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RANDOM ITERATION OF HOLOMOEPHIC 
SELF-MAPS OVER BOUNDED DOMAINS IN CN^
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Abstract

This paper studies tlie asymptotic properties of the random iterations of both the form 
Gn =  / i  ° /2 〇 * * * 0 /n  aud the form Fn =  / n 〇 / n_ i 〇 ■ ■ * 〇 / i ,  where { / n} C ^T(n, H) and 

C c  ^ is a bounded domain. It is found that, under some conditions, Gn or Fn tends to a 
point in O as 7i -+ oo. Some examples are also given to show that the conditions that we have 
given can ndt be dropped in general- Moreover, a complete descriptkpr; is given for or 
to tend to a point in Q under the condition A  —

K e y w o r d s  R a n d o m  iteration, Holomorphic map, Kobayashi metric.
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§.1。 Introduction
The iteration theory of analytic functions in one complex variable has a lbng history of 

more than 70 and now has entered a peri6d of great development. This achievement 
stimulated the creation of iteration theory of several complex variables. M a n y  interesting 

results on itera-tion-theory of several complex variables have been published (see, for example, 

[11, 5, 1, 10], etc.). O n  the other hand, due to the development of fractal geometry and the 
advent of computer graphics, the study of random iteration of analytic functions has got its 

o w n  position (see [2, 3, 4], etc.). In this paper, we shall discuss the asymptotic properties 

of random iteration of holomorphic self-maps over bounded domains in C N .

Let Q  C C N be a bounded domainj T  C H Given { fn} C , we consider the 

sequence

Gn = f l 〇 fn, n = l ，2,..-.

The question is when Gn converges to a point in fi； . W e  shall present several theorems 

describing conditions on the f j s  to ensure the convergence. of Gn in §2 and §3. Similar 

problems for one complex variable have been studied in [6, 7, 9], and [4]. A n d  in paper [6]? 
Gill also listed some reasons w h y  such form of iterations is of interest. Some of our results 

in this paper are somewhat stronger than those corresponding results they got for AT == 1 , 
and the proofs are more simple.

This paper is organized as follows. In §2 , we discuss the randoni iteration of contractions 

in an arbitrary bounded domain. In §3 , we deal with some family of holomorphic mappings
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in bounded convex domains. In both cases, we have examples to show that the conditions 

in our theorems can not be cancelled in general. In §4 , we give some more results for 
random iterations, including the asymptotic properties of random iterations of the form 

Fn — fn 9 /n-i ° ： * • ° fi -We give a complete description for Fn or Gn to tend to a point in 
Q  under the condition f n f-

§2. Random Iteration of Contractions Over Bounded Domains- . . . ’ - .

T h e o r e m  2.1. Let C C N be a bounded domain, E CC and
^ = { f e H ( n , n ) \ m ) c E } .

Then for any sequence { fn} C  3a e 12, such that Gn =- f i 〇 /2 〇 * • * 0 /n converges to the 
point a uniformly on Q .

Note, The maps in T  are usually called contractions.

Proof. Denote e dist(E^dQ) , and let 6 =  where M  is the diameter of Cl . For 
fixed ̂  6 , define

gn(w) = f n(w) + 6(fn( w ) - f n(z)), Vwefi.

Notice

\S(fn(w) ~  fn(^))\ < 2M M  ̂  §  *

So gn E
N o w  let : 0, x C N -—f R b e  the infinitesmal form of the Kobayashi metric of which 

is defined as

Fk (z ,^) =  inf10'j^Qje j •• / e if(B, Cl), /(0) =  z,Df{Q)er is a constant multiple of 
Since holomorphic maps are distance decreasing in the Kobayashi metric, we have

(2.1)
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(2.2)

(2.3)

N o w  for any such curve 7 , f n 〇̂ y is a corresponding curve with endpoints f n(^) and f n(w), 
so (2.2) and (2,3) produce

-F1K(/n(7(i)))-〇/n(7(0)7，(i)) <

or, in other words,

F K ( f n ( l ( t ) ) ,  [fn  〇  7 ^ )1 ， ) <  (2 .4)

FK(gn(z),Dgn(z )^  <  F K (z,〇, ^  € C N.
Notice

9 n (z )  =  f n ( z ) ,  Dgn(z) =  (1 +  6)Dfn(z). 
(2.1) can be rewritten as

FK(fn(z),D fn(z)〇 1
1 + 6 Fk (z,〇 , ^ e C N,z e U

Recall also that the Kobayashi di幼組ce of fi is

K q{z, w) =  inf -/  F ftr(7 (i),7 /(i))^) V z.w e  Q, 
t J〇

where the infimum is taken over all Cl curves 7 with 7 (0) ： = 2：, 7 (1) =  w.
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Integrate (2.4) in both sides against t € [0,1] , by (2.3) we have
K n{fn(z), fn(w)) < inf f FK(fn 0 j( i) , [}n 〇 7(t)}')dt ^ J〇

<inf /  ⑷ ，Y ⑷)由^ Jo l +  〇 
1

= y ^ s k ^ (z ^w)̂  v 之，忉 e h

So for any n ，p, the following holds:

<  A ( - ~ yz,w e n.l+ o
KaiGn(z),Gn^p(z}) ̂  K a ( G n(z), G n(fn+i 〇 -■ 〇 fn+P(z)))

' S  ( 7 ^ 广 _1狗 (iW⑷ ，尨 0 … 〇x + 办 ))

- A{T T s r ~ ^ VzGfi,

where A =  sup K^{z, w) <  〇〇.
N o w  since is bounded, there exists an i? >  0 such that for any z € E  we have

(2-5)

(2-6)

It is well-known that

. K u ( z , w ) >  K B{<ZiR)( z ,w )  =  〇;(0, L ^ - J )  >  ■ \ / z , w e Q ,
where u; is the Poincare distance on the unit disk A  C  C  which is defined as

i〇g i i - g ；t ] i z 4 ,; W), e A ；\/2 6 11 — — v \y
So from (2.5), (2.6), (2.7), we know

\Gn(z) -  Gn(w)\ < A R i j ^ r - 1, \/z,w E Q. 

|Gn (̂ ) -  Gn+P(z)\ < A R (— r ~ \  e n.

(2.7)

(2.8)

(2.9)

B y  (2.9)? {Gn(z)} is a uniform Cauchy sequence in the Euclidean norm, so converges to some 
point z〇 e E and (2.8) implies that Gn(w) — > z〇̂ w e uniformly on Q.

R e m a r k  2.1. It is worth while noticing that Theorem 2.1 is true for bounded domains 

in any complex Banach space without changing the proofs.

R e m a r k  2 #2. If we iterate these /n 5s in the opposite direction, we can not expect the 

truth of Theorem 2.1. In fact we have

E x a m p l e  2.1^ Let Q, B be the unit ball o fC N^
f2n(z) = ^Z, f 2n M z) =̂ \ { z ~ gel)-

Obviously, Fn(z) = f n 〇 f n~i ° • * * ° /l(^) can not converge at any point of Q .

R e m a r k  2.3. From the hypothesis of Theorem 2.1 we know that each f n ^ J7 has a 
uniqiie attracting fixed point lying in E\ It is natural to ask:
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If we let
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=  {/ € £T(fi, fi)|/ has a unique attracting fixed point in E CC
is Theorem 2.1 true for JF? The following example denies it.

E x a m p l e  2.2. Let /打⑷ = ( 1  — ■( ; Q — B = {z e C N\ \z\ < 1}. Then f n G J7, 
but

7 1 + 1

G n =  /l 〇 … 〇 /n =  ][J (1 -
k=2

converges to a linear m a p  /(^) =  not a constant.

R e m a r k  2.4, Similar result for one complex variable was obtained in [9] by Lisa 

Lorentzen, an expert in complex analysis well-known for continued fractions under her for­

mer n a m e  Lisa Jacobsen, But in [9] , Lorentzen only proved that the convergence is uniform 

on some subdomain of Q, . Surely, our methods are completely different from that in [9]. 

In fact her proof used the famqus Riemanu mapping theorem which is invalid in the high 

dimensional case, and consequently the method can only be applied to circular star-shaped 

domains in C N.

§3。 Handom Iterations Oyeir Bounded Coirvek Domains
, .  - . .  ：■ • • . ,  ■ .  ,

In what follows, we denote by \\A\\ for an AT x iV matrix A its operator norm, that is,

||A|| =  max|A^|. In order to avoid notational complexity, we always regard a vector in 
l̂ l<i

C N as the column vector when a matrix acts on it. W e  hope that this will riot bring any 

confusion.

T h e o r e m  3.1. Let€l CC. C N be a. convex domain. T  C satisfies:
(I) Any f  E J7 can be extended continuously to Ct and ||D/(^)|| <  1,V^ G Cl.
(II) There exists a Zq € such that

sup \\Df(z〇)\\ < 1. (3.1)feJ7
Then for any sequence f n € !F，Gn = 〇••• 〇 f n, we have Gn(z) — > w〇 EQ .

Proof. The theorem is a consequence of the following assertions.

Assertion 3.1.

sup ||_D/⑷ || <  1，： V么 € (3.2)

■ ..

In fact, If 3a G such that sup ||Z?/(a)|| =  1, then
奸  . '

3/n e  ̂  f n ^ f  € \\Df(a)\\ = 1.

So

3 P e C ^ ， |P卜  1， p / ⑷ 0  =  卜  i_

Consider the holomorphic m a p  g(z) =  D f(z)P  ~  z e d .  Clearly

g € B). B y  |p(a)| =  1 we have g(a)^b G dB. N o w  let■ . . .  . . . . . .  • ^N
h{z) =  (g(z),b) =

. . i
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Then is a holomorphic function on Q, , and
\h(z)\ < \g(z)\\b\ =  \g(z)\ < h\h(a)\ = \b\2=  1.

So by the m a x i m u m  modulus principle, h(z) =  h(a) = 1 , and this in turn shows g(z) =  6. 
So \Df(z)P\ = |6| =  1, and ||I>/(̂ )|| >  1. This means ||D/(^)|| =  1, which contradicts (II), 

so (3.2) is true.

Assertion 3.2# For any f  £ we have
\f(z) -  f(w)\ < \z ~  w\, yz,w  e Cl. (3.3)

li z yw € the closed straight line segment L, with endpoints 2： and is a compact 

subset of H  So by Assertion 3.1，3 e >  0, such that ||D/(么)|| <  1 — e， Vz G I/. For any 

a G L, by the definition of D f we have
lim 1/⑷  -  / ⑷ - A f  ⑷(乜 -  〇)丨 _  〇,

u~*a |*a — a|

so 3 >  0 such that when u e B(a, 5a),
\f(u) -  /(a)I <  (l + £)\D f(a)(u-a)\

< (l +  e)j|Z?/(a)|||(w-a)|

<  (1 — e2)\u — a|
• v . . .

holds. N o w  L is covered by all these a G L  . So the compactness allows us to

choose finitely m a n y  points a% =  z ya2} an =  ordered from 2： to w along L such
. . .

that

\ f ( aj )  ~~ f ( aj + i ) \  <  (1 ~~ e2)\aj  ~~ i  =  1 ,2 ,…， n - 1.
This implies

\f(z) -  / H I  =  I f ( a3) -  /(aJ+l)l
n—1

<  53(1 -  £2)\aj ~ %+i)|

= { l - e 2) \z -w \
< \z — w\.

Next, ii z e dQ or w e dQ or both z,w  G then we choose two points a, 6 G Q n L 
along the segment L in the direction z to w. B y  the above discussion, 3e >  0; such that

1/ ⑷ — / W l  <  (1 — e2)la ~  礼  （3.4)
—

N o w  by the continuity of / on 3ax G [z, a], 61 £ [6, w], such that
e 2

\f(z) -  /(ai)l < -^\a-b\,

|/(-u;) - /(6i)| <  y | a  -  6|. (3.5)

Repeating the above discussion implies

\ f ( a i ) - f ( a ) \  < \a -a i\ ,
|/(&) — /(&1)|<|6- 61|. :…(3.6)
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Combining (3.4), (3.5) and (3.6), we have

l/W - /H I < l/W ™ /(«i)l + l/(«i) - /(«)l

+  \ f ( a) ~  /(&)l +  \f(b) -  /(^i)l +  \f(h ) ** Z(^)|.
e 2

< — \a ~  6| +  \ai -  a| +  (1 -  e2)\a -  b\£i
*f* \b — b\ | -f* —■ \d — 6|

— |fli — <x| +  |ci —

= |ai — 6ij < \z  — w\.
(Note. Assertion 3.2 is true for all connected domains ia C N).
Assertion 3.3. Let d =  diam(fi)，consider the modulus Qf equicontinuity cj of

co(r) snp{\f(z) -  f(w)\ \ f  E U ,\z -w \ < r}, r e  [0,d].

W e  have

(a) u) is increasing on [0,d);
(b) u {ti +  r2) <  o；(ri) + u(r2), ri, r2 > 〇, ri + r2 <d]
(c) cu(r) <  r, 0 <  r <  d;
(d) u is continuous on [0,d];
(e) w(r) <  r, 0 <  r < d.
In fact, (a) follows immediately from the definition of a;, (c) is a consequence of (3.3).

T o  prove (b), for any z,w with \z — w\ < ri +  by the convexity of SI, there must 

exist a w G such that \z — u\ < r\ and \u — w\< r2. So (12) gives

\f(z) -  f(w)\ < \f(z) -  f(u)\ +  \f(u) -  f(w)\
<  w(ri)+w(r2), y f e J 7,

this in turn proves (b).

Next, by (a), (b), (c) we know that if then

|o；(r2) -  = cu(r2) -  u>(ri) < w(r2 -  ri) < r2 -  n  = |r2 -  n |.
So u is continuous on [0̂ d\ , and (d) is proved.

Finally, since is convex, and so taut, iy(f2, f2) and T  are normal. Furthermore by 

the hypotheses (I), (II) and the equicontinuity of T  we see that T  is closed. To prove

(e), w e  uge the proof by contradiction. Suppose now there exists an r G (0, d], such that
u(r) = r. Then 3zn,wn G fi,/n € ^  with \zn ~ w n\< r  and lim |/n (^n) -  fn(wn)\ ~  r .

n—>〇〇
Taking a subsequence if necessary，we m a y  assume tha：t both zn,t/;n and /n converge. Let 

zn z^wn w,z^w € 0,/n -^ / e ̂ 7. T h e n  \f(z) -  /(^)| = r > \z  — w\. This contradicts 
(3.3), and the proof of Assertion 3.3 is completed.

N o w  we go to the proof of Theorem 3.1. First of all, for any compact E any / G 

we have diam/(£?) <  u(diam£J). So

d i a m G n(f2) <  u；n (diamfi) =  a;n(d).

B y  the continuity of uj and o;(r) <  r, it is easy to see lim con(r) =： 0, Vr G [〇,dl, which
n—>〇〇

implies d i a m G n(0) —> 0, and so Gn a e Q- ,
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R e m a r k  Example 2.2 shows that condition (II) can not be dropped.

R e m a r k  3.2, It is easily seen that the largest eigenvalue ofyl is less than \\A\\ , so it 
is interesting to know whether or not Theorem 3.1 is true if we replace |jA|| by the largest 

eigenvalue of A in the conditions of Theorem 3.1.

§4, More on Random Iterations
Prom the discussions in §2 and §3, we k n o w  that the random iteration Gn(z) =  f i ：〇 

/ 2 〇—  〇 f n(z) converges to a point a e O  under s ome conditioiis. N o w  it is natural

to ask: W h a t  happens if we treat the random iteration Fn(z) — f n ° f n- i  〇 * • * 〇 fi(z)
■ ... ■ _ •• •；

instead of Gn- Trivially, if all these /feJs have no relations, nothing can be said about 

F n . For example, let A  C C  be the unit disc, f 2n(^) =  |)/2n^i(^) -  〇• They all are 

uniform contractions, but F n does not converge. However, if f n / for some / G if(fi,fi), 

we can give a complete answer to this question. The main results are ,

T h e o r e m  4.1. Let Q, CC C N be a taut domain, f  € H(Q}Q,). Then, for any sequence 
{fn} C fl) with f n / ,  the full sequence Gn — f t  0 / 2 °  ,,r〇 fn for someb G ft 
when and only  ̂when f  has an attracting fixed point a £ Cl.

T h e o r e m  4.2. With the hypothesis as in Theorem 4.1, for any sequence { fn} C  H(Q, ft) 
with f n -> /, the full sequence Fn = f n 〇 f n- i  0 * * •0 /1 converges to a point b when and 
only when f  has an attracting fixed point a € and in this case we have 6 =  a.

The proofs of the above theorems will follow immediately from the following lemmas and 

propositions.

L e m m a  4.1. Let A be an N  x N  upper triangular matrix. X is the largest modulus-of 
eigenvalue of A, f(z ) =  Az. If A < 1 ,  then for any r > A there are polydiscs DN(P) such 
that for any positive S < 1 we have f(D N(SP)) C DN(r6j3)y where /3 =  (^1,^2  ̂* • ■ 5/?^)5 
Pn  < Î n - i <  * * * <  A  =  is a constant^ and

DN(f3) = { z e C N\ 1^1 < ^ ,  j =  l,2,...,iV}.

Proof. Let

/ Ai 1̂2 ^13 •• 〇>i n \
〇 入2 ^23 •.

A = 〇 0 A 3 . 
• •

• <̂ZN

v 〇 0 o .

•• .

. Aiv /

where {入)，̂ =  1,2,…，JV} are the eigenvalues of A. Denote

A = 1̂1 a = !} > L

Choose e >  0 so that e + X < r. Given /?i >  0, we define for

j =  2,3,…，iV". Then it is easy to see that = (亨 严 —M jv.

N o w  note that

f(z)=

，入i 之1 +  ttl2之2 +  • • • +  a liV̂ 7V、 

^2Z2 +  <̂ 23̂ 3 +  • - • +  〇̂2NzN
AiV-l^iV-1 +  〇>N~l,N^N

Aat̂ jv /
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If ̂  € DN(6I3)) then
l^jl ~  \^jZ3 +  • - • +  〇̂jNzN\

X8/3j Ndd/3j+i
==Xd^j +  eS^j < r6/3j  ̂ j  ~ 1,2, ~  1.

丨卿| =  狀 at| <  A丨印丨 <  A(%\r'< n% v.

So we have proved f(D N(80)) C  DN{v60),
L e m m a  4,2/ Let C  C N be a pseudoconvex domain, g E H(fi),gf(0) =  0. Then there

N
exisi gj € = 1,2, •"，N, sudi that g(z) 二 J2 zj9j(z),

' 、 j=rl

Proof. This follows immediately from Theorem 5.3.1 of [8].

L e m m a  4.3. Let ft C  C N be a pseudoconvex domain  ̂ g E  H{Q). If the homogeneous
expansion of g at the point 0 has no terms with degree less than 2  ̂ then there exist gji G

，. - V. . ： ■ N,- .= 1,2,…此  such that g(z、 = ^2 ZjZkgjje(z).
Proof. Since ̂ (0) =  0, L e m m a  4.2 is applicable, that is, 3gj G 11(0,), such that

N
9 ( 4 = J 2 zj9j(z)^ (4.1)

N o w  by the conditions on g we know § ^ (〇) ― 〇5 VA: =  l,2,...,iV. O n  the other hand, by 

(4.1) we have

■ {z) = Y l z〇̂ r { z) + 9k{z).d z k
J  — X

So 处 (〇) =  0. Again applying L e m m a  4.2 to G 丑(卩)，stich that

: N
9k {z ) — z j9 k j(^ )• (4.2)

Combining (4.1) and (4.2) yields

N
g (z)= ZjZk9kj{z)>

乂/c==l

Corollary 4 ,1 . Under the conditions of Lemma LZ, for any CC Q,^3C > 0 , such that 
\g{z)\ < C\z\2. .

Proof, This is trivial, since all the are bounded on

Proposition 4*1. Let C  C N\ f  G a G O. Then there exists a
neighbourhood V  of a， such that f[V ) (Z V f C C V .

Proof, Without loss of generality, we m a y  assume 0 G fi and f m(z) —>■ 0. Then we have 
/(0) =  0, and

[Af(o)r =  A T  (o) — 〇•

So all the eigenvalues of Df(0) are less than 1.
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B y  Schur Theorem, there is a unitary matrix Q such that

Q'DmQ =
/ A1 1̂2 1̂3 • • 〇̂ i n \

0 入2 <2-23 • • 〇̂ 2N
0 0 A3 .. 

•' «
= M .

\  0 0 o ..
• •
. Aw-)

Let U ~ == Q(U)^ and let g(z) =  Qf 〇 f  〇 Q{z). Then g G H(U,U)} and
Dg(&) ^  Q 'D m Q  -  M,g(0) -  0, so the expansion of 5 at 0 is g(z) ~  M z +  G(z)^ 
where G(z) has only the terms with degree larger than 1. So by L e m m a  4.1, for any 

r >  入，r <  1,3/ ? = (此，… ，/^)， <  … <  /?i =  i^jv，such that

M : D n (/3) ^  Dn {tS5),
where 入= m a x  I A ,-1 <  1. l<j<N J

O n  the other hand, by Corollary 4.1, for some B(0, R) CC U, 3C > 0, such that \G(z)\ <  
C\z\2. N o w  let e =  and let /? =  (/3i, ...,/3iv) be so chosen that < cWk^ and 
DN(^) C B(0,il). Denote G(z) == (gx{z)yg2(z),..^gN(z)). Then each gj is a holomorphic 
function with terms of degree 1 and 0 vanished. So for 2： G D N (f3), we have

<  i g (̂ )| <  c n 2 K c m i
^ C N (K P n )2 = C N K 20NpN ■
<  s P n  <  e P j .

. .

So if we let g(z) =  M z + G(z) =  (^1,^2?.**?^^), then

\wj\ < rPj +  £pj =  (r +  e)/3j =
So

g(DNm c D N { i ^ ^ j  CCDN(0).
N o w  let

V = Q(DNm ，r  =  C C K

Then

疗 。/ ( y ) = 夺 。/ 。Q(i^(/3) 1 (£^(灼 ）

C DN ( ^ ^ p )  CC D n (J3).
So /(F) C Q( DN (3)) =  V f CC V. This completes the proof.

N o w  we are in a position to prove our main Theorems 4.1 and 4.2.

Proof of T h e o r e m  4.1. The only when part is trivial, so we only prove the when 
part. Suppose that / has the point a as its attracting fixed point, that is, f m —> a. Then 
by Proposition. 4.1 we have for some neighbourhood V 〇( a that f{V ) C Vf CC V.

O n  the other hand, since f n /, we can- find an M  > 0  and a y /y such that for all 

n  >  M ，the following holds: /n (F) C CC F. Applying Theorem 2.1 to
G m ,u =  / m + 1 0 * * ■ 0 /n

on V , one has c G V, € V. N o w  .

=  /1 〇 • • * 〇 /m  0 /m +1 0 ■ * ■ 0 /n =  Gm 0 GM,n-
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So

Gn(̂z) —> Ĝ (c) = ?? G G V.
Finally, since Q is taut, {Gn} is a normal family. Let G be any limit of convergent 

subsequence, G € Then the above discussion shows that G|^ ^  b. So by the
Uniqueness Theorem we have G  =  6 .This completes the proof.

Proof of T h e o r e m  4.2. For the same reason as in the proof of Theorem 4.1, w e  need 
only to prove the when part. All the same as in Theorem 4.1, 3VU C C  V, M  >  0, such that 
for all n  >  M  we have

fn{V) C V f/ CC 7 , / ( 7 ) C ¥ ;/ CC K
As iu the proof of Theorem 2.1, w e can get for some £ <  1 that

K v { f n ( ^ ) J n ( ^ ) )  <  S K V {Z,W),  W e V .
Let

Then

FM,n — f n °  f n - 1  〇 * * • 〇 / m +1-

K v (F m ,ti(z ), F M ,n(.w)) <  en~M Kv{z,w) 0, \fz,w € V.

This means So fqr any given convergent subsequence ，彐& € V  sucli

that FM%rtj{z) —j- 6, V之 G K  Since fi is taut, is normaL The above result shows

that FM,nj{^) b for all z e 0>. Consequently, Fnj(z) =  Fm^  ° Fm (^) b. Note that in 
the proof of Proposition 4.1 the neighbourhood V of a can be arbitrarily small, so we must 

have b — a. That is, Fnj(z) a for any convergent subsequence, so Fn(z) a ,^z £ SI. 
The proof is finished.
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