3, be smooth characteristic surfaces for P = Dy(D7—A) in-
tersecting transversally at the origin. Suppose that the solution u to Pu = f(t,z,y, D%u),|a| <
2 is conormal to ¥;,4 = 1,2, 3, for t < 0. The author uses Bony’s second microlocalization tech-

_ niques and commutator arguments to conclude that the new singularities a short time after the
" triple interaction lie on the surface of the light cone I' over the origin plus the surfaces obtained
by flow-outs of the lines of intersection I' N X; and ¥; N'%y, 4,5 = 1,2,3.
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§1. Introduction

Let u be a solution belonging to H*, s > %, in an open set 2 of IR? containing the origin,
of
Pu = f(t,2,y,u, aau)|a|=1,21 _ “(1.1)

where P = 900 = 0;(0¢t — Opg — Oyy), [ is assumed to be a C* function of its arguments, the
open set () satisfies that any null bicharacteristic curve of P issuing from a point of Q; =
QN {t > 0} meets Q_ = QN {t < 0} before it goes out §2. The aim of this paper is to study
. the triple interaction of the conormal waves for the higher order hyperbo_lic equation (1. 1).
From [1, 2], we know that, in the future, v will have conormal singularity along ¥y when u
has conormal singularity along the characteristic surface ¥ in the past. If u, in the past, has
conormal singularities along two characteristic surfaces X; and ¥a, then, in the future, the
singularities of u are localized on all characteristic surfaces starting from ¥; N ¥5. When u
is conormal, in the past, with respect to three characteristic surfaces ¥, ¥, X3 intersecting
transversally at a point, there is no result for higher order equations. We know that, for two
conormal singularities, the result taht « will be regular outside ¥; UX in the future and will
have conormal singularities near ¥; and ¥, is valid for equations of order 2 in any dimension,
but when » is conormal in the past with respect to three smooth characteristic surfaces ¥,
¥, X3 intersecting transversally at the origin for wave equations, the nonlinear phenomenon
can occur in the future even for this restricted singularities, i.e.,u has singularities not only
on X3 UX,UX; in the future, but also on I', the surface of the light cone over the origin. For
the detailed proof about this problem one can refer to [3-9]. For higher order equations, as
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mentioned above, the interaction of two singularities will create additional singularities on
Y1 Ny, Without doubt, this brings a lot of difficulties to the study of the triple interaction
for higher order equations. On the other hand, the complicated natural geometry for higher
order equations themselves must be another main difficulty. In this paper we handle the
triple interactions for the model case (1.1) of the third order equations. Even in this case
the singularity structure is still very complicated. In fact, we shall prove that the new
singularities appear not only on a forward light cone emanating from the point of intersection
but also on many other new characteristic surfaces issuing from the intersecting lines of any
interaction two by two. To describe such a singularity structure we need to introduce vector
fields simultaneously tangent to all these characteristics. However, these vector fields are too
degenerate at the intersection point. So, to express the commutator by a linear combination
of 8,0 and generators of singular tangential vector fields in some sense, we need to use second
microlocalization developed by J .M.Bony[4’5], and éstabliSh the commutation relation in
the sense of second microlocalization. Since the second microlocal operatofs include the
pseudodifferential operators and singular vector fields, they are most effective in dealing
with the functions with flowery singularity structure. To solve the problem of this paper, we
also need to use the paradifferential calculus. Because the equation is fully semilinear, there
is an operator coefficient B = B’ o T}, o B” on the lower order terms, where B’ € Op(£%°),
B" € Op(2%9), and a € C*?, p > 0. ‘

The contents of this paper are arranged as follows: In Section 2 we will briefly review some
basic conception and properties of 2-microdifferential calculus and state the main results of
the paper. In Section 3 we will establish the commutation relation of singular vector fields
with the operator P, and in Section 4 we will give the proof of the main results inductively
by using the commutation theorem and the propagation theorem of regularity.

§2. Statement of Main Results

In the sequal of this paper we will often use the concepts and propositions established in
[6] without repeating detailed explanation. :

The 2-microlocal Sobolev space H** is defined as H** = {u € H®;z%u € H*H |a| <
k} for non-negative integer k. It is defined by duality and interpolation for general real .
The conormal distribution H**' (5, k) is defined as {u € H**'; z%u € H** ,|a| < k}, where
2 represents singular vector field tangent to £. We denote by ™™ the space of functions
a(z, &) € C*(R™\ {0} xIR™\{O}) such that

|DgDEa(2, )| < Caplel™ 1M PI(|ajg)™ 1,

where o and § are multiindeces. We say that A € Op(E™™') (the class of 2-microlocal
operators) if the commutators
[3z'1, [aiw [ o [6'5;;’ [mju [ e [qu—l’ [qu? A] t ]

map H** into Hé~m—9+p,s'~m'+4 for any positive integers p,g. A normal proper Op(S7%)
pseudodifferential operator is an Op(X™P?) operator, and a multiplier of homogeneous func-
tion of degree m is an Op(X~™™) operator. In {5] the diffeomorphism between the class
of Op(Z™™')/Op(Z™~) onto the class T™™ /5™~ is established. Under this diffeo-
mophism the operator Op(ST7) corresponds to its ordinary symbol and the multiplier given
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by a homogeneous function b(z) corresponds to b(z)o(|z€|), where o(t) is a C*° function
which is equal to one if ¢ > 1, and vanishes if t < 1/2. ,

We shall say that u belongs to H** 2-microlocally at (O;&o;0xo) if A o (D) -
(d(z)u(z)) € H>, where ¢ € C§°, ¢(0) # 0, ¥(D) is a pseudodifferential operator of
order 0, and (&) # 0, A € Op(X*°) with symbol a(z) being homogeneous of degree zero
and a(z) # 0 in a small conic neighborhood of §z,.

We shall call singular vector field an element z(z, D) of Op(2% 1) whose symbol (mod
$0-%) is as follows: 2z(z,¢) = Sa;(z)(i€;), [D2a;(z)| < Calz|t=el.

To describe our results precisely, let us introduce some notations. Assume that 21, o,
Y3 are three smooth characteristic surfaces for higher order equatlon (1.1), intersecting
transversally at the origin. We denote

I : the full light cone. _
I'% : the forward (backward) ]ight cone.
L) = 5 N85 n {820},
LE®) =SenTN{t20}, i#j#k, i,5,k=12,3.
I; (t)(resp.f,:f (t)): the intersecting lines of I't(t) and the plane which passes through the
lines L (t)(resp. L;j:(t)) and the half ¢-taxis T*(t), k = 1,2,3. _
11 (resp.Z4F): the convex hull of L (¢)(resp.L'{ (¢)) and T f(t)(resp.flf(t)), k=1,2,3.
0, =0 UII (resp. B = T U DY), k=1,2,3. T(t) =T Ul
Deﬁmtlon 2.1. Let X be either a smooth submamfold or the union of surfaces intersect-
ing only two by two and transversally. We shall say that u belongs to the space of conormal

distributions H*(X, k) if XTu € H® for |I| < k, where X1 sa product of |I| smooth, vector
fields tangent to L.

From the assumption of our problem in this paper we only investigate the case that  has
no additional singularities for intersections two by two before the triple intersection began.
For example, when f = fi(t,7,y) + xf2(v), where fi is a C* function of its arguments,
i=1,2,x€ C*(R), suppx C {t > 0}, it belongs to this case. The main result of this paper

can be stated as follows.
Theorem 2.2. Assume that u is a solution of (1.1) belonging to H*® and that u €
Ho(Z1UXUs,k) in Q- foro >9/2 and k € N, i.e.,

ue HMF in Q_\ _Le'Jl )37
g
u € HO(%;, k) near X;\ _Lé.Ej,
J#i

uw € H (X, UL;, k) near X;NE,.
Then, one has, near O in Q+ and fo’r each o <o:
a) u € H7 Tk outside UZ‘ U U I} u U ot urt,

=1

b) u € H (%4, k) near Ej\( U u U I u U12{+ UI‘+>
3=

¢) u € B (I}, k) nearH+\( bt u u 25U 52'+ur+)
Jj=
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d) w € H (S, k) near 2’*\(62'.+u Smru Usiurt),

&) ue H (Z,,k) nearr+\(uz U un+u u2’+)

i=1

Remark 2.1. From the results of M Beals(! and J. M. Bony!24, actually we can
improve c), d), and e) up to
o' +o(IIt+ k- 11-31—’3,31.4--.,.
) u € HY'O(ILf, b - g) near I \(jginj U 080 gEFur )
) o' +o(Tlt k — \(Gerudorudsurt
d)u'eH (B3 k — g) near X \(igéJjZJz U UL U;illeEzUF ),
@) ue HOV(S, k—g) near r+\(,612,- U ,ﬁlnf;r u U5,
. 1= 1= =
where g = min(k, [o — 7/2]).
Remark 2.2. There is no singularity on the prolongation line of
Lt (ts) Ly (ta) (vesp. L'} (t0)T 7 (t4))

for any t4 > 0. In fact, for any pomt P = (t4,%0,¥o) on the prolongation line, P ¢ ['t U L3,
we have

dist(P,TF N {t = t4}) = 26 > 0.
Let By, +5(0,z0,y0) be a ball with center at (0, zo,y0) and radius ¢4 + §, and
w = By, 1+5(0,20,%0) N {t = 0}.

Obviously wN {0} = 0. (%4, %o, o) is in the determinacy domain of w. In this domain, there

is no interaction phenomena. By the result of [11], there is no singularity at point P (resp.
although there is an interaction two by two in the determinacy domain of w, noting that
the point P is not on the third characteristic I Wthh is additional singularity on ¥; N X;,
i # j # k, we see the conclution holds also).

The result of Theorem 2.2 can be pictured through some sections of ¢ =const. as follows:

T

t1 <0 t1 <t <0 v t3 =0

Between ¢, and t5, interactions two by two create no new singularity by our assumption.
Between t3 and t4, interaction creates new singularities, but the new singularities are less
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strong than the incident ones.

t4 >0
Remark 2.3. If the nonlinear term f = f(¢,z,y, 0;u,00u) in (1,1), the singularities of
u can be controlled more exactly, which can be pictured, for ¢4 > 0, as follows:

g >0
In fact, in this case equation (1.1) is equivalent to
{ bv= f(t,a:,y,'u,av),

v = .

Then using the result of [8] and Hormander’s singularity propagation theorem, one may
immediately obtain the result. ' '
-~ §3. Commutation Relation

The key to the proof of Theorem 2.2 is to prove the commutation theorem below. We
denote by Z the Lie-algebra of Op(X%!) generated (over Op(X°°)) by 1 and a finite number
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of singular vector fields 2;,-- - , 2, which are tangent, outside 0, to X1, X2, X3, II;, II,, I,
2, 5%, £4, and I'. The conormal distribution space H** (Z, k) is defined as {u|z/v € H**
for |I| < k,z € Z}, where I = (i,---,41), [I| =1, k € N, and 2! = 2;;, 0--- 0 2;,. When
s +inf(s,0) > 3/2, H** (Z,k) is a C™ algebra.

Theorem 3.1. There exists a system {M;}1<i<n of generators of Z such that

a) [P, Mi] = £;4i;M; + BiP + Aio; Aij, Aio € Op(E¥71), B; € Op(Z*0);

b) Aij, Aio € Op(E5~2) +0p(£2°) 2-microlocally near the set of T of points (O; 7, £, 7; 6t,
bxz,6y) satisfying: 7(12 ~ €2 —n?) =0, 6t : 6z : 6y =372 — €2 —n? . =276 : =217,

Proof. It is not difficult to know th_at the conclusions of the theorem hold microlocally
near (O; CChar P). To prove that the theorem is valid microlocally near (O;CharP), we
construct a 2-microlocal partition of identity 1 = Y Xop near (O;Char P), as refined as we
want, by operators in Op(X%°) as follows.

For each (7,£,7) €Char P, there exists a conic neighbourhood v of (1,€,m) such that v
contains the points which satisfy one of the following conditions only: i). 72 = £2 + n?,
T # 0, ii). 7 = 0. For this -y, there exists an open cone g inIR3 satisfying:

a) (O;7',¢,7';6t,6z,6y) € T and (r',¢&,7) € v imply (6,6, 6y) € g;

: 3
b) either g contains one of the intersection lines {X; N X NI, X, NI, ILNT, NIL; N
_ i=1

irjlzg} only and g only intersects the surfaces which pass through this intersection line, or
g intersects only one of the surfaces {;, £, 11;, T4, = 1,2, 3} (see figure).

Take finite conic neighbourhoods {va}ae A which cover CharP, there exist corresponding

open cones {gq }aca Which satisfy a), b). Assume that the set {g,5}sco satisfying goo = 8a
is a conic covering of IR®. Now we can first take a partition of unity 1 = Y hs(7,£,7) near
CharP with the h, supported in a small cone v,, where h, is homogeneous of degree 0 and
smooth on the complement of the origin. Next, let {#agtaca,sco be a conic partition of
unity 1 = }_; ¢ap subordinated to the covering\"{gaﬂ}ﬁee for each «, where each ¢og is
homogeneous of degree zero and smooth away from the origin. Let Xop = dapha(T,€,7)-
We have :
{P,Xap} € £5~2 + £20 2-microlocally near the set T.
Now we say that it is sufficient to examine the existence of 2-microlocal generators satisfying
a) and b) near the support of each x,s. In fact, if we can find a finite family of operators
{Mopi} such that a) and b) are valid 2-microlocally near this support, then x5 0 Myg; will
satisfy a) and b) in a fully neighbourhood of O. _ '

If suppdop only intersects ¥; (resp. II;, Xj), then the 2-microlocal generators, near the
support of corresponding xas, are the usual (C°) vector fields which are tangent to the
parts of the X; (resp. II;, X%).

If suppgap contains ¥; N X;, without loss of generality, let ¢ = 1, j = 2. Then, from
Theorem 12 in [2], there exists a Lie sub-algebra of pseudodifferential operator of order
1 generated by {M;}1<i<n, where M; is a pseudodifferential operator of order 1 and the
principal symbol of M; is equal to zero on

N*SiUN*S UN*I3 and N*(Z; N %),
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such that ‘ »
- [PM] =) A;M;+B;P, A;e€O0pS’, B;eOpS°

Let A € Op(E~11) be elliptic and X o5 € Op(X%°) with the symbol being equal to 1 near
SuppXags- Then, X ogAM; is a 2-microlocal generator near SUPPXag-

If suppgap contains I'NY; N 29-, then, in this case, by a coordinate transformation which
is similar to the one in [8], we can assume that X; is  +¢ = 0 (in a conic neighbourhood
of TNX;NEY), and 3 isy=0.Z is generated 2-microlocally by My = 8, + z0, + y0,,
M, = x84 + t0, M3 = y((x + t)0y + y(O¢ — 0;))/r near the support of corresponding Xqg,
where 7 = (2 + 22 + y2)'/2. Thus, we have '

| o, M) =" A;M;+Bo + Ao, Ay, Aip € Op(S>7Y), B € 0p(z*9),
and A;;, A, € Op(X?~%) + Op(T10) 2-microlocally near ‘the set of points (O;7,&,m;
6t, 6z, 8y) satisfying 72 ~ ¢2 —n? =0, 6t : 6z : Sy = ~7: €2 .
[P, My] = [6s, Mi]o + 8i[o, M;]
= 8,00 + 84(Ay; M; + Bro + Aso)
: , = YA1;M; + B1P + A1o,
where Ay; = 8,415, By = 1 + By, A1o' = 8410 + (04, B1]o.
[P, My] = 18,0 + 8401, Mp]
= (PM; — $28,)0 + 8,(Az; M+ Byo + Az
= Sdo; M; + B3P + Ao, |
where 9 is homogeneous of degree -1 and smooth except at the origin, and #3) = 1 near
SupPPag- | |
Ago = 03 Ano + P[My,0] + [0y, Bo]o, Agy = 8145,
Ago =900 + 0,459, Agz = 5t;123, B, = By — yu.
[P, M3] = r[P,1/7]M3 + (1/r)(a — 2(8? — 8,8,)) M1
| + (1/7)(t + 2z + 22P)P — (1/r)(2(8:0, — 02) — 290 ) Mz + Op(£>71).
I I'NIL (resp. I'NY}) C suppdag, without loss of genérality, let II; (resp. X): z =0,
I f=1-2%-19% =0. Then the 2-microlocal generators of Z, near suppxag, are

Ny = t0; + ©0y + Y8y, Ny = y0; + tdy, N3 = x(t0; + x0;)/r, Ny = x(y0y ~ z0y)/r. The
others can be obtained more easily, so we omit it.

[P, 2(t0; + £0:)] = 20,05 (t0; + x0;) + z8,0.
Notice that
28,0 = (y?¢ —t)P + 0 Ny — gy N + Op(£29),
20,0, (10, + ©0;) = 20,0, N3 + 202N, — 2P + Dif f(2),

where 9 is a smooth function away from the origin and homogeneous of degree -1, and
ty = 1 near supp@og. We can obtain

[P, N3] = r[P,1/7]N3 + ((y% —3t)/r)P + (202 +0)/r)NV;
- (1/T)(y¢D + 26t8y)N2 + Op(ES’"l).
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Using the same method for N4, we have
[P, Ny] = [P, 1/r]Ny — (y/r)P ~ (8:8y/r)N1 + (87 /r)N2 + Op(Z*1).

If suppg,p only intersects I', then the Z is generated 2-microlocally by t0, +y8t, 10y +x0;,
and t0; + £0; + y0, near the support of corresponding x,3.

If supqua,g contains II; N IIz N II3, then there exists a Lie sub-algebra M of pseudodif-
ferrntial operator of order 1 generated by {M; }1<,< Ny Where the principal symbol of M; is
equal to zero on U N*II; U U N*¥, and N*( ﬂ I; N n )3’) In this case, we can obtain
the 2-microlocal generators as before, and the commutatlon relations hold also.

§4. Conormal Regulari_ty

Having the above preparation, in this section we can prove the main results of this paper.
Obviously, Theorem 2.2 is a corollary of the following second microlocal regularity theorem.

Theorem 4.1. Assume that u is a solution of (1.1) belonging to H*(Q), and that u €
H*(Z, k) locally in Q._, with s > 9/2 and k € N. Then, w € H* */2-Y2(Z.1), | < k, near
O, for each s’ < s.

For [ = 0, the conclusion of the theorem holds. -In fact, we can show that u belongs
to H® near O, But we can obtain the stronger result u € H*+1/2-1/2, This is trivial
microlocally at non-characteristic points, and follows from the propagation of 2-microlocal

singularities (see Remark of Theorem 5.2 in [5]) at characteristic points.
Forl=1,ue H't/2-1/2 o 4 ¢ H*' "+1/2,-1/2(Z 1), In fact, for each M; € Z, M; =

2. Cij - 2.
M;f(t,z,y,u,0%)|gj=1,2 = z Cijzi f(t, z, v, u,0%) + (2; f)(t, T, y, u, 0%u).
From the Leibniz formula we have
Mif(t,2,9,u,0%) = 3 C;;0f /u(t, 7,9,u,0%w)zu + (2£)(t,2,, v, 8u)
+ E Ci;j0f [ua(t, T, y,u,0%u)2;0%
Blal=1,2

+ECHM[ ]+Z%Ma, {;f](HS m3/%e),

where M and MJ « belong to Op(X% 0) Beause of u € H¥+1/2-1/2 4. f 2o, f,0%, u €
HS '—3/2, 1/2(Z l)

Mif(t,2,9,u,0%Wjaz12 = p.  Cij(aaCig Myu)(H* ~3/>71/2),
jrj’:'al'_:l)z

where C;; € Op(200), Cijr € Op(E29), a, € HS ~3/2112(2,1).
| PMju= M;jPu+ [P, Mjlu=M;f+)_ A;zu.
Using the commutation relation we immediately obtain

PU; + RyUy + ByUy € HY ~3/21/%(g, )

for 8 < s, where Uy = Mu. Generally, letting U; be the vector valued functlon whose
components are M u, for 0 < |I| < j, we have

PU, + RyU; + BUy € HS 32V, 141 — ),
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where R; is a matrix-valued Op(X%~!) operator, and

© Rj € Op(s57?) + Op(s??)
2-micolocally near T. Bj=Co a@ o Cy with €y € Op(® 0) Cy € Op(E*9). By the
property of paradlfferentlal calculus, we have av — Tyu € HY~5/21/2 if g ¢ H o'~ and
v € HY~3/2-3/2, Therefore, to prove Theorem 4.1, we only need to prove the followmg
theorem.

Theorem 4.2. Let s> 9/2, and v € HE L2, “3/2(9) for s < s, be the solutzon of
Pv+ Ry _1v+ Bow € H¥~5/21/2 yhere Rs 1 is the operator of Op(23 1) with its symbol
being zero, 2-microlocally near T', and By = Cy 0T, 0 Ca, a € C°~7/2, Then, ifv € H® in
the past, we have, for s' < s, v € H* +1/2~1/2(Q)), .

Using the method of [8], we can prove the propagation theorem of regularity as follows.

Theorem 4.3. Letv € H "=5/2+9,~1/%(Q) with o € 0, 1), such that WF(v) C K
and Piv+ Bv = f € Hlo_s/ 21/ 2(Q), where K is a small conic neighbourhood of some
bzcharacterzs,tzcs issying from the origin satisfying ezther K0 {0;1,6,m} = 0 with 72 —
2 —n2=00rKn{(0;0,¢,7)} =8, B=Cy0T,oCj. Then, we have v € H® ~5/2+o/2(Q).

From this theorem, it is not difficult to Show that the proof of Theorem 4.2 follows the
following theorem. :

Theorem 4.4. Let v € Hs '~5/2, 1/2(9) for als' <s (s >9/2), satzsfy

P+ Bu=feH -8/21/2

WEF(v) c K, wzth B = (0T, oC}, Cy and 02 € Op(Z0 0) a € C¥~2, where szF('v)ﬂ{T =
0} =0, P, = 8, — K1, o(K1) does not depend on T, and o(K1)(0,€,m) = 2 +1?,
and if WF@)N{r =0} #0, P, = 8, Ifv ¢ H =2 in the past, then, _for all 8 < s,
we HE 2=3/2,-1/2(y) o
Proof of Theorem 4.4. If WF(v) N {r = O} 0, by the assumption of
’UEHS —5/2-—6/2-}-6/2 +~1/2 a,nd 'UGHS 5/2+1/2(Q ),

we have v € H® 5 /2= 4(9) from Theorem 4.3. Pyv € L([to, T]; H* '=/2</24¢/ 4) and
Ye,u € H¥ ~5/2+1/2 from Proposition 1.6 of [12]. Using Theorem 23.1.2 of [13], one has

Ve Loo([to,T] H* '—5/2- e/2+e/4)

WF(v) C K assures that v € H¢ ~5/2-E1¢/2'+¢/4+1/2:-1/2 Lot 5 = ¢/4 + 1/2. We can
obtain v € H¥ —5/2-X1¢/2'+0/24+1/2,-1/2 by the same fashion. Generally, we have
c g —8/2-% e e/otpe/2n LT 7 1/2¢ ~1/2

and letting n — 0o one has v € H* =3/2~¢t1,~1/2_Ip view of the arbitrarity of ¢, we obtain
the required result. If W f(v) N{r = 0} # 0, we have v € H¥ ~5/2-1/2 for ¢’ < s, satisfying
dw € HY-5/21/2 and v € H¥~? in the past. By virture of the propagation Theorem 5.2
of 2-microlocal singularity in [5], one can obtain the result of this theorem as well.
Remark 4.1. If the nonlinear term f of (1.1) is f(¢,2,y,u,du), then the restriction of
s in Theorem 2.2 can be relaxed to s > 5/2. In fact, in this case we can first prove by
induction, for I < %, the following equation with R; matrix-valued: PU; + R,;U; = F; with
U, € Op(£3~1) and P, € Op(23~2) 4 Op(£2°) 2-microlocally near T', F; € H¥ ~5/%1/2 for
§ < s, and then by noting that v € H*+1/2~1/2 jmplies U; € Ho+1/%~1/2-1 e see that at
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noncharacteristic points P + R; has a microlocal inverse belonging to Op(X~%?), and thus
U, € H¥t1/2.1/2 microlocally. At characteristic points, all the assumptions of Theorem 5.2
in [5] are satisfied, and one has U; € H 3'+_1/ 2:1/2 microlocally. Thus we have proved
. Theorem 4.5. Assume thatu is a solution of (1.1)with the nonlinear term f(t,z,y, u, Ou)
belonging to H®/2+<(Q), and that u € H U212, k) locally in Q_, with s > 5/2 and
k€ N. Then, u € H tV/2Y2(Z, k) near O for each s’ <s.
Using the conclusion of this theorem, we immediately obtain Theorem 2.2 for s > 5 / 2.
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