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ON THE HARISH-CHANDRA HOMOMORPHISM FOR
THE CHEVALLEY GROUPS OVER p-ADIC FIELD**

CHEN ZHONGHU*
Abstract

The Harish-Chandra homomorphism for the higher congruence spherical functions algebra
of Chevalley groups over p-adic fiealds is given in the case of the Levi-component of a (rational)
parabolic subgroup. It is a generalization for the Harish-Chandra homomorphism for the higher
‘congurence spherical functions algebra of the groups GLn over p-adic field in the same case.
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§1 Introductlon

There are many parallels between the representation theory on real sm:\ple groups and the
representation theory of the p-adic groups. R. Howel* and A. Moy gave a partial analogue
for:the groups. G.Ly, .over p-adic fields of Harish-Chandra homomorphlsm

In this paper, the Harish-Chandra homomrphism for higher congurence sphencal func-
tions algebra of Chevalley groups over p-adic fields is given in the case of the Levi-component
of a (rational) parabolic subgroup. Itisa generahzatmn of R. Howe's works(4 for the groups
G L, over p-adic fields in the same case." o ' '

Let (S) be the subgroup generated by the elements in the subset S of a group. For any
set 9, let #(S) denote the number of the elements in S and let ol denote the vacuous set.
We write Z for the set of all 1ntegers and N the set of all natural numbers For any pair
P,q€2,p <q,let [p,g] = {pip+1,--,q} -

Clearly, the p-adic field F is a field equlpped with a non-trivial, non-Archimedean discrete
valuation | . [r. We define o ‘

| R={tlt€F;ltlF£ 1}.
Then R is the ring of the integers of F and P = 7R is the maximal idéal of R where 7 is a
prime element of F'. The complement R* of P in R is the group of units of R. We denote
by F the residue class field R/P which is a finite field. It is well known that F is locally
compact, and R and P are open, compact subsets of F. For each ¢ € Z, let P; = n*R and
R} = {1+ p;p € P;}. Let R be the representative system of F in R.

Lemma 1.1. If f(z) = 2™+ a12™ "  + - + 1T +am € Rx] and A is a root of f(z),
then there is a finite dimensional extension F' of F with a non-trivial, non-Archimedean
discrete valuation | - |pr such that | )\l <1
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Proof. Let F' be the splitting field over F of f(z). Then [F': F] < 0. So F' is a p-a,dlc
field and the restriction of | - |z on F is just | - |z. Thus, we have

. - F@)=(z-b)(@-bs) - (z—bm),
b € F',i € [1,m]. Clearly, : ‘ , '
| RCR ={t|te F;|t|m<1}.
It is easily shown that b,b5 - - b,, = a,,. Hence, we have

b || b2 | <+ | b [ =] @ | -

Thus, there exists at least a root b], J € [1,m] such that | b; |»< 1. Let b= b;. It follows
that '

f(w) (@ -b)g(e), g@)=om"! Hag™ Ptk en,
* where ¢; € F , 1€ [1 m = 1] satlsfy | |
Cy— b= @1,C2 — Clb =a2," ", Cm—1 — cm’-‘—'2b-= Om—1, Cm—'lb = Am

Hence, since ay, a3, -+ ,an € R, we have ¢1,¢, -+ ,cm—1 € R'. It follows that g(z) € R'[z].
Therefore, the lemma can be shown by induction.

Let L be a simple Lie algebra over C (L ',72 Gz) and ® the root system of L with respect
to a Cartan subalgebra of L. Let II = {ay, a3, - ;0a5} be a fundamental root system of
® and ®* the positive root system containing II. - Clearly, ®~ = —®* is a negative root
system in ®. Let Cf, = {hg, & € I; ¢;,» € ®} be a Chevalley basis of L and Gy = L(F) the
Chevalley group of type L over -F:. It follows from [1] that Gr = (exptade,,t € F,r € ).

Hereinbelow, we shall use the notations and terminology gi"ven by [1] directly.

§2 Some Subgroups of G

Foreach're‘I) qEN weput
2Erg = {mr(t) te P } Uq ("quﬂ' € ot >
V= (Bngir € 7Y, Hy = (ha(d);d € RLa € B)..
Let K, = H,V,U,,q € N. o .
Lemma 2.1. Let s € @ and let a,b € F* = F\O such that e =1+ ab# 0. Then
z_s(0)zs(a) = hy(e Vzs(a)z_s(0), o' =ae, ¥ =be™ .
Proof Let ¢ —-(ae)_1 Clearly we have ' '
—cta” , —-c( 1+e)—c( 1+1+ab)—cab—be
Thus, by 5.2. 2 and 8.1. 4 in [1], we have _ ,
z_s(b)zs(a) = z-4(b)2 z_s(a™Dhos(~a Yn_sz_s(a”?)
= h_g(—a "z ()hs(=c)nszs(e)n_sz (")
= hs(e ")z (ae)z_o(be™). '
Hence the lemma is proved. |
Lemma 2.2. (i ) Every element u of Uy, q € N has a unzque ewpresszon

Y = :crl(al)mm(az) Ty, (@), a; € Py i€ ®F, 1<i<h, ri<rg=<-=<7Th
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(i) Every element v of V4, q € N, has a unigue expression
0= 0y (01)Cay (b2) -+ 2o (b6), b1 € Py, 1 €07, 10k, 8173 < <7
(iii) Bvery element h of Hq, qe N, has a unique empressz'on
h hal(dl) hay(d2)+ « ho, (dn), d; € Ry, %€ 1I, a < ay < ~< Q.

Proof. Clearly, if £,t' € Pq, then ¢ + ¢, t*t” € P for any 1,5 € N. Thus using ‘an
argument similar to that used in 5.3.3 in [1], by the Chevalley s commutator -formula, (i)
can be shown. Similarly, (ii) can be proved also. DR S

Let ¢1,42, - , ¢, be the dual basis of the basis hq,, by - -',h%,‘ha; € CL, a; € H,'l <
i < n. It follows from 7.1.1 in (1] that h(xr,a) = hr(d) € Hy, for any r € ®,d € Ry, g € N,
and we have x-4(¢;) € R;,1 <4 < nsince &l e R; for any j € Z. Clearly, if d,d' € Ry, then
dd' € R;. Hence x(¢:;) € R},1 < i < n for each h(x) € H,. By 7.1.1in (1], every element
h(x) of H, has a unique expression .

h(x) = ha, (dl,)_h,ofz (dz) - h%(dn), d; e F*, 1< i <.

It is easily shown that x(g;) = d; € Ry, 1 <4< m, so, (iii) follows.

Let r(u) = {r; € ®*,a; # 0} and r(v) {si € @70 # 0}. For any s € ®%, let h(s) be
the height of s. Let [z,y] = Ty~ -1z y€G.

‘Lemma 2.3. For any s € ®F ,(s) > 1,5 E Pq,q E N, the're erists o € II and r €
&+, h(r) = h(s) — 1 such that s =7 + o and

xs(b) H[xa(cz)a :L‘.,(d b)l dzacz € R* 15 i<t i=12

Proof. Clearly, there exists o in II and T in ‘I>+ with h(r) = h{s) — 1 such that s = r+a.

Let Ar o = éa—al) If A, , = —1, then by the Chevalley’s commutator formula, the lemma is
easily shown with t = 1,¢; = —Criqr,d; = L

Similarly, the lemma is easily verified for A, o = —2 or ;-%
Lemma 2.4. (i) fa€ll,de R" and g € N then :ca(d)U C U :ca(d)
(i) Ife €ll,d € R* dndqu then

%@Vcﬂv%w)w_Mtem

Proof. Clearly, if i + jr € o for anyr €9, i,j € N, then ia + jr € <I>+ 80, (i) can be
shown by (i) in Lemma 2.2 and Chevalley’s commutator formula.

We shall show (ii). If s € 7, s # —a and ia+jr € ® for somes, § € N, then ia+jr € <I>”
and d*a’ € P, for any a € P,. So we have [za(d),zs(a)] € V.

If §=—a and a € P;, then by Lemma 2.1, we have e = 14da € R* and -

| :z:a(d)a:s(a,) h (e ):z:s(a')a:a(d’) o =ae,d = de‘l, ‘ - (2.2)
Clearly, el € H, and a:s(a’) € Vyand d' = td,t = e7' € R}. By (2 a), (u) can be
proved immediately from Lemma 2.2. _ :

Lemma 2.5. (i) Let s € ®F andO#b € Pq,q (—:N Then ms(b)V c V,U, H

(it) For each g € N, HyU, = U,H,, H,V; = V,H,.

(iii) If h(x) € Hq,q € N and 7 € ®, then x(r) € Ry,
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Proof. We first show (ii). By the argument used in (iii) in Lemma 2.2, Ry is a subgroup
of R*. Clearly,for any d € Ry,t € P, ,we have di € P,. Itis easy to see that if h(x) € H,
and s € ®~, then for any t € P we have

ROz (R0 ™ = To(x(5)t) € Tag,
because x(s) € R} by (iii) in Lemma 2.2. Thus, by (ii) in Lemma 2.2, we have HyV, = V H,.
Similarly, it is easxly shown that H U, = U H,. (n) is proved Now, we show ( ) by induction
on the helght h(s) of s:

Lemma 2.4, (1) can be shown 1mmed1ately :
2.:h(s) = ¢ > 1: Let z = [z4(d),z-(fb),d, f € R* a€ll,re ®. Clearly, we have
h(r) =¢—1.-Let 8 =7+ . Then we have
2V, = 2o (d)zr (fB)al~ d)a:r( -fo)V,. . S
C za(d)zr (fb)za(—d)V,U H, (by hypothesis of 1nduct10n)
C B (d)zr(FO)VyZa(—td)U,H, (by Lemma 2.4)
C :z:a('d)H VoUszo (—td)U,H, - (by hypothesis of mductmn)
C VUyHyzo(t' d)zo(~td)H, (by Lemma2 4) '
where ¢t and ¢’ are the elements in ;. Thus, We have t'd — td d(t' —-t)EPR. It follows
that z,(t'd)ca(—td) = za(d(t' —t)) € U,. Hence. by Lemma 2. 3, (i) follows
(iii) is clear.
The proof is complete.
Lemma 2.6. For any q € N, K H VoUyq is an open compact subgroup of G = Gp.
Proof. By (i) in Lemma 2.2, for each u € U, we have
UH YUy = 20y (01)r (02) -+ T, (@) By ViU,
C %y, (01)Zr, (a2) -« - Ty, (an—1)HyVUy (by Lemma2.5)
C-+ C HyV,Uy,. | S
Thus, we have Uql/;Uq C H,V,Uy. So, by (ii) in Len;ma 2.5, we obta,_in
| K Kg = HVUH VU, € HVU VU C HiVUy = Ko
Clearly, H‘1 C I-Iq, Ve 1cV, and Uy lcU, Hence by Lemma 2.5, we have
| K‘~UW/W*CUVHCHVUH = HV,Uy = Kq.

Therefore, K, is a subgroup of G. - : .

For each k € N, let S¥ = § x § x ««+ X S‘(.k tivmes), S C F. Since-R_is an open
compact subset of F', P, = 7R is open compact for any ¢ € Z. For each r € ®, there is
a homeomorphism p, from P, to z, 4 defined by p,(t) = z.(t), t € Py. Hence, =, is open
compact. Thus, by Lemma 2.2, U,, V; and H, are homeomorphic to open compact set. So
U, V, and H, are open compact subgroups of G. It is easily shown that for any ¢ € N,
K, = H,V,U, is homeomorphic to Hy x V, x U,. Hence K, is an open compact subgroup
of G. The proof is complete.

Clearly, K = HVU = HyVyUp = K is the maximal compact subgroup of G- and for each
g € N, K, is called the g-congruence maximal compact subgroup of G.
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For any q € N, By = H Vg,1U, is a subgroup of G.

Clearly, B = HV U = HyV1Up is the Iwahori subgroup of G and Bq, q € N, is called the
g-congruence Iwahori subgroup of G.

For each a € Py;q € N, there exists a representative element a in 7R such that a =

a(modPy1). :
Corollary 2.1." Fach element k in Kq, g € N, has a unique ‘expression
k= h(x)2s; (01)% 55 (82) - - - o, (b1 )Tr, (1), (a2) - - - T, (an),
where a;,b; € Py, 1 <4 < h and h(x) is an element of H, which has a unique eapression
BOO = by (d1)hey (d2) + ha, (dn) di = 1+ i € RY, ci€Py, 1<i<n.
PutTk'-w'I(T’+T”) where | o |
T' = cihg, + c2ha2 +- +cnh'an,
and C :
T" = byes, + baes, + -+« + bpe,, + azer, +agep, + -+ + aper,-
Corollary 2.2. If b,k € K;,q €N, then Thw = Tu +Tor.
For each g€ N let P* = R\ P, Rf = R*\ R} and 'for each r € @, let
= {e(t)te P}, B, ={h{),t R}

For each ¢ € N, We put _

U*=.'17* * "_':L'* V*Z—‘CB* il?* .“w*

* _ p* * *
H hal qha2 q hdny‘l’ q ?1,11(1_;7_?2_»41 rh;Q_" 9 $1,947"82,9 3h1q.;,
For each ¢ € N, we define
* *Y7kTI*
K Hq Vq U,.

By an argument similar to that used in Corollary 2.1, we have

Lemma 2.7. For each q € N,K = K K7 = K K,

Let D = {h(x);x € Hom(Z®,n%),i € Z} By 2. 17 in (5], we have G = KDK (K was
denoted by U in [5]). Thus by 2.16 in [5] and Lemma 2.7 we obtain

Lemma 2.8. G = K,D;K,,q € N, where D; = K;DK7.

§3. Higher Congruence Spherical Functions Algebra

Let V be a finite dimensional Hilbert space, and End(V') the C*-algebra of the linear
transformations from V to itself. Let C.(G) be the set of the continous, complex-valued
functions of compact support on G. Let C,(G :EndV) be the set of continous compactly
supported functions with values in EndV.

Let J be an open compact subgroup of G. Suppose that there exists a decomposition of
G into the double cosets of J. Let o be an irreducible unitary representatlon of J on finite
dimensional Hilbert space V. Consider a space H(G/ JJ,0) of functlons in Co(G :EndV)
such that

Flkigka) = o(k1)f(g)o(ks), ki,ks€J, g€QG.

Tt is easy to check that H(G//J, o) is a convolution subalgebra of C,(G :EndV). We call it
the g-spherical Hecke algebra (cf. Appendix I in [4]).
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Clearly, for any ¢ € N, K, is an open compact subgroup of G by Lemma 2.6 and there
is a decomposition of G into the double cosets of K, by Lemma 2.8. Thus we are able to
consider the algebra H(G//K,,0), where o is some irreducible unitary representation of K.

Let C? = {hy;a € I1} and Cr = C? ® R. The elements in Cr are called the nondegen-
erate elements. Let L =Cr @ Rand Lr =Cr QR. Set Ly = C’L ® F. .

Let xo be an additive character of F' with conductor R. For a given nondegenerate
element x € Cr apd for any i, £ € N, we define

= xo(n~ h(tr(adwadi)) h=L+i, k€Ki (3a)
Hence, by Corollary 2.2, we have ¥, € ( i/KH_g)Av. It is easy to see that i, is an
_ irreducible unitary representation of K; with keri, = K;;¢. By Lemma 2.8, there exists

a decomposition of G into the double cosets of K;. Thus we shall be able to consider the
Yy-spherical Hecke algebra H(G//K;,v,).

Lemma 3.1. For anyi € N, g € suppH(G//K;, ) if and only if there exist y1,y2 € Ly
such that

ad21 = Adg(adzz) = g(a,dzz) Lo zs=u +7r Ys, §=1,2.

Proof. By [3], it is easy to see that g€ suppH (G / / K; i) if and only if the character
gkg™! — .(k),k € K;, agrees with 1, on ngg“l N K,, that is to say, for each k €
gKig~ 'n K,

xo (7 Mr((adz)(adTr))) = xo(7~"tr((adz)adT,-11,)).
It is easy to see that adT,-14, = g~ '(adTy)g, so we have
Xo(m ™" tr((adz)(adT}y))) — xo(r ™ tr((adz)g™ (adT}k)g)) = 0.
It follows that '
Xo(rtx((adz — g(adw)g™")(adTk)) = 0.
-For each k € K; we have T} € 7w Lg. Hence A
74 (adz - g(adz)g™') € ad(LR)
For each k € gK,;g™!, let k' = g~ kg. 1k € gK;g~! N K;, then we have k' € K; and
adTy = adTgpg-1 = g(adTy)g™
Hence N o |
| 79" (adz — g(adz)g™)g € ad(LR).
Summarizing the results above, we have
adz — g(ad:z:) ! € n'(ad(LR) + gad(Lr)g ™).

Therfore the proof is complete.
For a given nondegenerate element z, Iet

={ylye L, adoly ) =0},
_ LF,$={z|zELF,(z,y) =0,y E_LOFYE}.
Let L , = L%, NLg and Ly , = Li . N Ly. 1t is clear that
Lp=L%,®L%, and Lr= L ® Ly o
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For any y, 2 € Lp, (adz(y), 2) + (y,adx(2)) = 0, so adx(Lg ) C L ;- .

Thus, it is easy to see that the restriction of adz on Ly , denoted by (adz)* is an invertible
linear transformation on Ly ;, so (adz)" is bijective. Hence we have

(I) For each nondegenerate element z, (ddw)“" is surjective on LR o

Lemma 3.2. For any ¢ € N and each nondegenemte element x, letu € Lg ‘such that

m—u(modL) u = ug + mu*, ug eLRx,u eLRw, L-'—-7rLR
Then adu is conjugate to adup, up € LR . under K;. ‘ .

Proof. By (I), there is a u? € Ly , such that adz(u]) = u*(modLy).
So we have adu(u}) = u*(modL;). Let k; = exp(r’adu}). Then we have

Adky(adu) = (I + 7*adu})adu(I + t*adu})™!, (modL;) -
= (I + 7*adu})adu(l — 7'ad}), (modL;)
= adu + wiadd’{adu - wtaduadu}, (modL;) -
= adu + ladu?, adu] (modL )
= adu s (a,d[u ul]) (modL)
= ady — 7r radu®, (mosz.H)
= aduo, (modLH_l) _
Similarly, for any p € N there is a k, € K; such that .I
a,dkp(a,du) = a,duo, ‘(modLm,)

Therefore, the lemma, follows by taking p — oo.. : : .
Let oo be the maximal positive root.. Then the root ao can. be -expressed in the form
C o= m1a1‘ + Mmooz + -+ + Mplin; |
where m; € N, 1 <i < n. Let
Let A(ao) be the subset consisting of the integers & in N(c) which satisfy the conditi_oh:
k+# 1 s(n+1)ifnisodd and L ~ Ap, k # 7if L ~ Ex;
k # 2n1fnlsevenandL B, or C,.
For each k € A(ap), set Hk = H\ak, and put Hk = Hk if my, =1, I = I Ua if

mg # 1.
For each k € A(ap), let

= {dr |7 = mp100 + Mpg0g + -+ My 0 €Y, mep =5}, s=0,2.
Let &, = ®) U ®} and &} = @\ ®. For anyZEN k € A(ao), we define
Vey= {0 Vel rlo) €8}, Upy = {ueUe| r(w) €05},
Vir={veVe|r(v) €@y}, Upp={uel|r(v)ed},

where ®F = &N &+ and d1* = ®rN®*. For any i € N,k € A(aw); if ¢ is odd, then we say -
j = $(i+1) and set J¥, = U7, U7, if i is even, then we say j = 3¢ and set J7, = V', Uty
" Let z be a nondegenerate element and let ¥, be the set of the eigenvalues of adz. If

T,=Y0Un: TINZE=¢;, 0eX,
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then (29, %) is called a decomposition of ¥,. For any u € ¥, let
| | o= ={reo| adz(er) = pler)} |
={re®|(ne)=r(z) =4}

For each nondegenerate element z, if there is a € A(ao) and there is a decompos1t10n
(22, 2*) of £, such that @, U @£, then (z,a) is called a compatible pair (or separable

uEE"
pair). For each r € ®, let M, = {te,,t € F}. For each W € By, let M, = = Y M,.
“redk
Let Cr = C) ® F. For any u € 5, we define L = M,+Cp if u =0, LK = 1fu 7’: 0.

For each a € A(ap) let x, be the character of Z® such that
Xolo) =1,1<i<n, i #a, Xolaa)=-1, o€, 1<i<n.

Clearly, xo(r) =1if r € ®,, Xa(r) = ~1if r € ®}.

For any a € A(ag), let G, = {9 | 9 € G,gh(xs) = hM(Xa)g}. For any nondegenerate
element z, let G, = {g | g € G, g(adz) = (ad:z:)g}

Lemma 3.3. (i) For any nondegenerate element 7 and any ieN, i<,

' suppH(G//Kz,zpw) C K,G, K.
(i) If (z,a) s a compatzble pair, then for any i € N i<l
' suppH(G//Kz,ww) - KG K; o

Proof. For £€ N,i <[, let y € L% , and 2 = z + 7'y, Since y € LRz, for each y € ¥,

there exists 0 # v € (L¥) = LE ® F’ such that ady(v) = &v, € € F', where F' is some

“extension of F, and the eigenvalue £ of ady is called the eigenvalue of ady associated with .
We denote by X the set of all eigenvalues of ady associated with p. It is easily shown that

I, = U X4, where L, is the set of all eigenvalues of ady. Hence we have the following
HEZ,
statement.

(A) If ) is an eigenvalue of adz + mlady,y € LR »» then there exist u € £, and £ € I,
such that A = p + wt¢.

By ‘an obvious modification of Lemma 3.1, for each g€ suppH (G//K;, 1), there exist
Ys, 8 = 1 2 in Ly such that o

Adg(aduy) = adug, us =z + ireys, s=1,2. |
By Lemma 3.2, we can find Y. € L%,x NLg, and k, € K;,s = 1,2, such that
Adks(adu,) = adzs, 2z, =z + Wey;, s=1,2.

Thus, we have Adg'(adz) = adz, g’ = kogky ! This implies that

(B) ¢'(ad21) = (ad22)g’".

Let fs(A),s = 1,2 be the characteristic polynomlal of adzs,s = 1, 2 and let f(\) =
f1(A) f2(X). Let F’ bé the splitting field of f()) over F. ‘

Set Ly = Cp, ® F'. If adzy(v) = M, A € F',0 # v € Ly, then by (A), it follows that
A=p+ 7, 1€ B,,€ € B . Thus, by (B), we have

adzy(v') = 2,0 = ¢'(v). '
Hence it follows from (A) that A = p' + %€, 4’ € £;,¢' € 8% . By Lemma 1.1, it is easy
to see that u = u’ and & = &'. Thus, by (B), we have ¢'((L¥)") = (L¥)' for any y € Z,.
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Clearly, v and v’ have the following expression -
U—Ztre,«-i—h "D'——Zt'er+h',
ek - redt
Where tr 8l € F' e, € Cp,v € ®* and h,h’ € O, h = h' = O if 75 0.
Since (z,a) is compatible pair, we have

h(Xa ('v Z trXa(r er+ h(Xa)h
red®l

= Z dtre. +h,
reds
where d = 1 if ®* C ®,, d = —1,h = 0 if ®% ¢ ®*. Thus, it follows that A(x,)(v) = dv, so
9'h(Xa)(v) = dg'(v). Similarly, we have h(x,)g'(v) = dg’(v). Hence, for any v € (L%), 1 €
¥, it follows that

9'h(xe)(v) = h(X_a)gl('v)'
It is clear that L .
Lp = ) (14
T pED,
Thus we have g'h(x.) = h(xa)g 80 (n) follows.
Similarly, for any v € (L¥), u € L., we have

¢ (ada)(v) = (ada)g’(v) = pg'(v)
Therefore, (i) can be. shown immediately. o _

Hereafter, we shall fix an positive integer i. Moreover, we shall fix a nondegenerate
element z and an integer a € A(qp) such that (z,a) is compitable. Let J* = T, J =
H,;V, Ui o and J = J*J'. Clearly, J is'a subgroup of G' and J' is a subgroup of K;. ‘

Let 1!, be the restriction’of ¢, on J', where z is a nondegenerate element and 1, is
a character of K; defined in Section 2 with kersz C K;it1. Then we can extend P, in a
unique fashion to a representation o of J by letting it be trivial on J* (1f k' 0, then o is

- a cuspidal representatlon) We may assume that (z,a) i is a compa,tlble pair. By an obvious

modification of the argument used in (ii) in Lemma 3.3, we can show the followmg statement
immediately (hereafter, let [ = i=jFin (3a)) A

(II) Let G' = G,. Then suppH (G/]J;0) C JG'J.

Let U = (g,;r € ®*) and V = (z5;5 € @7). Let W be the Weyl group of L. Clearly
W=(uired). B

Lemma 3.4. Let GY = (z,,7 € 94, H) , H = (ha(t),a € II,t € F*). Then G, = Gy.

Proof. Clearly, if g € G,, theri g = g*, ¢* = haghy', he = h(xs). By 8.4.4'in [1], g has
a unique expression g = uhnq,u', where w € W,u € U,h € H and

v eU, ={uluel, nyany' eV}
By 8.4.4 in [1], g* = u*h*n,u'", where |
u* = houhyt, U =hew'h]' and RB* = hqhhg—l, B = nhani?.

Assume that u ¢ U, = U N GX. It is easy to see that u* # u. So, it follows from
8.4.4 in [1] that g # g*, a contradiction. Thus we have v € U,. Similarly, we can show
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that v’ € U, NU, and n, € N,. It follows that g € G¥, so G, C G¥. Clearly, we have
GX C Gy. So G = G¥. The proof is complete.

Clearly, if s € ®,, r € @} and is + jr € ® for some positive integers ¢ and j, then
18 + jr € ®;. Hence, by Lemmas 2.1 and 2.2, using an argument similar to that used in
Lemma, 2.5 and Corollary 2.1, we have

(ITI) Let K’ = K N G'. Then K' normalizes the subgroup J

For each r € ®,4 € Z, let x, 0 = {z,(t),t € 7'R}.

Let go = h(xo) such that xo(c;) =1,1 < ¢ < n,1# a and xo(a,) = 7. It follows from [5]
that each element ¢’ in G’ has a unique expression

: g =kid'ky, ki,koeK', d eD=GnD.
It is clear that if d’ € D', then d’ = h(x'), x' satisfying x'(r) = tx*"),t € R, 4(r) € Z. For
each d' € D' we define ‘- :
&** (resp.®*T, &%) = {r | r € ®**,4(r) > O(resp. < 0,=0)},
@ (resp.87,®857) = {s| s € ®;7,£(s) > O(resp. < 0,=0)}. -
The following lemma is easily verified. |
(IV) () ot = @F Ut URst, @ =@ UBTUD;T.
(i) @ = -@5~, &4t = —-8* and B}t = —@0".
- We define
Jit(esp.J2, Jgt) = {u | u € U N J*,r(u) € B4 (resp.8*F, &5")},
T3 (resp. =™, Jg7) = {v | v € VN J*,r(v) € @4 (resp.9*~,857).
Let Uy = (z,(t);r € <I>+,,t_,e.7r‘_11:{) and V, = (:ns(t), s€ <I>'",t € #QR>,q € Z.
Let G'" be the set of the elements ¢/ in G' such that
‘Adgl(Ut) C Ut t -Adg’(Vt) C Vt+t"‘, t"', " € N for anyt € Z.
_ The followmg statement is easily verified. N o '
' (V) With the notatlons g1ven above,
‘ () g——l = G/+
(11) if ' € @, then %™y € G'* for some m sufﬁmently large; ‘ A
(iii) go € suppH(G'//J',¥,) = suppH' and fi, # fl, = fo ., = fl, « fi, for any.¢' €
suppH "
(iv) {fy 9 € ot ﬂsuppH'} and f} generate H' = H(G'//J',4fL).
By (III)- and Lemma 2.8 we have _ o ,
Lemma 3.5. (i) Let Ji = JitJi™,k = +,—,0.. Then for each ¢’ € G,
JgJ=J I dJ§JET,
where d' € D' satisfying g’ = k1d'ka, k1,k2 € K' as above.
(i) For each ¢' € G', JgING' = J'g'J".
Let 7 be the map from H' to H = H(G//J,0) defined by
1(f3) = fo (vol(J'g' J')[vol(Jg'J))?, - ¢’ € suppH'. (3.1)

We shall show that the map 7 defined above is an isomorphism of algebra.
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Clearly J” is a subgroup of J. Therefore, if ¢’ € G' is in suppH, then it certainly is in

suppH’'. Therefore, (II) guarantees that the map n is surjective. It follows from (ii) in

Lemma 3.5 that the map 7 is injective.
Therefore, to show that the map 7 is an algebra homomorphlsm it suffices to show that
for any ¢, 9" € G'T 1 suppH',

n(fo) #1Fgr) = n(Fy * fi), (34)
and for any ¢’ € G'n suppH ! :
n(fgo) * n(fg )= 'n(fgog ) o (34)
Now we shall show (3 i). For each ¢’ € G"+, we have . o o |

| Adg'(J*AV)C J* NV, and Adg T (J*NU)cC J* AU
Write J*~ = J* NV and J** = J*NU. By (III), it is easy to see that J' normalizes the
subgroup J*:- Thus for any ¢’ € &', we have-
JgJ = J' g I = J*‘J’Q'J'J**f, o
vol(Jg'J) = #{J*~ /(J*~ 0\ Adg' (J*7)) }vol(J g’ J').
By the formulas given above, using the arguments which are analogous to them used in {4]

for the separated case, (3.i) can be established.
Foreach X C G,d' € D/, let C(X) = X N Add’X. By Lemma 3.5, it is easily shown that

vol(Jd'J) = [#C(JH[#C(J1)]vol(J'd"T").
Let ¢ = #(F). Then we have
log, vol(JgoJ) = #(257),

log,(vol(Jd'J) /vol(J'd' J")) = > "¢(r),
res

where § = @3 U @Y. Simimlazly, we have
vol(Jgod'J) = [A; As As]vol(J'd '),

where A; = #(C(J1)), Az =#(C(J}7)) and A3 = #(C(JgT)).
For each r € @7, it follows that m,o, = 1if r € ®;%, m,, = —1 if r € ®%~. Therefore,
we have £(r) = £(r) + m, 4. Thus, it follows that

log, (A1) = D _ (4(r) + 1), 1ogiq(Az) = (lr) -

reS1 r€Ss

log,(As3) = E (L(ry+1),
rESs
where Sy = <I>i+,82 =91 and S3 = <I>S+.
Thus, we obtain
logq(vol(Jgod'J)/vol(Jd'J)) = #(®5T) + #(@FT) — #(2%).

The following formula is easily verified:

log, (vol(JgoJ)) = #(®*%).
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Using the formulas given above and the arguments which are analogous to them used in [4]
(cf. p.25-28 in [4]), (3.ii) can be shown.

By statements (3.i) and (3.ii) , we obtain the main theorem:

Theorem 3.1. With the notations as above, the map n defined by (3.n) is an algebra
isomorphism from H' = H(G'//J',+.,) onto H = H (G’// J,o), and the map 7 is an isometry
of L?-space. '
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