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RANDOM ITERATION OF HOLOMORPHIC
SELF-MAPS OVER BOUNDED DOMAINS IN O ***
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- Abstract

This paper studies the asymptotic properties of the randbm iterations of both the form -
Gn = fiofao.-.0 fy and the form F, = fn 0 fn—10--0 fi, where {fn} C H(Q,Q) and
Qcel isa bounded domain. It is found that under some conditions, Gy, or Fp tends to a
point in & as n — co. Some examples are also given to show that the conditions that we have
given can.not be dropped in general. Moreover, a complete description is given for Fy, or G
to tend to a point in 2 under the condition f, — f.
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§1. Introduction
The iteration theory of analytic functions in one complex variable has a long history of
more than 70 years and now has entered a period of great development.” This achievement
stimulated the creation of iteration theory of several complex variables. Many interesting
results on iteration theory of several complex variables have been published (see, for example,

11, 5, 1, 10], etc.). On the other hand, due to the development of fractal geometry and the -

advent of computer graphics, the study of random iteration of analytic functions has got its
own position (see [2, 3, 4], etc.). In this paper, we shall discuss the asymptotic properties
of random iteration of holomorphic self-maps over bounded domains in C¥V .

Let £ C CN be a bounded domain, F ¢ H(Q,9Q). Given {f,} C F , we consider the
sequence - ‘ -

Gn=f10f2°"'°fn5 n=12--.
The question is when G, converges to a point in Q. We shall present several theorems

describing conditions on the f,'s to ensure the convergence of G in §2 and §3. Similar
problems for one complex variable have been studied in [6, 7, 9], and [4]. And in paper [6],

Gill also listed some reasons why such form of iterations is of interest. Some of our results

in this paper are somewhat stronger than those corresponding results they got for N =1,

and the proofs are more simple. | . o
This paper is orgamzed as follows. In §2 , we dlSCllSS the random 1tera,t1on of contractlons

in an arbitrary bounded domain. In §3 , we deal with some famlly of holomorphic mappings
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in bounded convex domains. In both cases, we have examples to show that the conditions
in our theorems can not be cancelled in general. In §4 , we give some more results for
random 1terat10ns, including the asymptotic properties of random iterations of the form
Fo=fnofa10:0f1 We give a complete description for F or G to tend to a pomt in
2 under the cond1t10n fn - f. '

§2. Random Iteration of Contractions Over Bounded Domains

Theorem 2.1. Let Q C CV be a bounded domain, E CC Q, and
F={f € HS,f®) c E}.

Then for any sequence {f,} C F,Ja € Q, such that G, = f1 o fz o---o0 f, converges to the
_point a umformly on ) .
Note. The maps in F are usually called contractmns
Proof. Denote ¢ = dist(E£,0Q) , and let § = 55, where M is the diameter of . For
fixed z € Q , define ' ' ' o

(W) = fa(w) +6(fa(w) = f2(2)), YweQ.
Netice S '
|6(fa(w) — fa(2))] < WM = -;—
So g, € H(Q,9).

Nowlet Fx: QxCN — R be the mﬁmtesmal form of the Kobayashi metric of O Wthh
is defined as

' 'FK(z €)= mf{ lDfl(g(l) 10 f € H(B ), f(O) =2z Df(O)el is a constant mult1ple of§} |

Smce holomorph1c maps are d1stance decreasmg in the Kobayashi metnc, we have
(gn(z)7Dgn(z)§-) < Fk(2€), V€€ CN_- - c o (20)
Notice o ' ) : '
| 0n(2) = fu(2), Dgnl?) = (1+6)DFalz).

(2.1) can be rewritten as

Fic(fa(2), Dfa(2)E) < FK(z £, teCVzen. (2.2)
Recall also that the Kobayashi distance K 0 of Qis |
Ka(zyw) = inf [ Fi(y(0,7(0)dt, Vaweq, (23)
A 3 . v

where the infimum is taken over all C! curves 'y:With ¥(0) = 2z,v(1) =
Now for any such curve v, foyisa correspondmg curve with endpomts fa (z) and fr(w),
80 (2 2) and (2 3) produce
1

Fre(f(r(9), Dfn(’r(t))’r ) < 75 Fx(v(),7'(2)),

or, in other words,

FK(fn(ﬂt)),[fnovct)]')sl-i-'gFK(v(tM'(t))ﬁ ey
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Integrate (2.4) in both sides against ¢ € {0,1] , by (2.3) we have

Kalfale) o(w) < i / Fic(fa o2(6) 1 o0 it

< inf / ————FK(’Y(t) ¥ (£))dt

1

1+6KQ(Z w), »Vz,w € Q.

So for any n,p, the following holds:
Ka(Ga(#,Ga(w) < (g Kol fn@)
T <A(i—%”“ Vawe (5)
Ka(Ga(2), Gn+p<z>>-Kn(Gn<z> Galfar1o o furn®))

(1 +.6)n IKQ(fn(z) fn °fn+p(z)) .

—-1——)“"1, Vz €, o (2.6)

SA(Ha

where A = sup Kg(z w) < 0. e R .
Now elnczwé I;Js bounded there ex1sts an R > O such that for any z € E we have ,
o " QCB(R) = {wecN||w-z|<R} -
It is well—known that

Kg(z w) > KB(Z R)(z w) = w(O |w

2, w2

>
R )2 R’
where w is the’ Pomcare dlstance on the unit disk A ¢ C whlch is deﬁned as
11| +|u — v

Vz,w €, - (2.7)

w(u v) 1

V3 =m0 - =l woed,
So from (2.5), (2.6), (2.7), we know L
1Gr(?) -G (w)l < AR(1 +5)”“ , Vz,weQ. . (28)
Ga(9) = Goia(9) < AR(—o)™, Vaen. (29)

1446
By (2.9),{Gn(2)} is a uniform Cauchy sequence in the Euclidean norm, so converges to some
point 29 € E and (2.8) implies that Gn(w) — 29, w € , uniformly on €.

Remark 2.1. It is worth while noticing that Theorem 2.1 is true for bounded domains -
in any complex Banach space without changing the proofs.

Remark 2.2. If we iterate these f,’s in the oppos1te direction, we can not expect the
truth of Theorem 2.1. In fact we have

Example 2.1. Let 2 = B be the unit ball of CN :

25 Fa(2) —%(z - o)

f2n( ) 5 5

Obviously, Fy,(2) = fn 0 fu-10-0 f1(2) can not converge at any poiﬁt of .
Remark 2.3. From the hypothes1s of Theorem 2.1 we know that each f, € F has a
uniqtie attracting fixed point lying in E. Tt is natural to ask:

3
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If we let
F={f € H(Q,Q)|f has a unique attracting fixed point in E CC Q},

is Theorem 2.1 true for F? The following example denies it.
Example 2.2. Let f,(2) = (1 — '(‘7'1—_5'{)'5)2,9 = B = {2z € CV| |z| < 1}. Then f, € F,

but
n+1

Gp=fro- ofn—H(l_—

converges to a linear map f(z) = 3z, not a constant.

Remark 2.4. Similar result for one complex variable was obtamed in [9] by Lisa
Lorentzen, an expert in complex analysis well-known for continued fractions under her for-
mer name Lisa Jacobsen. But in [9] , Lorentzen only proved that the convergence is uniform
on some subdomain of € . Surely, ‘our methods are completely different from that in [9).
In fact her proof used the famous Riemann mapping theorem which is invalid in the high
. dimensional case, and consequently the method can only be applied to circular star-shaped

domains in CV. |

§3. Random Iterations Over Bounded Convex Domains
In what follows, we d'en(s)t.e"b'y ||| for an N x N matrix A its operator norm, that is,
Al = mlax]Azl In order to avoid notational complexity, we always regard a vector in

CY as the column vector when a matrlx acts on it. We hope that this w1ll not bring any
confusion.

Theorem 3.1. Let Q CC. CN be a.convex domain, F C H (Q Q) satzsﬁes

(I) Any f € F can be extended continuously to G and “D f(z)ll <1,Vzeq.

(IT) There exists a zy € Q, such that

ﬁup IlDf(ZO)H <L : (3.1)
Then for any sequence fn, € F,Gp = fi 0+ 0 f,, we have Gp(2) —wp 0.

Proof. The theorem is a consequence of the following assertions.
~ Assertion 3.1. ‘ ‘

sup [|[Df(2)]| <1, - V2€Q. . ' - (3.2)
o feE : ) _ .
In fact, If 3a € Q such that sup ||Df(a)|| =1, then
feF '
n€F, fo— fEHQ,Q), [Df(@)]=1.
So '
apec”, |P|=1, |Df(a)P|=|P|=1.
Consider the holomorphic map g(2) = Df(2)P = (g1(2),...,98(2)), z € Q. Clearly
g € H(Q, B). By |g(a)] = 1 we have 9(a) b € 0B. Now let

() = (9(), ) = Zw
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Then h is a holomorphic function on §2 , and
B(2)] < lg()lb] = l9(2)] < 1, [h(a)] = o> = 1.

So by the maximum modulus principle, A(z) = h(a) = 1, and this in turn shows g(z) = b.

So |[Df(2)P| = |b| = 1, and ||Df(2)|| > 1. This means ||Df(z)|| = 1, which contradicts (II),
so (3.2) is true. '
Assertion 3.2. For any f € F, we have
If(2) = f(w)| < |z —w], Vz,weQ. (3.3)

If z,w € €, the closed straight line segment L, with endpoints z and w, is a compact
subset of . So by Assertion 3.1, 3 ¢ > 0, such that ||Df(z)|| <1l-¢, VYze L. For any
a € L, by the deﬁnltmn of Df we have '

B CEROECIEL T

L u>a - u—a
so 3 8, > 0 such that when u € B(a,4,), | |
W) - f(@)| < (1 +&)[Df(@)(u—a)|

< (1 +e)IDf(a)l(w~ o)l
<(1-€)u-aq
holds. Now L is covered by all these B(a,6,)’s, a € L . So the cdmpacﬁné'ss allows us to

choose ﬁmtely many pomts ay =2 a,g, s Gn1; Gn = W, ordered from 2 _to w along L such

[f(a'j) ——f(aj,'f'l)' < (1 - Ez)laj - a-j-l-li» Jj=42,..,n -1
This implies '

f(2) - f(WI—IZf(aJ — f(aj1)]

n—1

<) (A =ED)aj - aj41)l

=(1-¢€?)|z — w
< |z —w|.

o,
ot

Next, if z € 90 or w € 9 or both z,w € 89, then we choose two points a,b'€ QN L
along the segment L in the direction z to w. By the above discussion, 3¢ > 0, such that

| | @)= f®l<Q-Ha=b. Y
Now by the continuity of f on Q,3a; € [2,4a],b1 € [b,w], such that- ’ .

1) - fad < Sla-b,
V) - o) < Sla-bl 9

Repeating the above discussion implies
If(a’l)—f(a)l < Ia’—alla s :
FO) = Fb)l < Pb—bil. )
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Combining (3.4), (3.5) and (3.6), we have

1f(2) = f(w)| < |F(2) = f(a2)] + |f(a1) — f(a)|
+£(a) = £ +1£(6) = f(b)l + [f(b1) = f(w)]

2
€
< ——]a,—b|+|a1—a|+(1—-62)|a—b|

+|b— b1|+ Ia b|
=]a1—a|+|a—b|+|b bll
|CL1 bll < |Z -—w| .

(Note Assertion 3.2 is true for all connected domains in CV ) _ _
Assertion 3.3. Let d = diam(Q2), consider the modulus of equicontinuity w of F

w(r) =sup{|f(2) - f(w)| |f € F,z,weQ |z —w| <7}, - v €[0,d].

We have

(a) w is increasing on [0, d];

(b) w(r1 +1r2) Lw(r1) +wlre), r1,r2>0, r1+72<d;

Qwr)<r, 0<r<d;

(d) wis continuous on [0, d};

@ w(r)<r, 0<r<d

In fact, (a) follows immedijately from the definition of w, () is a consequence of (3. 3)

To prove (b), for any z,w € Q with |2 — w| < r; + 4, by the convexity of Q, there must
exist a u € § such that |z — u| < 7y and |u — w| < 5. So (12) gives

|f(2) = f(w)| < |f(2) = F(w)| + |f(w) — fw)]
Sw(ry) +w(r), YfeF,

this in turn proves (b).
Next, by (a), (b), (c) we know that if r5 > ry, then

lw(rg) — w(ry)] = w(re) —w(ry) Swlry —r1) <rog—7ry = |ry — 1.

So w is continuous on [0,d] , and (d) is proved.

Finally, since  is convex, and so taut, H(2,Q?) and F are normal. Furthermore by
the hypotheses (I), (II) and the equicontinuity of F we see that JF is closed. To prove
(e), we use. the proof by contradiction.” Suppose now there exists.an 7 € (0,d], such that
w(r) = 7. Then Jzn,w, € Q, fn € F with [zn —wp| < r and hm [frn(2n) = falwn)| =7 .
Taking a subsequence if necessary, we may assume that both zn,wn and f, converge. Let
Zp — 2, Wn — W, 2, € Y, fr, = f € F. Then [f(2) — f(w)| = r > |z — w|. This contradicts
(3.3), and the proof of Assertion 3.3 is completed.

Now we go to the proof of Theorem 3.1. First of all, for any compact E C Q, any f € F,

we have diamf(F) < w(diamE). So

diamG,(Q) < w™(diamQ) = w™(d).
By the continuity of w and w(r) < r, it is easy to see Jim w"(r) =0, Vr € [0,d], which
implies diamG,,(Q) — 0, and so G, — a € . X
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Remark 3.1. Example 2.2 shows that condition (II) can not be dropped.
~ Remark 3.2. It is easily seen that the largest eigenvalue of A is less than ||A]| , so it
is interesting to know whether or not Theorem 3.1 is true if we replace ||AJ| by the largest
eigenvalue of A in the conditions of Theorem 3.1.

$4. More on Random It'er‘ations, _

' From the discussions in §2 and §3, we know that the random iteration Gip(z) = fi.0
fa 00 fa(2) converges to a point a-€ £ under s ome conditions. Now it is. na,t,ural
to ask: What happens if we treat the random iteration F,(z) = f, o fn_1 o--+0 f1(2)
instead of G,. Trivially, if all these fi’s have no relatmns, nothlng can be sald about
F,. For example, let A C C be the unit disc, fon(2) = 3, fon=1(2z) = 0. They all are
uniform contractions, but F;, does not converge. Howsever, if fr — f for some f € H(Q,Q),
. we can give a complete answer to this question. The main results.are . e

Theorem 4.1. Let @ CC CV be a taut domam, feHQ, Q). Then, for any sequence
{fn} C H(Q,Q) with f, — f, the full sequence G, = fi0 fao- 0 fo— b for somebe
when and only when. f. has an attracting fized point a € Q.. L

Theorem 4.2. With the hypotheszs as in Theorem 4.1, for any sequence { fn} CcCH (SZ Q)
with f, — f, the full sequence Fy, = fr, 0 fn—1 0+~ 0 fy: converges to a point b € Q when and
only when f has an attracting fized point a € Q, and in this case we have b = a.

The proofs of the above theorems will follow immedi@tely from the following lemmas and
propositions. ) .

Lemma 4.1. Let A be an N x N upper triangular matriz. X is the largest modulus of
eigenvalue of A, f(2) = Az. If A < 1, then for any r > A there are polydiscs DN (B) such
that for any posz'tz've § < 1 we have f(DY(68)) ¢ DN(r68), where 8 = (B1,B2,---,08n),
BN < Bn-1< -+ < Br=KPBn,K is a constant, and '

DN(ﬂ) ={zeCV||z|<Bj, i=1,2,.,N}.

Proof. Let
)\1 aiz 413 ... OQIN
0 /\2 as3 ... QN
A= 0 0 )\3 R a3N ,
0 0 0 ... An

where {)\;,j = 1,2,..., N} are the eigenvalues of A. Denote
)\.= ér;_astMj[ < L, a= ISI?’?)S{N{_[%-I, 1} >1. | -
Choose ¢ > 0 so that e + A < r. Given 81 > 0, we define B; = wP8i-1 < Bj-1, for
7 =2,3,...,N. Then it is easy to see that By = (“N)N 18n. '
Now note that
: Mz +a1az2+ ...+ aiNzN
AoZg + a2323 + ... + GaN2ZN
f(z) = Crerene = (wl,wz,...,wN).
AN-1ZN-1+ aN- 1NZN
ANZN
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If z € DV (68), then
fwil =12 + a0z + o+ agnan]
< \6B; + NadBiy
= \6B; +668; <78B;, j=1,2,..,N—L
lwn| =1Anen| < Alen| < A6BN < r8BN.
So we have proved f(DV(68)) c DN (rép). :
 Lemma 4.2. Let QccyN be a pseudoconfue:c domain, g € H(2),9(0) = 0. Then there
exist g; € H(Q) j= 1 2 N such that 9(2) = Z z,gJ (z) | - |

Proof This follows 1mmed1ately from Theorem 5.3.1 of [8].
Lemma 4.3. Let Q@ C CV be a pseudoconvexr domain, g € H (Q). If the homoageneous
expansion of g at the pomt 0 has no terms with degree less than 2, then there ea:zst g,k €

H(Q),g, =1,2,. N such that g(z) Z z,zkg],k(z)
dk=1

Proof. Since g(0) = 0, Lemma 4. 2 is a,pphca,ble, ‘that is, Egj €H (Q), such that
9(2) = Zzagy (z) o | (4.1)
J=1 . ) ) : :

Now by the conditions on ¢ we kiow 525,;‘(0) =0, Vk=1,2,..,N. On the other hand, by
(4.1) we have

9g . 995, |
B -3 R
So gx(0) = 0. Again applymg Lemma 4.2 to gi;3gjx € H(L), such that

Z 2 gkj (z ' (4.2)

Combining (4.1) and (4.2) yields

g(z z z]zkgk](z

Jik= 1
Corollary 4.1. Under the conditions of Lemma 4.3, for any ' CC Q,3C > 0, such that
lg(2)| < Clal?. - - _,
Proof. This is trivial, since all the g;;’s are bounded on .

Proposition 4.1. Let @ ¢ CV,f € H(Q,Q),/™2) — a € Q. Then there ezists a
ne%ghbourhood V of a, such that f(V)Cc V' cc V.

Proof. Without loss of generality, we may assume 0 € Q and f™(2) — 0. Then we have
f(0) =0, and '

[DF(O)]™ = Df™(0) — 0.
So all the eigenvalues of D f(0) are less than 1.
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By Schur Theorem, there is a unitary matrix @ such that

Al Q12 @13 ... 0N

0 }\2 q23 oo 02N
ODfOQ=|0 0 A ... sy =M.

0 0 0 ... Ay

Let U = Q'(Q),Q = Q(U), and let g(2) = @ o f o Q(2). Then g € H(U,U), and
Dg(O) =Q Df(O)Q M,g(0) = 0, so the expansion of g at 0 is g(2) = Mz + G(z),
where G(z) has only the terms with degree larger than 1. So by Lemma 4.1, for any
r> A <1,38=(B1, ..., Bn), Bn < Br-1 < ... < f = KPy, such that
M5 DY) - DY(rp),
where A = max A1 < 1. L o

1<j<N

On the other hand, by Corollary 4.1, for some B(0, R) CC U,3C > 0, such that |G(2)| <
Clz|2. Now let ¢ = 15T, and let 8 = (B1,...,0n) be so chosen that Ay < Fpgz and
DN(B) c B(0,R). Denote G(2) = (g1(2), g2(2), ..., gn(2)). Then each g; is a holomorphic
function with terms of degree 1 and 0 vanished. So for z € DV (), we have

l9;()| < |G(2)] < Claf* < CNBY
= CN(KBn)* = CNKZﬂNﬁN ‘
o | <efy <eby. ”
So if we let g(z) = Mz + G(2) = (wl,wz,l..«, wp), then

gl < 785 + By = (r )65 = 22 < ;.

So
o(DN(8)) DN(“;%) cc DY (g).
Now let v o : ,
| v =Q¥@), v/ =a(» (”’”ﬁ)) ccv.
Then v oo : :

o f(V) =@ o f 0 QDN (8) = 4(DV(8))
»DN(I ; T“ﬁ) cc DY(B).

So f(V) C QDN (48)) =V’ cc V. This completes the proof
Now we are in a. posmon to prove our main Theorems 4.1 and 4. 2.

Proof of Theorem 4.1. The only when part is trivial, so we only prove the when
part. Suppose that f has the point a as its attracting ﬁxed pomt “that is, fm - @. Then
by Proposition 4.1 we have for some. nelghbourhood V. of a that f (V)c V' ccV. .

On the other hand, since f, — f, we can‘find an M > 0 and-a V" such that for all
n > M, the following holds: f,(V) C V" CcC V. Applying Theorem 2.1 to

GM,nEfM+1°"‘Ofn
onV ,one has Gyn(z) = c€V, VzeV. Now .

anflo"'ofMofM-l—lo"'of'n:GMOGM,n° '
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So ,
Gn(2) = Guc)=beQ, VzeV.

Finally, since  is taut, {G',} is a normal family. Let G be any limit of convergent
subsequence, G € H(R,{). Then the above discussion shows that G|y = b. So by the
Uniqueness Theorem we have G = b .This completes the proof.

Proof of Theorem 4.2. For the same reason as in the proof of Theorem 4.1, we need
only to prove the when part. All the same as in Theorem 4. L,av'ccV,M >0, such that
for all n > M we have

RVYcV'ccV, fVv)cV'ccV.
As in the proof of Theorem 2.1, we can get for some e < 1 that
Ky (fa(2), fa(w)) < eKv(z,w), Vz,weV.

Let

n=Jfn0 fa—100 fary1. .
Then _ , : S

Kv(Furn(2), Fryn(w)) < e"’”MKv(z w) =0, Vz,wéeV.

This means diamFs (V') — 0. So for any gwen convergent subsequence Fin;,3b €V such
that Fiy n;(2) = b, Vz € V. Since Q is taut, {Fqn,} is normal. The above result shows
that Fin,(2) — b for all z € Q. Consequently, F,,,(2) = Fyn; © Far(2) — b. Note that in
“the proof of Proposition 4.1 the neighbourhood V' of a can be arbitrarily small, so we must

have b = a. That is, F,,,(2) — o for any convergent subsequence, so F,(z) — a,Vz € Q.
The proof is finished.
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