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~"THE CAPACITY DENSITY AND THE
HAUSDORFF DIMENSION OF FRACTAL SETS

Xu You* -
Abstract

This paper defines the upper capacity densities of the subsets of R™, gets uniform lower
bound of the upper capacity densities for H*-almost all points of the Hausdorff s-sets or the
‘analytic sets with Hausdorff dimension s in R™, which improves the results of Wen Zhlymg and
Zhang Yiping’s paper in [1]. : : :
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§'1., Introduction

The classic Frostman’s theorems show that the Hausdorft dlmensmn and the capacity of
a set are related. ‘Wen Zhlymg and Zhang Ylpmg[l] introduced capamty den31ty and studied
the relation between the capacity density and the Hausdorff dimension. They defined the
upper t-capacity of £ at a pomt T as :
—F ) Ct(E N BT(ZE)) o
D z) = hm SUp———=——" 1.1
t ( ) r—+0p Ot(Br(il?)) ( )
and prove that dim{z € F : Ef(w)> 0} = s for any 0 < ¢t < 8 if-E is an analytic set in
R™ of Hausdorff dimension s. In this paper we first prove that Ci(B,(z)) = C(n, t)r?, where
C(n,t) is a positive constant, so we can define the upper t-capacity density of E at ¢ as
— ) Ci(E N B.(z)) '
Dy(E, z) = limsup———— 1.2
t( ‘ ) r—0 P (zr)t ( )
which differs from (1.1) by only a constant coefficient. We prove that Dy(E, z) > 47°(s~1)/s
at H*-almost all z € E for any 0 < t < s if F is a Hausdorff s-set or an analytic subset of
R™ with Hausdorff dimension s, whlch improves Wang Zhiying and Zhang Yiping’s results
m [1].

§2. Definitions and Notations

A Borel measure u on R®, of compact support and with 0 < u(R") < oo, is called a mass
distribution. The t-potential at a pomt z due to the mass distribution p is deﬁned as

o .
b= [ 2.1)
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The t-energy of u is given by

Ii(w) = [ #ea)du(o). 22)
If F is a compact subset of R", the t-capacity of F, written as C;(E), is deﬁned by
- Cy(E) = sup{1/I(p) : E supports y and ,u(E) = 1}. (2.3)
For an arbitrary subset FE of R", define
Cy(E) = sup{Cy(F) : F is compact, F' C E}. (2.4)
We define the upper t-capacity density of E at z as
Ci(EN B,(z))

Dy(E,z) = llr:ljgp———(27);—,

where B; (z) denotes the closed ball of radius r and centre .

A subset E of R™ is called an s-set if E is H-measurable and 0 < H*(E) < 00, where H?*
denotes the s-dimensional Hausdorff measure. '

The upper s-dimensional Hausdorff densities of an s-set F at a point £ € R™ are defined

(2.5)

as :
—h . HE(E N B,(z))
D,(E,z)=1 .
s ( z ) lglj(l)lp (2’7‘)‘9
We denote the Hausdorff dimension of F by dimE.

(2.6)

'§3. The Capacity Densities and the Hausdorﬁ' o
Dlmensmn of the s-Sets and the A.nalytlc Sets in R~
Lemma 3.1. Ct(Br(a:)) Ct(Bl(a:)) -7t where ithe balls B,.(a:) and By(z) are in' R™.
Proof. Since t-capacities are translationally invariable, we only need to prove
_ CL(B,‘(O)) = Cy(B1(0)) - .

For any mass distribution u' supported by B1(0), we can define a mass distribution p
supported by B,(0) as follows: R SR
o W(E) = i (E'), I (3.1)

where E is any Borel subset of R™ and
E'={z:z=y/r, yc E}. | - (3.2)
Then ‘ | |
du(y 1 du(y)
b= [ -2 :
|z -y B.0) |2 _ ¥
L[ )
7 JB.0) [2' — Y[
'~¢t(w,):

where ¢}(z') is the ¢-potential at =’ = z/r due to the mass distribution w. Hence

Li(w) =/¢t m)dl«‘(m
mﬂfaeMMﬂ=f%W%-
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Using (2.3) we get
Ct(B,(0)) > r* - Cy(B1(0)).
Similarly we can prove that _
Ci(B1(0)) 2 r* - Cu(B,(0)).
So '
Ce(B,(0)) = Cy(B1(0)) - r*
Lemma 3.2, Let B;(0) be the unit closed ball of R™, 0<t<n. Then0< Ct(Bi (O)) <
0. _ S
Proof. For any mass distribution & on B;(0) with u(B;(0)) = l,lwé- have

)= [ [ By

eyt =/ 2

¢

at all z € By(0), so

| 1w = [ e)du(o) 2 2
Thus C;(B;(0)) < 2t
For any Borel subset F of R", we deﬁne
m(E N B1(0))
E B e
| uE) = m(B1(0)) - |
where m denotes the n-dimensional Lebesgue measure. Then 4 is a mass distribution sup-
ported by B1(0) and pu(By(0)) = 1. For any point zo € B;(0), write A = By(zg) N 'B1(0),
B = B4(0)\A. Then

| ?I(3.4)

_ [ 9uy)
(o) = lzo — ylt

_ / du(y)
By (0) 10 — Yt
_ [ dm(y) dm{y)
= /A 20— oF */B 2o~y
dm(aco +v;)
< [ / dm(y)

S/Adﬁ(lyt)“L/A lyit

[ dm(y) _
—/31(0) |y/f? =4:0)

Since m(B,(0)) = a,r"™, where a,, = 7r2"/( n)!, we have

2,(0) = /0 dm(r) _ /0 “—Lid

rt rt

Hence

() = / ¢t(fv)du(w / £4(0)du(z)

= na,/(n — t)
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Finally we get

1 S M= t
I, (/") T nap

Combining Lemma 3.1 and Lemma 3.2, we get

Lemma 3.3. If B.(z) is the closed ball of R™ of radius v, 0 < t < n, then Cy(B,(z)) =
C(n,t)rt, where C(n,t) is a positive constant depending only on n and t.

Lemma 3.4. Any s-set contains a closed subset differing from it by arbitrarily small
measure. ,

Proof. See Theorem 1.6 in [4].

Lemma 3. 5 If E zs an s-set in R™, then

e <! (B,2) < 1 | (3.5)

Ci(B1(0)) > —— > 0.

at H®-almost all x € E.
Proof. See Corollary 2.5 in [4].
Theorem 3.1. If E is an s-set in R", then for any t such that 0 <t < s,
Di(B,z) > 2 47 (3.6)
at H*-almost all z € E. |
Proof. Since E is an s-set, Dr s(E,r)<1lat ’H"-almost all z € E. Let €1 > 0 and

H2(E N B.(x))
. =1z 22 <1 f Ir<k”
Fk {a: z€E, @ s -I—sl orallr < }
Then U Fj; consists of H*-almost all z € F. Con31der1ng Fy, -such that H*(Fy) > 0, from

k=1
Lemma 3.4 we know that there exists a sequence of closed sets Fy; C Fj, such that U Fi;

cons1sts of H?-almost all z € F;. We can assume that Fy; C Fk(z+1) and H*(Fy;) > 0 for all

1. It is clear that
H*(Fy; N By (a:)) < H“’(E N Br(:c))

(2r)s = 1 (2r)
at all z € Fy; for all r < k~1. Using Lemma 2.5 we have
-ﬁh(Fk@,w) >27°
at M*-almost all z € Fy;. Let € Fy; and D (sz, z) > 27*%. Then there exists a sequence
of r; decreasing to zero such that r; < (2k)~! and H(Fyi N Br;(z)) > (27° — €2)(2r;)® for
all j =1,2,3,---, where € > 0. For every Borel subset G of R", we define
UG = H*(G N Fr; 0 By (2))
HS(FM N BrJ (ZB)) .
It is easy to see e that 1 is a Borel measure supported by FriNBr,(x) and 1(FyiN By, (z)) = 1.
Let ¢’ € Fy; N Br;(x) and :

<l4ée

(3.7)

Mg () = #(Br_(w'))-
Then S
_ H*(Br(2') N Fi; N B, (z))
mml_(r) _— Hs(Fki ﬂ.B,-j (a;))
(e
S @ — )y

= br?, (3.8)




at any x € R™.
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where 7< 2r; and - . o
_ 1+e 1 o "
b= @9
Hence .
du(y)
/
¢t(m) /Iml y lt
/ talmgc (r)
1’". .
= [r My (r)] it / r~ g (r)dr
0
< b(2r; )$ e tb/ "(t+1)+“’dr
8 _ ~ b : A
=bs_t(27~,) t-—b’ b (3.10)
where ‘
14 8 o
= 298t 9.
= b (3:11)
We get I
Ty(w) = l/,qst(x'_)du.('x,')' <yt (3.12)
Hence AR
1.
- Ct(sz ﬂ Br_., (ZB)) Z '6— J ‘ (313)
Ci(FeiNBpy(z)) (1 1 o
> ==,
(2r,)t A
Thus e
EnB (a:)) Cy(Fii N By, (z))
firdi 4u -—?—(——-———————— > limsu ! o
ror @ r.fop, @)
2 ¢ €2 8- t o,
T (3.14)
Since &; and e, can be arbitrarily small, we get S
s—t 1. . .
- DiE, :c) 5 ” . (315)
Since such a point z makes up ’Hs-almost all pomts of E we ﬁmsh the proof
Let O,(z) be the open ball of radlus 7 and centre . We deﬁne
' _ Cy(E N O,(x))
D,(E, z) llI:lj(l)lp IR (3.16)
Then we have S
Lemma 3.6. If E is a subset of R", then _ o
Dt(E z) = Dt(E m) (3.17)
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Proof. It is apparent that D;(E,z) > D,(E, z). Let 7; be a sequence of radii decreasing
to zero such that '

. C{(EN B, (z))
111—1»1%) (27'1;)t
Let r} = (1 + ¢)r;, where € > 0. Then Or;(z) D Br,(), s0
Cy(E N O,(z))
Di{E) = imow =Gy
Ce(E N B, (x))

= Di(E,z). | (3.18)

>
2 M G+
1
= T Dt(E x) (3.19)
Letting € — 0, we have
Dy(E,2) > Dy(B,a); (3.20)
SO
Dj(E,z) = Dy(E, ). (3.21)

Lemma 3.7. Let E be a subset of R*. Then
(a) Ct(E N O,(z)) is a Borel-measurable function of x for each r;
‘(b) D¢(E, z), which equals Dy(E, z), is a Borel-measurable function of z.
Proof. (a) Given r > 0, a > 0, write
F={z:C(ENO,z) > a}. C(322)

Let z € F. From (2.4) we know that there exists a compact set E, such that E, C ENOr(z)
and Cy(E;) > . Let

8 = sup{|zy — 72| : 21 € Ey, |zo — x| =r}. (323)
Since E, and {z; : |z — x| = r} are two disjoint compact sets, we have 6, > 0. Let
| Fy={y:|y—z|<6:/2}. (329
Then Or(y) DE, forany y € F;,s0 E; C Evﬂ O,(y) and
Ci(E N O (y)) > Ci{Ez) > a. (3.25)

Hence we have y € F, so F is an open subset of R". This is true for all o, so we conclude
that C,(E N O,(z)) is a Borel—measurable function of z for each r.
(b) Using part (a), we see that

{z : C4(ENO,(z)) > a(2r)}
is open. Thus for two given positive vi.ntegers m and n,
: 1 1
Fon = {w : C¢(E,NO.(z)) > (a + ;)(27‘)t for some r < H} (3.26)

is the union of such sets and so is open. Now

(z:D)(B,z) > a} = U ﬂ Frn. (3.27)

n=1m=1
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Hence {z : D, > a} is a Borel set for each o, making D,(E, ¢) a Borel-measurable function
of z. , ‘ . : o
In Euclidean space R", analytic sets are Souslin sets, so we have the following
‘Lemma 3.8. If E is an analy__zﬁ'z'c_'subset'c)f R" with H*(E) = o0, then E cohtaz’hs an
s-set. R : : L

Proof. See Theorem 5.6 in [4].

About analytic sets we have the following _

Lemma 3.9. The analytic subsets of R" are measurable under Hausdorff measures. If
Eisa Boggl subset of R™, then E is an analytic set. If Ey,Eq, - are analytic subsets of

R™, then [ E is an analytic set.

k=1
Proof. See [2].
Now we can prove the following result.
Corollary 38.1. If E is an analytic subset of R™ with dimE = s, then for any t such that
O<t<s,
s—t 1

Di(E,7) > *= - & (3.28)

at H®-almost all'z € E.
Proof. It is apparent that the corollary is true if H4(E) = 0. If 0 < H*(E) < 0, then it
is the case of Theorem 3.1. We assume H*(E) = oo. Let
— s—t 1-
A= {a:.wEE and Dt(E’x)ZT'Zs}’ (3.29)
B=FE\A and B'=R"\A. : (3.30)

Using Lemma, 3.7 we know that A is a Borel set, so B’ is a Borel set. Thus from Lemma
3.9 and the fact that B = B’ N E, we know that B is an analytic set. If 0 < H*(B) < oo,
then from Theorem 3.1 we have

—_ —_ -t 1

Dy(E,z) > Dy(B, z) > f—s—- = | (3.31)
at H*-almost all z € B. If H*(B) = oo, then using Lemma 3.8 we can get a subset Fig of B
such that Fg is an s-set. So we get also

—_ — -t 1

Di(E,z) > Di(Fz,7) > S—-s— > (3.32)
at ‘H®-almost all z € Fg. Both the above cases contradict the definition of the set A, so we
have #*(B) = 0, which completes the proof. '

Using Theorem 3.1 and Corollary 3.1 and the fact that C;(E) = 0, if H}(E) < oo we get

immediately the following

Corollary 3.2. If the subset E of R™ is an s-set or an analytic set, then

 dimE = sup{t: Dy(E,z) #0 for z € R"} (3.33) -
=inf{t: Dy(E,z) =0 for € R"}. (3.34)

- Corollary 3.1 and Corollary 3.2 improve the results of [1].



GHIN. ANN. OF MATH. B v - Vol.16 Ser.B~

50.
‘REFERENGES - -
[1] Cheng Guangyu et al., Fractal theory and its application, Sichuan Umversxty Press, Chengdu, 1989.

(2]
(3]
4
(5]
(6]

Cohn, L., Measure theory, Birkhauser, Boston, 1980. .
Davies, R 0., Subsets of finite measure in analytlc sets, Indagatzones Mathematzcae, 14 (1952) 488 489

"Falconer, K. J Thé geornetiy ‘of fractal sets, Cambridge University Press, 1985.

Rogers, C. A,, Hausdorff measure, Cambridge Univesity Press, 1970.
Rogers, C. A. et al.,, Analytic sets, Academic Press, New York, 1980.



