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Abstract
This paper defines the upper capacity densities of the subsets of Hn , gets uniform lower 

bound of the upper capacity densities for 7̂ s-almost all points of the Hausdorff s-sets or the 
analytic sets with Hausdorff dimension s in RnV which improves the results of Wen Zhiying and 
Zhang Yiping’s paper in [1】 .
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§1. Introduction
The classic Frostman^ theorems show that the Hausdorff dimension and the capacity of 

a set are related. Wen Zhiying and Zhang Yiping^l introduced capacity density and studied, - . . . . .  '■ ....... i ... •the relation between the capacity density and the Hausdorff dimension. They defined the 
upper ^-capacity of E  at a point x as

D f(x) lim supr—0
C t(E n B r{x))

( u )

tE ,
Ct(Br(x))

and prove that dim{a; G E : D ^(x) > 0} =  s for any 0 < t < s if E  is an analytic set in 
Rn of Hausdorff dimension s. In this paper we first prove that Ct(Br(x)) = C(n, i)r*, where 
C(n, t) is a positive constant, so we can define the upper t-capacity density of E at t as

Ct( E 〇Br(x))Dt(E,x) lim sup-r—♦ 0 (2ry (1.2)

which differs from (1.1) by only a constant coefficient. We prove that Dt (Ej x) >  4~3(s—t)/s 
at 7is-almost all x e  E  for any 0 < i < s i f J S i s a  Hausdorff 5-set or an analytic subset of 
Rn with HausdorjBF dimension s, which improves Wang Zhiying and Zhang Yiping^ results 
in [1]. ,，

§2* Definitions and Notations
A Borel measure \x on Rn  ̂of compact support and with 0 < fx{Rn) < 〇〇, is called a mass 

distribution. The i-potential at a point x due to the mass distribution ^ is defined as
f  dfiM x) I x - y ^ (2.1)
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The i-energy of /x is given by
=  j  4>t{x)dix{x).

If E1 is a compact subset of the t-capacity of E, written as Ct (E)} is defined by 
Ct(E) =  sup{l//t(/i) : E  supports fi and fj>(E) ~  1}.

For an arbitrary subset E of Rn, define

(2.2)

(2.3)

Ct(E) =  sup{Ct(F ) : F  is compact, F  C E}. (2.4)
We define the upper i-capacity density of E at a; as

〇t{E ,x) =  l i msup— , (2.5)r—► 0 )
where Br(x) denotes the closed ball of radius r and centre x.

A subset JS of Rn is called an 5-set if E  is ^-measurable and 0 < HS(E) < oo, where Hs 
denotes the 5-dimensional Hausdorff measure.

The upper 5-dimensional Hausdorff densities of an 5-set jB at a point x e Rn are defined

《(尽X) = li= U严 (̂ ) 于-(吸
We denote the Hausdorff dimension of S  by dimE.

(2.6)

§3. The Capacity Densities and the HausdorffDimension of the S-Sets and the Analytic Sets in Rn■ ■' ： ■ '■  ■■■'■ ■ , . ：

.Lemma 3.1. Ct(Br(x)) =  Ct{B\{x)) * where ̂ the balls Br{x) and B\{x) are in Rn. 
Proof. Since i-capacities are translatiQnally invariable， we only need to prove

CL(5 r(0 ))：= a (执 (〇) ) • —•
For any mass distribution fjl supported by -Bi(O), we can define a mass distribution 

supported, by 5 r(0) as follows:
"(五  H / A  五')， (3.1)

where E  is any Borel subset of R n and
E f = {x : x y/r^ y G E}. (3.2)

Then
J \ x -  yY ^  JBr{Q) £ _  j, *r r

= i  /* < W )
~ rt JBr(〇) W -y 'Y

where is the i-potential oX x f ~  x /r  due to the mass distribution Hence
hifj) =  J MXW(X)

= r~f J ̂ t(x')dfj,'(x1) =
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Using (2.3) we get

Similarly we can prove that
^ ( 5 , ( 0 ) ) > ^ - ^ ( 5 ! ( 0 ) ) .

So

oo.

Q (B r(0)) =  Ct(S 1(0))-rt .
Lemma 3.2. Let Bi(0) be the unit closed ball of Rn, 0 < t < n. Then 0 < Ct(Bi(0)) <

I.
Proof! For any mass distribution /x on 5 i(0 ) with /^(J5i(0)) = 1, we have

dfi(y) > d ^ (y)

at all x  € Bi(0), so
J — yl1 ~ J 24t

It(^) =  f  (f>t (x)diJ,(x) > .
Thus CtiB^O)) < 2*.

For any Borel subset E of i?n, we define
m m iEoBtiO )) (3.4)

where m denotes the n-dimensional Lebesgue me'asUre. Then " is a mass distribution sup- 
ported by J5i(0)..and "(B i(0)).= 1.. For any point ;c〇 € B!(0), write 乂 =  _Bi(a;〇) iTBiXO), 
B  = 5 X(0)\A. Then

M y )M x 〇)

<

<

J Ixo-yl*
f  M v )

Jb1(〇) Ixo -  vl*
f  dm(y) | f

Ja k 〇-  2/P JB'}^〇̂ y \
dm(x〇 +

dm(y)

'a b f
/  4m(y') f
(a " F T  人

f  drn(y' ) =  
>Bi(0) WY

+  /  dm(y') Jb
dm{y')

|y’l*
♦ m .

Since m(Br(0)) = anrn, where an =  7T2n/( |n ) ! ,  we have
私 (〇)

dm(r) _  f 1 annrn—1

n
n

ept -dr

Hence

= nan/(n  — i).
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Finally we get
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a^co)) > i > n > 0 .It{n) ~ nan 
Combining Lemma 3.1 and Lemma 3.2, we get
Lemma 3.3. If Br(x) is the closed ball of Rn of radius r, 0 < t < n, then Ct(Br(x) ) =  

C(n,i)rt, where C(n^t) is a positive constant depending only on n and t.
Lemma 3.4. Any s-set contains a closed subset differing from it by arbitrarily small

measure.
Proof. See Theorem 1.6 in [4].
Lemma 3,5. If E is an s-set in Rn} then

2~s < D ht (E,x) < l
at H8-almost all x E E.

Proof, See Corollary 2.5 in [4],
Theorem 3*1. If E  is an s-set in Rn} then for any t such that 0 < i < s,

Wt(B ,x)>  —  .4-*  s
at Hs-almost all x & E.

Proof. Since E  is an 5-set, D ^(Eyx) < 1 at Hs-almost all x € E. Let ei > 0 and
W (E f] B r(x))

(3.5)

(3.6)

Fk x : x € E, (?r)5 < 1 +  £i for all r < fc'

Then \J consists of ^-alm ost all a: G Considering such that H S(F^) > 0, from k=l ooLemma 3.4 we know that there exists a sequence of closed sets Fki C Fk such that |J Fki
consists of 7i5-almost all a; G Ffc. We can assume that F̂% C -Ffe(i-i-i) and H8(Fki) > 0 for all 
L It is clear that

^ W氕五 nJ5r(〇0) y 4 一  
(2rY — ■ {2tY  -  ^ 1

at all a; € Fk% for all r < k~l . Using Lemma 2.5 we have
 ̂ Dhs(Fki,x )>2~s

at Ws-almost all x e  F^. Let x e Fki and Ds (Fki,x) > 2~s. Then there exists a sequence 
of r; decreasing to zero sucli that r; < (2A:)-1 邱 d fl 丑^ ⑷ ） 2  (2_s — e2 )(2 rj)s for
all j  =  1 ,2 ,3 ,… ， where S2 > 〇. For every Borel subset G of i?n, we define

7is( G n i ^ n g rj(a;)) 
n &(〇 ；)) ’

It is easy to see that ^ is a Borel measure supported by Fkif\Brj (x) and fi(Fkir\Brj (x)) = 1. 
Let a:’ € Ffcj n (®) and

mxf(r) = /j,(Br{x')).
Then Hs(Br{x')f)FkinBrj{x) ) .

~H s(Fkir\Brj{x))
( l +  £i)(2r)s

"(G) (3.7)

m x/(r)

< (2~s -  £2)(2^-)8 br3, (3.8)
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where r < 2rj and

Hence

l  +  6 l 1
2 - 多—

M x') dKv)J\ Ix'.-'y'l1'
J r̂dm̂ir)
' - t  v vl2̂ 'r m x>(r)

r*2ry.
+  t- / r~ t̂+1^mxi(r)dr 

〇+ Jo
> p2rj< b(2rj )s~t +  tb /  r ^ t+1)+sdrJo

where 

We get
b'=  l ^ £l ■ s ：r~K2~s - s 2 s - t

Hence
M ^ ) -  j  <t>t{x')diiix') < 1 /^

and
Ct (Fk in B r.(x)) >

Thus

c t (Fk in B rj(x) ) 、 1 1 

(2^)* ~ b' 2*.

> 2~~s — £2 s - t  
1 + £1 s

Since e± and 62 can. be arbitrarily small, we get
D~tiE,x) > s — t 1

s 4s
Since such a point x  makes up 7is-almost all points of E, we finish the proof. 

Let Or(x) be the open ball of radius r and centre x. We define
C t(E n〇r{x))

Then we have
Lemma 3.6* If E  is a subset of R nf then

_ , (Dt(E^x) — limsup-

D't{E ,x)^-D t{E,x)
at any x G Rn •

(3-9)

(3.10)

(.3.11)

t3 .1 2 )

(3.13)
.：•.

(3.15)

(3.16)

(3.17)
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Proof. It is apparent that Dt(E^x) > D ft(E,x). Let ri be a sequence of radii decreasing 
to zero such that

v C t(E n B rj(x)) _
1^0— ■( 2 n f - ~  ^  Dt^ x )-

Let =  (1 +  e)r^ where e >  0. Then Orj(x) D Bn (x), so
tV /i? 、 r Ct(E n Orf (x)) P <(E ,,)  =  hmsup........

> 1; Ct(E n Bri(x))
- 以 （2ri”(i +  e)f:

1 —Dt(E，x).
Letting e — 0, we have

( 1 + 沙

D't{E,x) >Wt{E,x)

(3.18)

(3.19)

(3.20)

D't (E ,x) = Wt(E,x). (3.21)
Lemma 3,7. Let E  be a subset of Rn- Then
(a) C t(E D〇r(x)) is a Borel-measurable function of x for each r;
(b) Dt(E,x), which equals Dft (E ,x), is a Borel-measurable function of x.
Proof•⑷  Given r > 0， a > 0, write

F — {x : Ct(E  fl Or(x)) > a}. (3.22)
Let x € _F. Prom (2.4) we know that there exists a compact set 五怎 such that 五尤 C J5flC?r(a:) 
and Ct(Ex) > a. Let

6X =  sup{|a；i ~  x2\ ： xi e Ex  ̂ \x2 -  x| — r}. (3.23)
Since Ex and {x2 ： \^2 — x\ — r} are two disjoint compact sets, we have Sx > 0. Let

Fx =  {y ： \ y - ^ \  < ^ /2 } . (3.24)
Then Or(y) D for any j/ € 見 ， so jÊ  C £* n 队 ⑷  and

Ct( E n 〇r(y))> C t(Ex)> a .  (3.25)
Hence we have y e so F is an open subset of Rn. This is true for all a:, so we conclude 
that Ct(E  fl Or(x)) is a Borel-measurable function of x for each r.

(b) Using part (a), we see that
{ x :C “ £；n a ( a 〇) > a ( 2 r f }

is open. Thus for two given positive integers m  and n,
== : C“ 五，D〇r(x)) > ( a +  for some r < 士 } (3.26)

is the union of such sets and so is open. Now
〇〇 op

{x:D 't (E ,x) > a} = u 门 Fmn. (3.27)
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Hence {x : d [>  a} is a Borel set for each a, making D^E^x) a Borel-measurable function 
of x.

In Euclidean space Rn, analytic sets are Souslin sets, so we have the following 
Lemma 3.8, I f E is an analytic subset of Rn with Tis(E) =  oo, then E  contains an 

s-set
Proof. See Theorem 5.6 in [4].
About analytic sets we have the following
Lemma 3.9. The analytic subsets of Rn are measurable under Hausdorff measures. If 

E is a Borel subset of Rn， then E  is an analytic set. If E i，E2 ， . • • are analytic subsets ofOOR \  then f] Ek is an analytic set.
Proof, See [2].
Now we can prove the following result .
Corollary 3.1. If E is an analytic subset of Rn with dxmE =  5, then for any t such that 

0 < t< s ,
(3.28)

at Hs-almost all'x G E.
Proof. It is apparent that the corollary is true if H^(E) =  0. If 0 < H3(E) < oo, then it 

is the case of Theorem 3.1. We assume HS{E) =  oo. Let
A = ^ x : x e E  and D t(E} x) > -~ ^  •去 } ， (3.29)

B  = £J\A and Bf = Rn\A. (3.30)
Using Lemma 3.7 we know that A is a, Borel set, so B l is a Borel set. Thus from Lemma 
3.9 and the fact that B = B f n E, we know that B  is an analytic set. If 0 < H3(B) < oo, 
then from Theorem 3.1 we have

Wt (E ,x )> W t( B ,x ) > S- ^ - ^  (3.31)
at ?i4-almost all x € B A i H3(B) =  oo, then using Lemma 3.8 we can get a subset Fq of B 
such that Fb is an s-set. So we get also

A (迟,〇：) 2  2  ^  ^  (3.32)
at W5-almost all x S Fq- Both the above cases contradict the definition of the set A, so we 
have W {B ) — 0, which completes the proof.

Using Theorem 3.1 and Corollary 3.1 and the fact that Ct{E) =  0, if ^ ( E )  < oo we get 
immediately the following .

Corollary 3.2. I f the subset E  of R n is an s-set or an analytic set, then
dimE =  su p {t: Dt (E^x) ^ 0  f o r x e  Rn} (3.33)

= ird {t: D t(Ey x) ~ 0  f o r x £  Rn}. (3.34)
Corollary 3.1 and Corollary 3.2 improve the results of [1].
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