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OCCUPATION TIME PROCESSES 
OF FLEMING-VIOT-PROCESSES**
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S.uppose that X t is the Fleming-Viot process associated with fractional power Laplacian 

operator —( - A ) Q/ 2 0 <  a  <  2, and Yt =  I^ Xads is t ie  so-called occupation time process.
In this paper, the asyihptotic behiaviot at a large time ^ d  th  ̂ kbsbliite continuity of 5̂  are 
investigated. ‘ . 丨.

K e y w o r d s  Fleming-Viot superprocessj- Occupation time process, Asymptotic behavior, 

Absolute continuity.

1 9 9 1  M R  S u b j e c t  Classification 60G57j 60K35.

§l〇 Introduction
Fleming a n d  Viot (1979) introduced a  probalpility-m^asyj^-valupd Markov'process m  a 

variation of a m o d e l  for the distribution of allelic frequencies in a selectively neutral ge

netic population. Following previous authors (cf. D a w s o n； D y n k i n ) / w e  refer to this：!kind 

of nieasure-valued processes as Fleming-Viot superprocesses (for short, FV-superprocesses). 

For the study of FV-superprocesses, D a w s o n  a n d  Hochbergt^ introduced useful techniques. 

T h e y  obtained s o m e  results o n  local structure a n d  qualitative behaviors of a class of F V -  

superpirocessses. In this ^aper, 6iar interest is in the occupation time pro^sses, the counter- 

pairt processed of DW-sujierprocesses have been extensively studied by iriany authors (for 

example, I. Iscoe^7,8^ J. T. C o x  a n d  D. Griffeathf1^  K. F l e i s c h m a n n ^ , and Sugitanil1^). W e  

shaill1 investigate the asyinptotii： behaiviors at a large time, a n d  motivated by Stigitamt11! w e  

consider the absolute continuity of the occupation tiine" processes!

In comparison with DW-superprocesses, F V - s u p e r ^ ^  are m u c h  m o r e  difficult to

deal with. In fact, that DW-superprocesseis aî e deterrdiiieid b y  Lapliacian transforms enables....... ， . .  •
us to use m a n y  existing results a n d  tools in analysis, but most of t h e m  are invalid for F V ^  

superprocesses. O n e  of the maiid dijBScuItifes in th!is piaper is to'bound the MgK-order xnoments 

for the occupation time processes of FV-superprocesses, while for DW-superprdcesses, it can 

be easily induced b y  Taylor^s expansion into power-series (cf. [11]). This forces us to find a 

n e w  w a y  to iapproach our goals.

This paper is organized as follows. In Section 2； w e  will briefly review the foundations 

of theory of FV-superprocesses which is established by Fleming and Viot, D a w s o n  a n d
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Hochberg. Section 3 introduces the related occupation time processes a n d  presents our 

m a i n  results, their proof can be found in Section 4 a n d  Section 5. In Section 6, w e  will give 

s o m e  remarks.

§2. Preliminary Notations and Results
W e  begin with considering S^=Rd U  {〇〇}, the one-point oompactification of i2rf, B(S)^ the 

a-algebra of Borel subsets of 5, a n d  the space M\{S) of probability measures on S furnished 

with the topology of w e a k  convergence of probability measures. M\{S) serves as the state- 

space for FV-superprocesses. Let Cl =  C([0,oo),Mi(S)), the space of functions m a p p i n g  

[0, oo) into Mi(S) that are continuous. W e  consider the canonical process X  :[0,〇〇) x Cl 

Mi(S) defined by ~  A )  for A  e B(S), u  € >  0. T h e  distribution of

FV-superprocesses J T  is determined by a m a p p i n g  firom Mi(S) into, the space of

probability measures o n  Q, a n d  G  Mi(S)} satisfies the conditions

P^(X(0) = î) =  l { (2.1)

a n d  for ip e
t .

L^(X(s))ds (2.2)

is a P M-martingale for each n € Mx(S), where L  is a linear operator defined on the linear 

subspace T>{L) of C(Mi(S)) an d  has the form

Lipifi) =  /  A(6kf;(ii)/6iJ,(x))fj,(dx) +  [ f  : dx x dy), (2.3)
Js JsJs

where S^fj^/S^x) ~  liig( 蛉 结 2■) — Q  * 'Mi(S) M\{S x  S) (quadratic fluctua

tion functional), A  is the infinitesimal generator of a strongly continuous M a r k o v  semigroup；.
o n  <7〇(-Rd), the spac^ of continuous functions o n  R d which vanish at oo, a n d  Sx reipresents a 

unit m a s s  at the point x E R d (see [6, 2, 10]). W e  note from [6] that Xt is a path continuous 

Feller process. • . : : . .. ' ,-i.
Supp o s e  Q  {ii: dx x  dy)- = (̂/j,(dx)Sx(dy)-iJ,(dx)fi(dy))aTid A  =  - ( - A ) f  (0 < a <  2), the 

fractional p ower of the Laplacian operator which generates the contraction semigroup of 

a symmetric stable process. In this case, w e  can take the value space of FV-superprocesses 

to b e  Mi(Rd)} the family of probability measures on R d. It is a convolution" operator: 

p̂ (/>(x) =  JRd pf(x -y)4>(y)dy, (j) e  C(Rd).

Various properties of the density which can be found in [4] or [8] are as follows: 

L e m m a  2.1.

1) For 0 <  a  <  2, t > pf is smooth, symmetric and unimodal

2) For 0 < a  <2, t > 0 } x & R d}

pf(tl̂ ax) — t~d̂ api(x).

3) For 0 <  a  <  2, x E R d, with \x\ > 1

c
Pi(^) < \x\d̂ a '

c > 0  a constant depending on a.

(2-4)

(2.5)

For a =  2, x € R d, p\{x) =  (47r)~d/2 exp(—x 2/4).
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Following D a w s o n  and Hochberg, w e  define the nth m o m e n t  measure M n (s,X(s); 4 

dxî  • • * , dxn) which is a probability measure o n  Sn and satisfies the equality

p s 1X (s ) (n  他，& 〉）== ， … /  ^ ( 心）.•.必n(〜 )Mn(s，A ■ ⑷ ;  
s Js

where <f>i G C(S)^ i =  1,2, • • • n\ (/, m ) =  f fdm  for any function /  a n d  inteasure m.

Let y(j>n 6  =  (^1 ?/̂ ) *' * (see [l2]). 1?hen, frorri the defined

martingale p roblem for the Fleming-Viot superprocess, it follows that

n n
洲 = n 队，耶 )〉- n 他，x ⑷〉

- A E  I I  ( ^ X ^ l A ^ . X i u ) )  (2.6)

+e e n (ct>k>X(u))[(<l>j(t>hX(u)) -  ( ^ ^ ( u W ^ X i u ^ d u
j—1 k̂ lyk̂ ij

is a  P^'martingale for every ft a n d  0 < s <t. T h e n

命j(X j)M n(s、X ( S ) 't  •• dxv • • dxn)

n 〈̂，x⑷〉+ 广 / … / (e { n 如 ⑷ 郜 也 )}
J=1 Js Js Js J=1 k=l,k̂ j

1 n
- -n(n -  1) JJ^(f>j(xj)jduMn(s,X(s);u : dxi • ■•dxn) (2.7)

n  n  n

s J S
ip} k^j

k̂ lyk̂ j

This implies that M n(ŝ  M ；. ： .) satisfies the following system of partial differential equations 

in the w e a k  sense:

d M n( t : d x i,- * * ^dxn)/d t  

n 1
= y ^ AiMn(t: dxXl • • • ,dxn) -  - n ( n  -  l)Mn(t: dxu • ■ * ,dxn)

+  n  dxp )S(xi ~ xj) (2.8)
i~ l  j= l  jV i p = l，p#i

n
with the initial condition M n (s;dxi，...，cten ) =  [| X(s^dxi). T h e  initial-value problem 

given b y (2.8) can be solved successively for n  =  1,2,3, • • • a n d  t > s as follows:
n

M n(s,X(s)]t :dxi,--- ,dxn) -  kt-s * (2.9)

n E  E  /  ^ [-̂ n̂—1 (5, (占) , ,  • • • ， 一x) ； * * * j — )]</u，

■ j= h j  爹 i Js
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where * denotes the convolution a n d
• Tii

,xn ) =  JJp^(a;i)exp^-
n(n — 1).

R e m a r k .  T h e  implication above is adopted from ([2], p.563), in which A  =  A .  S o m e  

typing errors in formulas (6.8), (6.9), a n d  (6.11) in [2] are corrected in (2.6), (2.7), a n d  (2.9) 

respectively. Particularly，from (2.9) w e  have

TLemma 2.2. For £ b(Rd)} the family of bounded Borel measurable functior̂ s on

R af we have

+  [ e ^ i f i P ^ P ^ i P ^ s ^ d s .

(2.10)

(2.11)

.• ■ ： •§3. Main Results
B y  the regularity of sample path of X i} the integral Yt =  /〇* X sdŝ  t > 0 exists a.s. and

defines a measure-valued process { K ,艺 2  0 }，the occupation time process (associated to JQ.* * * * * ■
Obviously, Yt has properties as follows:

P r o p o s i t i o n  3.1, Yf；, P^Yt are path-continuous in t，and for any t 2 0, Yt(S)=' . . . .  ： . i
P^Yt(S) ~  t. Moreover^ P^Yt is absolutely continuous with respect to Lebesgue measure 

(say A). Denote by nt(x) the density of P^Yt: Then

t  f  ds f  p3(x，y)X(0，dy). - (3.1)
Jo Js

T o  the first a n d  second m o m e n t s  of the r a n d o m  measure y<, w e  have 

P r o p o s i t i o h  3.2. For any <j> £ bB, t > 0 } fi G Mx(S) and 0 < s < t r we have

. : 严 〈m ，妁 = / % ，■ 〉耙 (3:2) 、

P^(Yt - Ys,(l>)2 =  2 dr d u e ^ ^ ^ P ^ )
J S J 8

+ 2 f  d r「 du f  dve-一 (3.3)
J 8 J S J 0

Proof. 1) is obvious, w e  only need to prove 2). Consider

f t  pr ,
P ^ Y t - Y s ^ ) 2 =  2 dr duP^{Xr,(j>){XuA)

J 8 J S

= 2  /  dr f duP^^u^P^L^iX^cf)) (by M a r k o v  property an d  (2.10)). 
Js . Js

C o m b i n e  with (2.11), this follows (3.3) as desired.

Proposition 3.1 shows that-(S') —> oo as i -> oo. Furthermore, b y  the increase of 

w e  k n o w  that for any ope n  set G, with probability one, Yt(G) converges as f —> oo. So an 

interesting question prises, that is, w h a t  is the local behavior of Yt as t — oo? T h e  following 

theorem partially answers this question.
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T h e o r e m  3,1. (a) For d > with probability one, Yt vaguely converges to some cr-finite 

measure Y〇〇 on R d, and P^Y〇〇 also is a a-finite measure which is absolutely continuous 

with respect to (w.r.V，for short) X. Denote the density by n〇〇. Then n〇〇 is a.e. finite w.r.t, 

A and given by • . . . . . . . . .  . . . .  . ' - ■ : ：
n〇〇(x) = j  G a(x,y)X(0,dy), (3.4)

v S
• . , - 

where G a{x\y) =  Ĵ °Ptix ŷ)̂ t is the potential kernel of semigroup P^. Especially when

a = 2, G2(x , y) =  -  y\2~ d-
(b) For d < a f we have for any fj, S  M\(Rd)

where

黑 發 截 咖 ，

7 ⑷

logt, .. d/a == 1, 

d/a<l.

(3-5)

(3.6)

W e  will prove this theorem in Section 4.

A  typical interesting question for a measure-valued process is whether the r a n d o m  measure 

is absolutely;continuous w.r.t. Lebesgue measure A. In fact, this kind of questions has been 

studied b y  m a n y  authors (cf. K o n n o  an d  Shigal10^  S. Sugitanit11', and K. Fleischmann^l,

etc.) for DW-superprocesses a n d  FV-sup^rprocesses. In case of d =  1 a n d  1 <  cn <  2, K o n n o  

a n d  Shigaf1〇J proved that X t (t >  0) is absolutely continuous w.r.t. A. O n  the other hand, 

D a w s o n  a n d  H o c h b e r g ^  sh o w e d  that if a =  2, d >  3y;Hausdorlf-Besicdvitch dimension 5f 

carrying sets of the corresponding FV-superprocess is less than or equal to 2^ that is, the 

r a n d o m  measure is singular. Here, our interest is in the absolute continuity of W e  have 

T h e o r e m  3.2, Assume d < 2a and Mi(Rd) which satisfies  ̂ ^

I^P^(x — ©) is jointly continuous in (tyx) £  [0, oo) x  R d. (3.7)

Then there exists a family of nonnegative random variables {Y(t}x)y t ^  ^  ^  R d} such

that the following 1) and 2) hold

1) Y{t^x) is jointly Holder continuous m  i >  0 and x E R d with order less than (2 —

々 a ) 八 ( a - 々 2 ) 八 1/2,

2) For every <!> 6 Ctc(Rd) > 0, =  fRdY(t，x)构 c)dx.

This theorem will be proved in Section 5.

§4〇 Proof of Theorem 3。1
W e  shall prove the theorem b y  the following lemmas. For simplicity, w e  will not distin

guish constants if no confusion arises. Denote b y  B(0, r) the ball of center at 0 with radius 

r.

Lemma 4.1.
P f lB(〇jJ.)(a;) < const, x e R d, (4.1)

where the constant depends on r, d, and a. Moreover^ G a(x,B(0,r))^= PtalB(o,r)̂ t < 

const. < oo if d > a.
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Proof. B y  the L e m m a  2.1, p f  is symmetric a nd unimodal. H e n c e  

Pta lB(o,r ) ( x ) =  f  P ? ( x  -  y ) d y

= f  -  y )) d y  ( by L e m m a  2.1 , 2))
JB (〇 ,r)

pr p rt~ x̂ a
S  const. / 一 一 S  const. / u d~ lP i ( u ) d u

Jo Jo

<  const. Pi (0) / ud~ldu <  const.
Jo

This immediately implies G a (a:,S(0,r)) <  const. <〇〇 ifd> a.

L e m m a  4.2* Assume d > a, with probability one, Yt vaguely converges to a random 

a-finite measure F〇〇 on R d. Moreover, the formula (3.4) holds.

Proof. Obviously, vague- lim Yt exists from the increase of It, YoofS) =  〇〇' a n d  almost
亡一►〇〇

surely ̂ 〇〇 is a measure o n  (RdyB(Rd)) from the c o m m o n  arguments a n d  measure extension 

theorem. Therefore, w e  only need to check the cr-finiteness of Y 〇〇. For r >  0,

consider

r)) =  /  ds f ii{dx) f p 二(x - y、dy =  f  î (dx) f  ds f  dyp^(x-y)
Jo /丑(0，r) Js! Jo JB(Otr)

<  f  f i ( d x ) G a ( x 1 B ( 0 , r ) )  <  oo,
J s

that is, almost surely Y 〇〇{ B ( Q , r ) )  is finite. F r o m  this w e  can prove that Y 〇〇 is cr-finite. 
Repeating above computation, w e  can easily verify (3.4) by the dominated convergence

theorem.

So far, w e  have proved assertion (a) in T h e o r e m  3.1. T h e  rest of this section is devoted 

to proving (b).

L e m m a  4.3. For d < a and a fixed ball S(0,r); we have

P^Yt(B(0j r)) <  const. 7 (t), for t > 0 large enough  ̂ (4.2)

where the constant depends on a, d and r ; and 7 is given by (3.6).

Proof. F r o m  Proposition 3.2 1), w e  have

P ^ ( 5 ( 0 , r ) ) - P ^ r 2( B ( 0 5r)) f  P s ( x ~ y ) d y
J B(0,r)

< [ f p^(x)dx (by the unimodality of p^)

<  const. s ~ d^a ds (by L e m m a  4.1)

<  const •{
lo g t ,  d / a  = 1 , 
t i~d/a^ d / a < l .

Since Y2 is finite, for t >  0 large e n o u g h  formula (4.2) holds, a n d  the proof is complete.

L e m m a  4A, Assertion (b) in Theorem 3.3 is true. 

Proof. At first, w e  remark that

td̂ apf(x) — < P i (0) <  00. (4.3)
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Therefore, for an y  /  e  BC(Rd)̂ b y  L 5Hopitars rule and the dominated convergence theorem 

w e  have

P ^ Y u  f) _  /〇 ds fRd fijdx) jRd p^{x -  y)f(y)dy

y(t)

T h u s  w e  complete the proof.

lim ..
t—〇〇 7(t)

lim td/a f  n(dx) [ pf(x - y)f(y)dy

j Rd 从d x ) j Rd } ^ o 疠认X  ~  V) r  1 丨a ) K y )dy  

P i ( 〇) f  f ( y ) d y  =  P i (〇) ( ^ f } -JR d

§5. Proof of Theorem 3.2
. . • -  . .  

T h r o u g h o u t  this section, w e  a s s u m e  d <  2a. Set Y^(f，a:) = -  ®)〉.

L e m m a  5-1. If ̂  € Mi(Rd) and (3.7) holds, then for t > 0 and x € R d,..... . . . .  ' --
S U p P M (yh(t,x))2 <  C(t^x) < oo,

h
where C(t,x) is bounded in [0,T] x  K  for any fixed T  >  0 and compact set K.

Proof. (3.3) shows that

P^(Yh(t, x))2 =  ̂ f^ds £  du(e-^, P ^ h{x - P^+h(x - ®))

+  £  dre^u-rH ^ , P ^ _ r+h(x - ~ ®)))-

W e  notice that — ®)ds is finite a n d  pf < const. t~d̂ a. T h e nfr i •
P M (Y^(t，x))2 $  const(i，:c)(l +  乂  (f -  r)—d’a dr) <  C ( t，x).

A n d  it is easy to see that w e  can choose C{t^x) to be locally bounded. So w e  have proved 

the lemma.

L e m m a  5 #2. If Mi(Rd) and (3.7) hold$f then for any t >〇  and x G  R d,

hmYh(t,x)=Y(t，x) in the sense of L 2 , (5.1)h—y〇
Proof. It is sufficient to prove that lim P^\Yh(t̂ x) -  Y^(t^x)\2 =  0, an d  this canh—̂0, hf—̂0

be easily verified b y  direct computation f rom L e m m a  5.1 and the fact ^ pt+h(x) = pta(x)- 

F r o m  L e m m a  5.1 and L e m m a  5.2, w e  can easily verify 2) in T h e o r e m  3.2 in the same 

m a n n e r  as in [10]. W e  shall prove 1) in the remainder of this section.

L e m m a  5.夺, 0 <  <  (2a — d ) 八 1，

\pf(x) - pf(y)\ <  const. (a,/3)t-^\x~ yf. (5.2)

Proof. Recalling L e m m a  2.1, w e  k n o w  that pf is smooth a n d  unimodal. Hence, \pi(x)- 

Pi(y)\ ^  const. (a)\x -  y\ an d  Pi (x) <  P\(〇), x G  R d. So if jx -y\<  (2pif(0))i///?, then

\Pi(x) ~Pi(y)\  ^  consti(a,^)|a： -  (5.3)
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if \x — y| >  (2pi (O))1^ ,  obviously, w e  also have

\Pi(^)-Pi(y)\ < \x-yf- (5.4)

Pu t  const, (a,/?) =  consti(o;>/3) V  1. (5.2) follows from (5.3), (5.4) a n d  (2.4), a n d  the proof 

is complete.

Lemma 5.4. If € Mi(Rd) and (3.7), holds, then for any fixed positive constant K  > 0 
and positive integer n} there exists a constant C(K,n) such that for 0 < s < t < K , \ x \ < K ,

P^\Y(t,x) -  y ( s , a；)|n <  C(K, n)(t ̂ s )((2-d/a)Al/2)n^ (5.5)

Proof. Let 0(®) =  p^(x — ©). Observe that

[YsA 、\n =  n\ L  dh j二 … dtn^  j厂  dtnP % X h 冰 … (XtnA y

Therefore, at first, w e  need to calculate

. p^(Xtv <!>}■■■ (xtri,<j>)

=  p ^ x t2,p t% t2m t 2,d>)---(xtn,<f>)
(by Proposition 3.2 1) a n d  M a r k o v  property)

= PM(P〜 〈Xt2_t 3 ^  辦〈不2 ★，州⑷ 3 ,必• ’ .〈& „，約 

= ■ ■ ■ (Xt3,cl>) •

+  f 2 t3dre-㈨-t3-r)(xt3,Pf(Ptai_t3_rcl>Pta2_t3_r< m
J q ' ■

< p^{xtnM X t n.[A) ■ • •
疒亡2― 亡3+ J (h - h - T  + h)-d/ad r P ^ x trlM X t n̂ A ) ■ • • (Xt3,<l>}(Xt3,Pta2̂ )

({h-t2)-d/a+\ \id/a>l,

< Ii +  const. (a,d)l2 ® s ^ d/，a + 1 , ii d/a <  1,.

I log 技  辻 •  =  1，

where
■ * ■ - -

h  =  ••• ^
h = p ^ x ^ ,  , 0) • • •

. ,-. ■ ■ . ■ L . ■ .

B y  formula (2.8), M a r k o v  property a n d  repeating above computatioix for 7i a n d  l2 7 in 

which w e  use trick as follows: w h e never a term like /〇t2~' tt2 drP^_t.̂ _r<i>P^_t,̂ _r(f> 

appears w e  pick out P ^ „ t.2_ r0  (resp. P ^ 3_ ^ 2_ r^) from the ter m  if i2 > ii + 2  (resp. 

i2 >  «3 +  2,i2 -  ii +  1), a n d  magnify (resp. P^.^cj)) to ( ^  -  - r)~d/a
n〇

(resp. (ti3 -  ti2 - r)~d/a), w e  can prove that P tl{Xtiyi>) •• • (Xtn,̂ ) <  const. X) î, where
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n 〇 is finite a n d  is of forms as follows: ,

[以 ； 务 • 似 ‘ 妁
,—d /a ^ l
7r(n) ，

d/a <  1

X 1) ' Cir(饥） '

(*7T(m+l) -  ^ r(m + l)+ l)_d’ a+1 … (^r(n) -  £咖 )+1)-咖 + 1，. >  1

log
^7r(m+l) ^7r(m+l)4：2 ； •(打)十g c //a  =  1.
^7r(m+l) ^ir(m -hl)+l ^ ( n )  一  ^7r(n)+l

Here 7r is a permutation of {1,2, - • • , n} satisfying 7r(l) n, 1 < m  < n, tn^x 

Suppose that 綷 e  M i  (把 ）a n d  (3.7) holds. l e  conclude that for I  

auy Xi described as above,

0•
and

r h 广fn-

<

<

dii dt2--- dtnXi
J 8 ：. ,y $ ： ： . ■

const. (K)(t -  s)m (t -  s)(n-m)(2-d/a)? d/a ̂  ̂.... ' . 1 ' • I . •
const. (K, e)(t -  , ,； 4/a - ： 1, 〇 <  e <： 1,,

const. (K)(t - s )((2-d/a)Al)n? ^  ^

const. (Jf，e)(t — s)n (1_e), d/a =  1,, 〇 <  6 <  1.

In particular, choose 6 =  1/2 in the case d =  a. T h e n

P^\(YtA) ~ (Ys,<l>)\n < C(K,n)(t -  s)((2-rf/«)Ai/2)n (5.6)

holds for any d <  2a. At last, (5.1) a n d  (5.6) yield (5.5) obviously.

In order to prove the joint continuity of F(i,a:), the next l e m m a  is also necessary. 

L e m m a  5.5. 1/ ju € M%(Rd) and (3.7) holds, then for any fixed positive constant K  > 0 

and positive integer nt there'exists a constant G(K,7i) such that fort <  \x\y \y\ < K ?

P^\Y(t,x)~Y(t,y)\2n<C(K,n)\x~y\nf3, (5.T)

where p is given in Lemma 5.3.

Proof, T h e  proof of this l e m m a  relies o n  sharper estimations. Let — ®)-

对 (y — ®) and  notice that 、

P^(Yu pt(x -  ®)} -  (Yt,pt(y - ®))|2n =  P^{Yu cl>)̂

is well dejBned since <f> is b o u n d e d  for h >  0.

B y  an elementary (perhaps tedious) computation w e  claim that

/ ti
dt2 •

(5.8)

u

Ĉ 2n
(5.9)P ^ Y t A ) 2" <  _

一  ■ ■〇 Jo

a n d  \i is the product of the following three types of factors: •

阼 + U 1 ， 〜 >

T 3 : (^, I J〇Wl drh F «  ( P «  _ r . _ r . ' h ) i s  of form P̂ xf) or

j  ^ i 2^ + r 32( ^ T + u 2-rj2^ 3 n a2+«2-ri2^ ) ,  i =  1,2, h  and ^  are of the s a m e  forms as

<f>2 a n d  so on; 

where

© s — tj for s o m e  j == 1,2, * * • , 2n;



© S i ,  s2 are of form tj -  tj^kl >  0, j =  1,2, * - • , 2n, \sx -  52| >  tj -  jx ^  j2y

^2nH-l~〇!

® U{~ -  tji+i for s o m e  ji : 1 < ji <2n,i~  1, 2;

® Vi — ifc. — A： >  1 a n d  ji ~ ki +  or Vi = tji which is the integral variable with

respect to the integral i =  1, 2 ;外 _  — 必2.
Moreover, in each A, P̂ <f>Aike ter m  exactly appears 2 n  times.

Denote by T̂ (k), k >3, the t e r m  that belongs to type T 3 a n d  contains /s 0-like terms. 

E a c h  入左 can be Represented by

乂 = 巧 ⑴ 乃 ⑶ …乃㈨ 阳 ⑴ …巧 ⑷ 阳 ^ ) …叹 ％)
I..I I.v  ...................✓ S 1.11.................... v ................... ✓

Ti~like terms T2 — like terms 7*3 — like terms

where k\ +  2/e;2 +Y^ni — 2n, all P̂ (f)Aike terms in are of the forms P^<l),P^_r,(j), or
i:l

3 ^   ̂(here U in different P ta <̂ -like term is different) a n d  Ti denotes the integral 

variable with respect to the integral i =  1,2, • • * ,2n, t2n + i = 〇*

O n  the other hand, from L e m m a  5.3 a n d  the argument in the case n ~  1, it is trivial to 
prove that, for any T 2-like terms, it is less than

const. (K)(ti - ~  vf

for s o m e  i =  1,2, * • • 2n; for any Ts(k)̂  it is less than

const. (KXti, -  til+1) - ^ +1 ■ • •
■ . ： ' ■ .

for s o m e  {zi, • • * , ik-i} C  {1,2, • * • , 2n}\ an d  for any two dijfferent Ti-like terms, their prod

uct is less than

const. (K)(t{ - U^i) ^  |x - yf for s o m e  i : 1 <  i <  2 n  — 1.
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T o  s u m  up, w e  have, for any possible A:,

where fk(tu

Obviously,

入̂  <  const. ，… ，t2n)|o:— y|

,t2n) satisfies
ft 疒 <2n_l

/  dti /  • • • I  dt2nfk{h, • • • Mn) < 〇 〇  for t < K .
/〇 Jo Jo

k i  +  fc3 fc3

+ 2̂ + X̂ (ni ~ ^ -  n*
T h e n  w e  have, for \t\ < |x|, |y| <  K,

P^\(Yt, const. (K)\x-y\n^

this yields (5.7) from L e m m a  5.2. S o  the proof of this l e m m a  is complete.

P r o m  L e m m a  5.4 a n d  L e m m a  5.5, the following l e m m a  is obvious. 

hemmsi 5.6, Under the same assumption on /x as previous lemmas，then for each integer 

K > 1

P^{\Y(t,x) -  Y(t,y)\2n + \Y(t,x) - y ( S,rc)|2n)

' <  const. (K){\x -  y\M(2-d/a)AP) +  _  ̂ 2n((2-d/a) ^
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holds for 0 <  s, t < K  and |a;|, |y| < K .

Finally, w e  conclude that there exists a jointly Holder coatinuous version of Y(t,x) in t 

and cc f rom L e m m a  5.6 a n d  [9, p.55]. T h e  proof of T h e o r e m  3.2 is complete.

§6. Some Remarks
In this section, w e  first c o m m e n t  o n  the condition (3.7). Clearly, (3.7) implies that /i is 

absolutely continuous w.r.t• 入. Particularly, w h e n  t =  0, w e  k n o w  that the R a d o n - N i k o d y m  

derivative is continuous. Therefore, w e  have

P r o p o s i t i o n  6.1. If ̂  E M\(Rd) such that (S.7) holdsf then \i must be absolutely con

tinuous and its Radon-Nikodym derivative is continuous.

T h a t  is, the absolute continuity with a  continuous R a d o n - N i k o d y m  derivative is the 

necessary condition for a probability measure o n  R d to satisfy (3.7). So w e  suppose that 

fj,(dx) == g(x)dx a n d  g(x) is continuous. Next, w e  will give a sufficient condition:

P r o p o s i t i o n  6.2. The condition (3.7) holds if the continuous function g(x) < const (1 +  

\x\)p for some constant and some p e R 1 when a = 2; p < a when a < 2f

Proof. It su伍ces to verify (3.7) for a  <  2, 0 S  古幺 iiT，|怎| S  if, K  >  0• Consider

liPta{x --)= f  ^(dy)pf(x^y)= f  dyg(y)rd/ap^{{x - y)t~1/a)
J R d j R d/» 1 . . .

= /  dyg(x-yt1/a)p̂ (y). 
j R d

Recall the subordination formula (see [5j，p.288)

p ? ( x ) = dsqa/2(t,s)p2s(x), (6.1)

where qv(t̂ s), 0 <  r] < 1, is the density function of a stable distribution on with 

Laplacian transform

a n d  satisfies

W e  have

dsqv(t, s)e~s9 = exp(— e > o

dsqn(t,s)sv < 〇〇., V e (-OOyTl).

-  ®) =  ^  ^ a / 2(l, s) dyp2sg(x - yt1̂ ).

(6.2)

(6.3)

(6.4)

Set /(s,t,s) =  J ^ p ^ x - y ^ ^ ^ d y ,  T h e n

/(s, x) S  const. /  ^ ( 发)(1 +  |尤- 的 " ^广 办  <  const, (if)(5pZ2 十 1).

J R d
C o m b i n i n g  this with (6.3), (6.4), a n d  the dominated convergence theorem, w e  see that the 

desired assertion follows easily, so the proof is complete.

In comparison with DW-superprocesses, there are m u c h  less literature concerning F V -  

superprocesses. Therefore, m a n y  interesting a n d  important questions are still unknown, for

example, the questions in two fields as follows.

(1) Hausdorff dimension a n d  Hausdorff measure of the carrying set for X t a n d  Yt. So 

far, to m y  best knowledge, only D a w s o n  a n d  Hochberg (1982) investigated the Hausdorff
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dimension w h e n  a =  2, an d  they only gave the upper b o u n d  of the Hausdorff dimension. 

Therefore, a further question is w h a t  the i o w  b o u n d  is. For m o r e  general cases (i.e., 0 <  a  <  

2), it is also interesting to. investigate the Hausdorff dimensions of the carrying sets of X t  
and It seems that Hausdorff dimension for 不  is 〇：，and that for Yi is 4 w h e n  a  =  2 a n d  

d large enough. Another interesting questions is Vibat the Hausdorff measures oi X t an d  Yt 

arev T h e  parallel questions for DW-superprocesses have been studied. extensively b y  m a n y  

authors (cf. Parson? Isc〇e，p^rkins，Z51e，etc,).

(2) T h e  asymptotic behavior of Yt at a large time w h e n  d <  〇；, 1 <  a  <  2. Ia the previous 

paragraphs, w e  haye investigated the asymptotic behavior of at a large time w h e n  d >  a, 

and for d < a  w e  have s h o w n  that, with probabiUty one, Y t(E )  oo (t—>- cx)); for a n y  o p e n  

set G  C  i2d, > oo ( t ^  〇〇) with positive probability; a n d  w e  have presented a limit

result o n  the expectation processes P ^ Y t， B u t  m o r e  precise description of the asymptotic 

behavior of Ft in the case d  ：<  a  is still u n k nown. S o  a n  interesting question is whether the 

following limit theorem is true for 1 < d < qj, 1 <  a <  2.

P^{viague- lim l^/7 (i)== s o m e  nonzero cr-finite measure} — 1, (6.5)
>00

where 7 (i) is given b y  (3.6).

If not, w h a t  is the asymptotic rate? Or, does such limit not hold for any asymptotic rate? 
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