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OCCUPATION TIME PROCESSES
OF FLEMING-VIOT PROCESSES**
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Vo Abstra’ct :

Suppose that Xy is the Flemmg-ont process assomated w1th fra.ctlona,l power Laplac1an o
~ operator —(— A2 0<a<2 andY; = f X,ds is the so-called occupation time process.”
" In this'paper, the a.symptotlc ‘behaiiot at a large time and the ‘absolute continuity of Yg ‘are
investigated. Do : : : :
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§1 Introductmn

Flemmg a.nd Vlot (1979) mtroduced a probablhty-measure—valued Markov process in a
variation of a model for the distribution of allelic frequencies in a selectwely neutral ge-
netic population. Followmg previous authors (cf Dawson, Dynkm) we refer fo this'kind
of measure-valued processes as Flemmg—Vlot superprocesses (for short, FV—superprocesses)
For the study of FV—superprocesses, Dawson and Hochberglz] mtroduced useful technlques
They obtamed some results on local structure and quahtatlve behav1ors of a class of FV—
part processes of DW—superprocesses ‘have been’ extenswely studied by many authors (for
example, I. Iscoel™®l, J. T. Cox and D. Griffeath!!), K. Fleischmann®®, and Sugitani*}l). We
shall lnvestlgate the asymptotn& béhaviors at a'large tlme and’ motlvated by Sugltam[“] we
consider the absolute contmulty of the occupation ‘time* processes . AR
" In comparlson with’ DW—superprocesses, FV—superprocesses afe much more difficult to
deal with. In fact, that DW-superprocesses are determlned by La,placm,n transforms enables
us to use many existing results and tools in analysm but most of them are invalid for FV-
superprocesses. One of the main difficulties in this paper is to bound the high-order moments
for the occupation time processes of FV-superprocesses, while for DW—superprocesses it can
be easily induced by Taylor’s expansion into power—serles (cf [11]) Thls forces us to ﬁnd a
new way to approach our goals. ‘ : T

This paper is organized as follows. In Section 2; we will briefly review the foundations
of theory of FV-superprocesses which is establiShed ;by Flemlug ‘and Viot, Dawson and
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Hochberg. Section 3 introduces the related occupation time processes and presents our
main results, their proof can be found in Section 4 and Section 5. In Section 6, we will give

some remarks.

-

§2. Preliminary Notations and Results

We begin with considering S=R?U {co}, the one-point compactification of B¢, B(S), the
o-algebra of Borel subsets of S, and the space M (.S) of probability measures on S furnished
with the topology of weak convergence of probability measures. M;(S) serves as the state-
space for FV-superprocesses. Let Q = C([0, 00), M(S)), the space of functions mapping
[0, 00) into M;(S) that are continuous. We consider the canonical process X : [0,00) X Q —
M;(S) defined by X(t,w,A) = w(t, A) for A € B(S), w € Q,1. > 0. The distribution of
FV-superprocesses X is determined by a mapping 4 — P* from M;(S) into. the space of
probablhty measures on {2, and {P*, u € M;(S)} satisfies the conditions o

CPHX0)=p)=1 - . (21)
and for ¢ € D(L),

sxw)- [ H(X($))ds (22)

is a P#-martingale for each p € M1 (S), where Lisa hnea,r operator deﬁned on the hnea,r
subspace D(L) of C(M, (S)) and has the form ' I

B / A(Bi(u)/Suu(z))u(de) + /S /S (9(0)/6p(x)oR ) Qu : do x dy),  (2.3)

where 6% ()/Su(z) = lim(p(=) — $())/e, Q + Mi(S) — Ma(S x ) (quadratic fluctua-
tion functlonal) Ais the mﬁmtemmal generator ofa strongly contmuous Markov semlgroup
on Co (R ), the space of contmuous functions on R? which vanish at 0o, and 4, represents a
" unit mass at the point z € R? (see [6, 2, 10]). We note from [6] that Xy is-a path continuous
Feller process. 4 : o
Suppose Q(u.: dwxdy) = 2(u(dwm(dy)w,(dw)u(gty)) and 4 = ~(~A)$(0 < a < 2), the
fractional power of the Laplacian operator which generates the contraction semigroup P of
a symmetr‘ic_sta_ble process. In this case, we can take the value space of ‘FV-superprocesses
to be M;(R%), the family. of probability measures on R_d. It is a convolution operator:
PPo(z) = [a 0 (@ —y)¢(y)dy, ¢ € C(RY).
Various properties of the density p§* which can be found in [4] or [8] are as follows:
Lemma 2.1. .
1) For0 < a <2, t >0, p¢ is smooth symmetmc and unimodal.

2) For0<a<2, t>0 z € R, . : §
(tl/“m)-—t"d/"‘ 1(z). I (2.4)
3)For0<a<2 T € R, wzthlw[>1 - o |

() < m%_;, ¢ >0 a constant depending on a. . - (2.5)

Fora =2, z € R%, p%(w) = (47r)"‘d/ﬂ2 exp(—a:2/4).
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Following Dawson and Hochberg, we define the nth moment measure Mn(s,X (s);t :
dzy,--+ ,dzy) which is a probability measure on S™ and satisfies the equa,lity

Ps,x(s)(H (6. %)) / / $3(22) -+ gna) M, X(s)t doy -+ doa),
Jj=1

where ¢; € C(S), i = 1,2, -n; (f, m)= [ fdm for any function f and measuie m.’
Let ¢1,++ ,dn € CR(RY), P(u) = ($1,1) - (s 1) (ses [2]). Then, from the deﬁned
martingale problem for the Fleming-Viot superprocess, it follows that

£(t) = H<¢j,X<t>> - TT¢¢i X (s))
j=1 < j=1
/ (Z II (e, X () A5, X (8)) (2.6)
§ =1 k=1k#j _

n

n
Y YT (91, X ) (6390, X(0) - (85, X (u)) (64, X ()] d
=1 i=li#j k=1k#i,j
isa P“—__m_a,rtm_gale for every p and 0<s<t Then

L / H 5(a) Mo (5, X (5); : da - )

——H(d’a, S) / / / 2 k_H ¢k($k)A¢J(wa)}

1,k#j
_ %n ;1:[{145,(% )duba(s, X(s);u: day - day) | @.7)
/ / / f: i fl ;i?k(wk)é(;vj - wi))Mn'_l-(s,X(s);u: ﬁ dxk)d'u,
i=l =1 k=1 ' k=1,k#j ~

i#j K#ng
‘This implies that M, (s, u;. : .) satisfies the following system of partial differential equations
in the weak sense:

OM(t: dzy, -+ ,dan) /Ot

n
= EA,-Mn(t cdzy, - ,dTs) ~ —;-n(n — 1) M,(t : dzy,- -+ ,dzy)

i=1
n . . ’ .
+ = E Z M,_ ( . H d:z:,,)&(m,-.—a:j) (2.8)
1.=1] 1,5#4 p=1l,p#:i . : :
with the initial condltlon M, (s;dz1, - ,dzy,) = H X(s,dz;). The initial-value problem
glven by (2. 8) can be solved successively for n = 1, 2 3 - and ¢ > s as follows:

Mn(s,X(s);t tdzy, -, dzy) = kt _gk HX(S d:cz) . , (2.9) :

i=1

+= E z kt_u * [Mp1(s, X(3);u s dzy,- -+ ,dTjy,dTjp1, -+ ,dn)0(; — ;)])du, ‘
z-—l J=1,j5#1 : o
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where * denotes the convolution and
kt(wl, ) = Hp?(mz exp(

Remark The 1mphcat10n above is adopted from ([2}], p. 563), in whlch A A Some
typing errors in formulas (6.8), (6.9), and (6.11) in [2] are corrected in (2.6), (2. 7) and (2.9)
respectlvely Partlcularly, from (2.9) we have
" Lemma 2.2. For qS, ¢1, ¢2 € b(Rd) the famzly of bounded Borel measumble functzons on
R?, we have

("‘i)t).

PY(Xy8) = (PR, W)
PH((Xe, 1 )( Xy, 62)) = e—_t(ﬂ, Pta¢1)</~" Pta¢2)
¢
+/ (- 8)</-” >Pt s¢1Pt-—s¢2> (211)
0 | A

§3'. Main Results :

By the regularity of sample path of X, the integral ¥; = fot X,ds, t> 0 exists a.s. and
defines a measure-valued process {Y;,¢ > 0}, the occupation tlme process (assoc1ated to X).
Obviously, Y; has properties as follows:

Proposition 3.1. Y;, P*Y; are path-continuous n t, and for any t > 0, Yt(S)
PrY(S) = t. Moreover, P*Y; is absolutely continuous with respect to Lebesgue measure
(say \). Denote by ny(z) the density of P*Y;. Then

/ ds / *(2,4)X (0, dy). - o (3.1)

To the first and second moments of the random measure Y;, we have
Proposﬂnon 3.2. Forany ¢ €bB, t>0, p€ M;y(S) and 0 <s< t, we have

PUY-Yod)= [P 62

t T
Pr(e =Y =2 [ dr [ aue(u PEo) . P20)
(u— v) a pa
+2/ drf du/ dve” (WP, P2 9P . @). (3.3)

Proof 1) is obvious, we only need to prove 2). Consider

PHY; — Yoy ) = / ar [ dup Xt (Xurd)
/ dr / duP“ X P"‘ P (Xu, #) '(by Markov prdpérty' 'a,ﬁd (2.10)).
Combine with (2 11) thls follows (3. 3) as desired. | - - |
Proposition 3.1 shows that.Y;(S) — oo ast:— oo. Furthermore, by the increase of Yz,
we know that for any open set G, with probability one, Y;(G) converges as ¢t — co. So an
interesting question arises, that is, what is the local behavior of Y; as ¢ —.00? The following
theorem part1ally answers this question.
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Theorem 3.1. (a) For d > o; with probability one, Y; vaguely converges to some o-finite
measure Yo, on R%, and P*Y,, also is a o-finite measure which is absolutely conlinuous
with respect to (w.r.t.; for short) . Denote the density by ne. Then neo is a.e. finite w.r.t.
X and given by

noo(:v) /G z,y) X(O dy) o (3.4)

where Gy (z,y) = fo (w,y)dt is the potential kernel of sengmup Pg. Especially when
=2, Gs(z,y) = —-l——z‘;;,:’lx ~ 2=, =
(b) For d < a, we have for any ,u, € M1 (R%)

(t) “l’.l, (0)X vaguely, 6y

where C S ) o '
£) — 3.6
- IY( ) "..{""d—‘-g—?tl-‘:d/q’ d/Ol <1 e S ( )

“We will prove this theorem in Section 4. -

A typical interesting question for a measure-valued process is whether the random measure
is absolutely continuous w.r.t. Lebesgue measure A. In fact, this kind of questions has been
studied by many authors (cf. Konno and Shlga[m] S. Sugitanil'!l, and K. Flelschmann[5l
etc.) for DW-superprocesses and FV-superprocesses. In case of d =landl <o <2, Konno
and Shigal' proved that X, (¢ > 0) is absolutely continuous w.r.t. .-On the other hand,
Dawson and Hochberg!? showed that if & =2, d > 3, Hausdorff-Besicovitch’ dimension of
carrying sets of the corresponding F'V-superprocess is less than or equal to 2, that is, the
random measure is singular. Here, our interest is in the absolute continuity of ¥;. We: have

‘Theorem 3.2. Assume d < 2o and p € M1 (R%) which satisfies ™ IR

pPi(z —e) is yomtly contznuous in (t,z) € [0,00) x Rd o (3 7)

Then there exists a family of nonnegatwe mndom vamables {Y(t :c) t> () T € Rd} such
that the following 1) and 2) hold (P*-a.s.). _
1) Y(¢,z) is jointly Hélder continuous in t > 0 and z € Rd wzth order less than (
dia)A(a—df2)A1/2. '
2) For every ¢ € Ck(R?) and t >0, (Ys, ) fRd (t, z)¢(z)dx
This theorem will be proved in Section 5.

s4. Proof of Theorem 3.1

We shall prove the theorem by the 'following lemmas. For simplicity, we will not distin-
guish constants if no confusi_:on arises. Denote by B(0,r) the ball of center at 0 with radius
r. 4 :

Lemma 4.1. . N o C : o

PZ1p(o,r)(x) < const: t“d--/"‘,, zeRY, . - (4.1)
where the constant depends on r, d, and . Moreover, G, (z, B(0,r))= fo Px1 B, r)dt <
const. < o0 if d > a. ’
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- Proof. By the Lemma 2.1, p is symmetric and unimodal. Hence

PP (@) = /B RGN

9,

= /B( )t‘d/"‘p‘l"_(t‘l/“(m —y))dy ( by Lemma 2.1, 2))
0,r

,',t—l/o:

r
< const. / ud=¢= 4/ 2pe (1= %) du < const. / w1 p§ (u)du
‘ | _ _ A

rgt/e

< const. p§(0) / uldu < const.t™4/,

This immediately implies G, (z, B(0,7)) < const. < oo if d > a.
Lemma 4.2. Assume d > «, with probability one, Y; vaguely converges to a random
o-finite measure Yoo on R®. Moreover, the for‘mu-lav(3.4) holds. '
Proof. Obviously, vague-tl_ifxolo Y; exists from the increase of ¥, Yoo (S) = 00, and almost
surely Yo, is a measure on (R%, B(R?)) from the common arguments and measure extension
theorem. Therefore, we only need to check the o-finiteness of Y. For r > 0, € M;(R9),
* consider

P/*‘Yt(B(O'ri | /ds/ (dm)/ o zl)s g:— )dy / dw)/ ds/B(w dy.p‘.,(:c )

’ / (d)Gal, BO,1)) < o0,

that is, almost surely Yo,(B(0,r)) is finite. From this we can prove that Y, is o-finite.
Repeating above computation,  we can easily verify (3.4) by the dominated convergence
theorem. .

So far, we have proved assertlon (a,) in Theorem 3.1. The rest of this section is devoted

to proving (b).
Lemma 4.3. For d < o and a fized ball B(0,r), we have

P“Yt(B(O r)) < const. 'y(t) fort>0 large enough, | (4.2)

where the constant depends on o, d and r, and v is gwen by (3.6).
Proof. From Proposition 3.2 1), we have

t .
PRY(BO) - PYa(BO,M) = [ ds [ uds) [ p3(o- )iy
2 Rd B(0,r) .
¢
< / / ~ p¢(z)dz (by the unimodality of p%)
2 JB(O,r) - .. .

t
< const./ s~¥*ds (by Lemma 4.1)
2 _

logt, dfa=1,
1-dfe  g/a <1,
Slnce Y is finite, for ¢ > 0 large enough formula (4. 2) holds, and the proof is complete
Lemma 4.4. Assertion (b) in Theorem 3.3 is true.
Proof. At first, we remark that '

t4op (@) = p(at %) < pf(0) < co. (4.3)

< const.{
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Therefore, for any f € BC(R?), by L’Hbpital’s rule and the dominated convergence theorem
we have

po PAYR) o 8 fpe p(de) [ 3@ ~ ) fw)dy
t—o0 ’Y(t) t—o0 ‘ (t)

=tlirgo i/ /Rd u(dz) /Rd pE(z — y)f(y)dy
= o) [ lim pt(o - )t )
=50 [ fdy =07

Rd

Thus we complete the proof.

§5. Proof of Theorem 3.2
Throughout this section, we assume d < 2a. Set Yj(t,z) = (Y, 08 (ac - o)),
Lemma 5.1. If u € M1(R%) and (3.7) holds, then fort >0 and z € R?,
sup PH(Yi(t,z))? < C(t z) < 00,

where C(t,z) is bounded in [0, T] x K for any fized T > 0 and compact set K
Proof. (3.3) shows that

P“(Yh(t z)) -2/ ds/ du ,‘j‘+h(a:~e))(u, P2 (z—e))

b [t e P o= 9P coale =),
We notice that fo pp%(z — o)ds is finite and P& < const. t~%/%. Then

PH(%h(6,2))? < const(t x)(1 + / (t—7)" d/adr) < Ct.3).
0

And it is easy to see that we can choose C(t, x) to be locally bounded. So we have proved
the lemma. _
Lemma 5.2. If u € M;(R%) and (3.7) holds, then for any t > 0 and z € RY,

’llir% Yi(t,2)=Y (t,z) in the sense of L? . (5.1)

Proof. Tt is sufficient to prove that %iril, P#|Y,(t,z) — Vi (t, )| = 0, and this can

be easily verified by direct computation from Lemma 5.1 and the fact hm (@) = P(z).

From Lemma 5.1 and Lemma 5.2, we can easily verify 2) in Theorem 3.2 in the same
manner as in [10]. We shall prove 1) in the remainder of this section.
Lemma 5.3, Forany0< < (2a—-d)A1,

* [p¥(e) ~ ¥ (y)] < const. (a Btz -y, (5.2)

PrOOf Recalling Lemma 2.1, we know that p$ is smooth and ummodal Hence, |p$ (ac)
p%(y)| < const. ()|z — y[ and pg(z) < p$(0), = € R% So if [ — y| < (205(0))/7, then

Ip%(2) — p%(¥)] < consty (e Bz — yl?; - (53)
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if |z — y| > (2p$(0))'/8, obviously, we also have
[P (@) ~ @)l < o~ yf. (5.4)

Put const. (o, 8) = constl(a B) v 1 (5.2) follows from (5.3), (5.4) and (2.4), and the proof
is complete.

Lemma 5.4. If y € M; (R?) and (3.7). holds, then for any fized positive constant K > 0
and positive integer n, there exists a constant C(K,n) such that for0 < s <t < K, |z| < K,

PH|Y(t,z) — Y (s,z)| < C(K,n)(t — s)(2~4/)A1/2)n (5.5)
Proof. Let ¢(e) = pfi(z — s) Observe that

t o th-1
PE[(Y:, ¢) —( sa¢ —n'/ dtl/ cdtp- 1/ - dt, P* (Xt1,¢) <th,¢)
Therefore, at ﬁrst we need to calculate L o -

Pu(Xt1a¢>"'<th’¢>
= P”<Xt27PtC:—tz¢><th,¢> e (th»¢> o
(by Proposition 3.2 1) and Markov property)
= PP (Xty—ty, P _t,8)(Xta—ts, 8))( Xt 9) -+ (X2, 6)
= Pu(Xﬁn>¢> (th~1a¢> e (th’ d’) ' (e_(tz_-rts)(th’ Pt1~t3¢> (Xtaapti—t3¢>
ta—t3 ' ' ‘ _
+ /0 d”"e—(tz_‘_ﬂa—r) (Xis) ?:(Pt?—ta—r¢ Ptozl—ta—rﬁb))) _
< Pu(th’(ﬁ)(th 1’¢> e <Xt31Pt01‘—t3¢><Xt3v Ptz—t3¢>
te—ts S :
+/ (t1 - t3 —r+ h) d/adTP”<th,¢)(th_1,¢) (Xitg O)(Xitg, Pry—t,0)
(t]_ - tg)—d/a+1 lf d/O[ > 1

< I + const. (¢, d) 5 o l“d/o“H, - ifd/a< 1,
‘ log%i{% ifdfa=1,

where

I = PH{Xy, )Xo 1 9) - (Koo Py ) (Xg s Piyy®)y
L= (th,qb)(Xtﬁ—ud)) (th’qs)(th)Ptz—’t:;qs)" ‘

By formula (2.8), Markov property and repeating above computation for Iy and I, in
which we use trick as follows: whenever a term like t’z. ~1he drPg g cOPE i 0
appears we p1ck out Pt,l—t _r® (vesp. B —r®) from the term it iy > z; + 2 (resp.
iy > t3 + 2,9 = 43 + 1), and magmfy Pt, —tiyr® (resp Pt%—t; _9) to (tzl - t,2 - r) d/"‘

(resp. (ti, —ti, — r)‘d/ «), we can prove that P¥(Xy,¢) - (X,,¢) < const. Z Ai where
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no is finite and A; is of forms as follows:

- > | Co
( (P2, 8) o (8, PR B)E é‘ﬁ)l tn(T{) +1A, | | _d/a <1
(iu”Pt.,,(l)¢) (“, Pt-n-(m)¢> |
d/a+1

( 7r(m+1) - t7r(m+l)+1) (tﬂ.(n) “tﬂ'(n).{.l) d/CH'l d/a > 1

(b, PEY oy 0) - {tan P 2B

o ba(mt1) ~ba(mt)+2. o tan) — w(h)+z o d /a S
\ tr(m+1) — t71-(m+1)-+-1 tn(n) — 7r(n)+1
Here 7 is a permutation of {1,2,- n} satlsfymg (1) =n,1<m< n, tn+1 = 0

Suppose that p € Ml(Rd) and (3 7) holds We conclude that fort < K, |z| < K, and
any ); described as above,

t1 . ‘ _tn_.
/dt“l“/ dty / dtoh:

) { const. (K)(t — s)™(¢ — 5)(n=m)@=d/a) d/a;él

const (K €)(t - s)"(1 E) . - d/a = 1 O.< -e <‘ 1,
< { const. (K)(t—,s)((2 d/"‘)"l)" d/a 761 SR
const. (K, €)(t — s)"'(1 o),  dfa= 1.0 < € <1

In particular, choose ¢ = 1/2 in the case d = Lz Then

PH¥d) ~ (VB < CE = )@ )

holds for any d < 2a. At last, (5. 1) and (5 6) yleld (5.5) obv1ously
In order to prove the Jomt contmulty of Y(t a;) ‘the next lemma is also 1 necessary. o
Lemma 5.5. If u € Mi(R?%) and (3.7) holds, then for any fized positive constant K>0
and positive integer n, there exists a constant C(K,n) such that for t<K, Iml, lyl < K,
PHY(t,2) ~ Y (t,9)I"" < CE,m)fz—g™, - (57

where (3 is given in Lemma 5.3.
Proof. The proof of this lemma relies on sharper estlmatlons Let qb(e) = pf (w - e;)
p%(y — o) and notice that : o X

PH|(Y;, pi(m— o)) — (Y, pf(y — o))" = PH(Y;, §)*" (5.8)

is well defined since ¢ is bounded for h > 0.
By an elementary (perhaps tedious) computation we claim that

171 ton—1
Yt; 2n < 2/ dtl/ dtz / dtzn/\i (59)

and ); is the product of the following three types of factors. L
Ty : {u, |P°‘¢I> | |
T2 <ﬂ', 0 d?‘h (l 31+u1—-r“¢” sz+u1—r,1¢l)>
s: | [ dry, P, (P2, $1P8sr,, 82, 9 I of form P or
‘U'2

drszs‘ 74, (Pv1 Fug—ri, ¢3Pv2+u2—r, da), =1, 2 ¢3 and 4 are of the same forms as

@

@1, $= and so omn;
where
o s=t; for some j=1,2,--- ,2n; -
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® 51, 83 are of form ¢; — ¢k, K20, j =1,2,---,2n, |51 — Sa| 2 t; — i1, J1 # Jo,
ton+1=0; '

® u; = t;, —tj41 forsome 5; : 1 < j; < 2n, i =1, 2

v, =1, —tp,4k, k2> 1and j; =k; + k, or v; = T which is the mtegral variable with
respect to the integral f L G 1 2 0y # vg, Ky # ko

Moreover, in each A, P®¢-like term exactly appears 2n times.

Denote by T3(k), k > 3, the term that, belongs to type T3 and contains k PZ¢-like terms.
Each Ay can be represented by :

Ne=T(OT(2) - Ta(ka) To(1) - Ty(ha) Ty(a) - Ts(n'k;z

Ty —-hke terms Ty —-hke terms T3 -hke terms

where ki + 2ky + Z n; = 2n, all P&¢-like terms in Ag are of the forms P2¢, P —r; ¢, or
=1
B _t;1—r;$s 3 2 i (here t; in different P ¢-like term is dlfferent) and r; denotes the integral

~ variable with respect to the mtegral f b t'“, i=1,2,- -\2n, ton+1=0.

On the other hand, from Lemma 5.3 and the argument in the case n = 1, it is trivial to
prove that, for any T5-like terms, it is less than

T
const. (K)(t; — ti1) ™= o — y|?

for some ¢ = 1,2, .- 2n; for any T3(k), it iS less than
s _ )__é_[_

48 _
COIlSt. (K)(t’tl - t21+1 (t'&k ; t"k-—l"l‘l) o +1|w — yl(k 1):3T1

for some {7y, - ,9k—1} C {1,2,--- ,2n}; and for any two different T}-like terms, their prod-
uct is less than . ‘ :

- . const. (K)(t,- tz+1 Ia: —y|? for somed: 1 S i<2n-1.
To sum up, we have, for any possible k,

(Batka 1 +E [(m=1)8
)\k<c0nst (K)fk(t1, o tan)lT — yl ’ _ ’

where fi (¢, tzn) satisfies

t1 tan—1 '
/ dt1/ / dbgnfi(ti, -+ yt2n) <00 for t < K.
0 0 0

Obviously,

ki + k3
2
Then we have, for |t| < K, |z], |y| < K,
PMKY;a ¢>l2n < const. (K)|£U - yln,@,
this yields (5.7) from Lemma 5.2. So the proof of this lemma is complete.
From Lemma 5.4 and Lemma 5.5, the following lemma is obvious.

Lemma 5.6. Under the same assumptzon on u as premous lemmas, then for each znteger
K>1 ‘ .

+k2+zn1—1)>n
1=1

Pe(IY(t,2) - Y(6,9)P" + Y (6,2) - Y (s, ) ")

~ < corst. (K)(|w — y[PU@-d/NB) 4y 3[2"((2fd/a)Aﬂ))
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holds for 0 <'s, t < K and |z|, |y| < K.
Finally, we conclude that there exists a jointly Holder continuous version of_Y(t=, z) in t
and z from Lemma 5.6 and {9, p.55]. ‘The proof of Theorem 3.2:is complete.

§6. Some Remarks_ |

TIn this section, we first comment on the condition (3.7). Clearly, (3.7) implies that u is
absolutely continuous w.r.t. A. Particularly, when ¢ = 0, we know that the Radon—leodym
_derivative is continuous. Therefore, we have ‘

Proposition 6.1. If i € M;(R?) such that (3.7) "holds, then ¢ must be absolutely con-
tinuous and its Radon-Nikodym derivative is continuous.

. That is, the absolute continuity with a continuous Radon—leodym derivative is the"
necessary - condition for a probability measure on R? to satisfy (3.7). So we suppose-that
p(dz) = g(z)dr and g(z) is continuous. Next, we will give a sufficient condition: -

Proposition 6.2. The condition (3.7) holds if the continuous function g(z) < const. (1+
|z])? for some constant and some p € R' when a.=2; p < o when o <2, '

Proof. It suffices to verify (3.7) for a < 2, 0 <t < K, |z| £ K K > 0. Cons1der

WPR(o =)= / wldy)pg (e - v) / dyg(y)t/p3 (@ — y)t-Iﬂ*)
L / dyg(@ — v/ Y (). B
R4

Recall the subordination formula (see [5], p.288) ‘ |
@) = [ dodualt, 5k, (61)

where ¢,(t,s), 0 < N < 1, is the dens1ty function of a stable distribution on R, with
Laplacian transform

' / dsqy(t,s)e™®% = exp(—t6"), 6>0 - (6.2)
0 o . :
and satisfies - ) o
/ dsgn(t,s)s” < 00, v € (~00,7). o L (63)
0
We have . , .
o0
pa=o) = [ dstosalLe) [ durtale = vt/ (64)
0 _

Set f(s,t,z) = fRd'pgg(a’ - ytl/"‘)dy.. Then
f(s,t,z) < const. / p2(y)(1 + |z — yt"/*|)Pdy < const. (K)(sP/2 + 1).
Re .

Combining this with (6.3), (6.4), and the dominated convergence theorem, we see that the
desired assertion follows easily, so the proof is complete.

In comparison with DW-superprocesses, there are much less literature concerning FV-
superprocesses. Therefore, many interesting and important questions are still unknown, for
example, the questions in two fields as follows.

(1) Hausdorff dimension and Hausdorff measure of the carrying set for X; and ¥;. So
far, to my best knowledge, only Dawson and Hochberg (1982) investigated the Hausdorff
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dimension when a = 2, and they only gave the upper bound of the Hausdorff dimension.
Therefore, a further question is what the low bound is. For more general cases (i.e., 0 < o <
2), it is also intéresting to. investigate the Hausdorff dimensions of the carrying sets of X, -
and Y;. It seems that Hausdorff dimension for X is o, and that for Y; is 4 when o = 2 and
d large enough. Another interesting questi"ons"is?v&fhat'-'the:'“Hausdorff measures of X; and Y;
are. The parallel questions for DW-superprocesses have been studied,extensi]vely_by many
authors (cf. Dawson, Iscoe, Perkins, Zile, etc.). _ : :

(2) The asymptotic behavior of Y; at a large tlme when d < a, 1 < Q < 2 In the previous .
paragraphs, we have investigated the asymptotic behavior of ; at a large time when d > ¢,
and for d < a we have shown that, with probability one, ¥;(E) — oo (t.— 0o); for any open
set G C R?, Y;(G) — oo (t.—.00) with positive probability; and we have presented a limit
result on the expectation processes P*Y;. But.more precise description of the asymptotic
behavior of Yt in the case d < o is still unknown. So an interesting question is whether the :
following . hmlt theorem is. true for.1 < d<La, 1 <a <2

P“ {vague— hm Yt /fy(t)—- some nonzero o-finite measure} =1, - -+ +(6.5)

where 'y(t) is glven by (3. 6)
If not, what is the asymptotic rate? Or, does such limit not- hold for any asymptotic rate?
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