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PURE STATE APPROACH TO C(X)x. Z,**

L1 BINGREN* LIN QING*

Abstract

Consider a C*-system (C(X), % n, @), where o is a homeomorphism of X such that om ='id.
The authors characterize the pure state space of C(X’) Xq Zn, the transition probability and
orientation on it. Two special cases (free action and n = 2) are studied in detail.
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The C*-crossed product C’(X ) Xa Zp has been studied for a long tlme For 1nstance
Effros and Hahn have studied the equivalence classes of the pure state of C’(X ) Xo B (or
primitive ideal space with Jacobson topology) (see (3]). When z., acts freely on X, their
result showed Pr(C(X)XqoZn) & X/a, where X [/ is the orbit 8 space. But the understandmg
of this simple C* algebra is still far from bemg complete And it is not so clear Why we should

view C(X ) Xa Zy as a topological object. F. W. Shultz has shown that the pure state space'

carrying the W*-topology, transition probablhty and or1entat10n is dual (prefactly dual) to
the C*-algebral’:¥). And for the C*-algebra C(X) X Zn, it is not so hard to describe its
dual (in the sense of Shultz). We feel that the C*-algebra C(X) X4 Z », especially the various
topological phenomena on it, is better understood through its dual. SR

In this paper, based on X/a, we first explicitly characterize the pure ‘state space of
C(X) X4 Z n, specifying the W*-topology (or W*-closure); transition probability and orien-
tation on it. Then we study two special cases in detail. One is when %, acts on X freely, the
structure mentioned above on the pure state space agrees with the classical flat. PU,,-bundle
over X/a, where PU,, = U, /5" and U, is the n x n unitary matrix group. This gives a hand
to study the structure of C(X) X Z, through its dual, which is partly known by geometers
and topologists. One interesting conseqUénce of our work may be quoted here:

If X is a connected compact Hausdorff space, z,, acts on X freely (the action is denoted
by a) and H?(X/a,z) has no element annihilated by n (i.e, na = 0 = a = 0), then

C(Y) X2y 2 C(X) X Bn S Ln

actson Y freely and X/a2Y/3.
~ Remember in this case X/a = P(C(X) X0 24).
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The second special case is when n = 2, the action of Z, may not be free. In this case we
may geometrically visualize the dual of C(X) X, Z,, and we may think it to be picture of
this nontrivial C*-crossed product. An example of this case is given.

For simplicity, we shall assume X to be a connected compact Hausdorff space in this paper
(some generalizations are obvious). And we identify a z ,-action a : z,, — Aut(C(X)) with
(1), denoted still by the letter o.. Thus o = id. Also, a pure state of C(X) wil be denoted
by evs,ev,(f) = f(x). A vector state of M,,(€) will be denoted by ¢y,

oA(T) = (TA,A)/ (X, N),
where ) is nongero in @¢'".

Recall that C(X) X4 Z, is the topological vector space C(X),x--+ x C(X) with the
followmg k- algebralc operatmn

(-fJ)JEZn) g= (gj)jézrn fj a’nd‘ gJ; G C(X)7
f g'—(E.fng—joa)) y

e $€Zn
= (fa-jo 7)ictn:

With these formulas in hand, it is easy to check

Proposmon 1. The map € : s (fi)jezn = (fimjo Z)z j s ax algebrazc embeddzng of
C(X) xazn into C(X)@M ' '

Let e(f)(cco) be denoted by e20(f), f € C(X) XaZn.

Corollary 1 Any pure state of C'(X ) X Zn zs of the form @y 0, , where 2 is a vector
states on M ’

Proof Any pure state of e(C (X) X Zn) can be extended to a pure state of C(X)® M,
whmh is the tensor product of two pure states ev_,,,o ® ©) (see [7,8]). Finally,

Paor = (€Vzy ® P2 06 = (), 0 €gq-

Note that if 21 & 2y, - To, then Qg A, # Paoir-

Now, the problem left to us is “for each zo, which A: makes ©Pzo,x Dure 7’ :

The following definition follows from the observation that ¢, A(f) only depends on the
valtes of f on the a-orbit of zg. o : ,

- Definition 1. Let zg € X, Xo -a-orbit of Ty, T : C(X ) — C’(Xo) the usual restrzctzon
map. Then : : :

C(X) XaZn 5 C(Xo) XaZr
defined by - R
r*(fijez.) = (filxo)iezn -
is an onto x-algebraic homomorphism, which is called the localization of C(X) X Zy, at zo.
Note that :

(,0:1;0,)\=¢m0)\07‘*’_ e - o “ (*)

where ), ) is defined similarly on C(Xo) Xq Zp.
The advantage of this localization comes from two s1des
Te first side consists of two easy principles, which we state here without proof
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Lemma 1. If A S B is an onto C*-homomorphism, then any. state ¢ on B is pure
& o is pure on A. Moreover, if o1 % @2 on B, then gy om ¢t pao7. ’

Lemma 2. If p1 =~ @y on B through a unitary i B of exponential form, then p1 0w ~
P2 OT. . : :
Remark 1. The (*) formula above and Lemma 1 tell us that for a glven g, a /\ makes
©g,x Pure if and only if it makes %z, x pure.

The second side is the simplicity of C(Xo) X & Z -

We say zo € X is of p-degree, if ap(:co) = xo, but oI (zy) # xo for all <j<p (1 e.,
#7Z o - o = p). In this case, pl =n.

Case 1. x; is of n-degree.
€xg

In this case, C(Xg) Xo Zn — My, (€4, is introduced as before).
Case 2. zj is of 1-degree. :
In this case,

» Y N
C(Xp)=C€ and C(Xy) XaZ,=C(Z4),

where F is the classical Fourier transform defined by

F((as)jez. (z Z‘LJ '
where z € Zp, = {1,7,--- ,7" 1} and 4 = e2ri/n,
Case 3. zy is of p-degree, pl = n.
This time, o® = id on X, and each point of Xg is p-degree. Moreover, we have
Proposition 2.

o v A - -
C(Xo0) Xa 22=(C(Xo) Xazp) ® C([0,1 - 1))
szoxid
= M, ®0(0,l - 1)), |
where [0,[ -~ 1] def. {0,1, . ,l - 1}, and if f'= (ftp—;-j)ogtgl—l, 0<5<p~1 is in'C(Xo) XaZnp,
then '

~k(tp+4) : —
(F)(k) = (gbfuv Jocseyy VEEDI-1]

Since this result is a finite version of a well-known result about mapping torus that
| C(X) Xa Zn = Ma(C(Xo) XaZy),
we only sketch the main line of proof (see [2])
Let C(Xp) be denoted by A,z; = {1,6,---,6" 1}, where § = 4P = - ¢27/l. Then any

function g on z, can be converted into the function § on {0, ~ 1] by §(k) = g(6%). Define a,
function 8 on C([0,{ — 1]) by B(k) = vy~*. Write

Q= {(f)tez.. : ft €A, fi=0if t%0(modp)}.

Clearly, Qis a C’*—subalgebra of Ax,Z,and Q5 C (Zz, A) by Fourier transform
-1 I

A (fot)ost<io1 = prtft, €L

- 1=0
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Let (0,1,0,---,0) in A X4 Z,, be denoted by A, then

A== (0, 50, 1) and M*?PeQ, A= ﬂiﬂ"

-1
Now we can uniquely decompose an element of A X4 Z, into E a])\J and the map
. ~Jj=0 :
-1

(@0, y@p—1) = Z a; ) is a topological linear 1somorphlsm of P onto A X, zn
=0

Think of A C A X o Zp in the natural way, and let L =(0, 1,0, cee ,0)‘ bein A XqZp, then
we may write

Axazp—;{%fm: fjeA}.
R

In fact, (f)jez, = Z fil?.

‘Then the composmon of the following maps is a topologlcal linear 1somorphlsm

= P
Zoaw\]q(a’)]ez? (@5)ogisp=r = _Zo'&jﬂ’ll’.
= £ ‘

Axgz, Q  (C(0,1-1],A)? C([0,] = 1), A xa 2p)
Let it denoted by . It is easy to check that this ¢ is also a *-algebraic isomorphism of
A X4 Z,, onto :

(0~ 1], A xazy) = (A xa2g) §C(0,1 - 1]).

-1

Finally, if f = (fip+)o<t<i-1, o<j<p-1 is in A X, Zn, then f = Z a; N, where a; =
. j=0

(gs .)053Sn—1 with ' |
() = fotrjy 8= 0(modp),
¢ 0, otherwise.
So s

_ -1
aj(k) = a;(8%) = fipy6

=0

and then ¥(f)(k) has the desired formula.
Now we can apply these results to the pure state problem we set before
Caes 1. zg is of n-degree.
The following diagram obviously commutes:

C(X) %o Zn —"—> C’(Xo)x Zn
AN lemo

. M,
which shows the subjectivity of £, from C(X) X4 Z,, into M,. Since @z » = cp,\' 0 Exys
Lemmas 1, 2 together with general relation of a pure state and its associated irreducible
representation yield
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Theorem 1. If zo is of n-degree, then s, 5 is pure for any [A] € IP(@' ™). Moreover,
©zo,0 'S are all mutually unitarily equivalent. The correspoding primitive ideal is

J®) (z5) = kerr* = {f = (f})jea. : fi(ai(z0)) =0, VO<i,j <m—1}

Remark 2. It is clear that C(X) X 2 n/J™ (x4) ~ M,

Case 2. g is of 1-degree. o

In this case, @z, » is pure if and only if it is one of

pr=evoFor*, 0<k<n-1,
where v = e2"/" ey, k' C(zy) — €, and F: C(Xo) XaZn = C(Z ). are defined as before.
Note that ¢ (f) = Z fi(zo)y™* are all multlphcatwe thus the associated primitive ideal’
is = . . . .
I (w0) = ker i = {f € C(X) Xa 21 : (fol), - ,fn_l(xg)) L &),

0 <k <n—1, where 6 = {1,7%,- .- ,y(*"D%)/\/n.. .

Theorem 2. If a(zo) = %o, then ¢y is pure & [\l = [6x], and @zo,x = @k for some
0 <k <n-—1. Moreover, ky # ks implies P, & Prro by

nxXn

Proof. Let
0 1
Ap = ! . 0 )
,, 0 1 0

then A,8, = v %6 Since A, is a unitary, {6k Yo<k<n—1 forms aﬁ orthonormal basis of €.
* In particular, if ky # ko, then J(=1)(w0) #* J(l)(;po), ‘s_vo,(pk,1 b Ok

Since (fi—;(z0))s,; = E fJ(mO)A if ||)\|| =1,

oo (f) = Efa(wo AL, A

=0
From this, it is easy to see that ¢q,,5, = ¢k, and if )\ Zakﬁk (Z la|? = 1), then @y \ =
Z lax?0k. So if |A| # |8k for all k, then @y, x is not pure.

Case 3. x is of p-degree, 1 < p < n, 'pl = n. |

In this case, the pure state on C(Xo) xa Zp returns to the case 1 discussed. Thus, ¢, »
is pure if and only if it is one of - ’

<pz01“1 ((me)/“ ® evk) w o T

where [y] € IP(C p) 0<k<1~1,and is given in Proposition 2 above.

We can picture the definition of ¢4, 1 by the following diagram:
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C(X) XaZn —— C(Xo) XaZn

¥
—— (C(Xo) Xa 2,) ®C([0,1 - 1))
8m0®e7~’k .
————————— p
<Pwo,u.k\ ' lﬂ"#
c

The first thing coming out from this picture is the primitive ideal associated to ¢,k (0 <
k<l-1): '

J®) (z0) = ker|(e4, ® evy) 0 9 o ]
={f = (fip+a)t.d € C(X) XaZn: (fiptj o (z0))ost<i-1 L b, 0< 4,5 <p—1},

where 8 = (1,6%,. .. ,6(=V% /\/1. Clearly,

C(X) Xa Zn/ TP (@0) 2 My.

Set
0 1
A= ! . 0 "
0 . 1. 0 Ixl

then A;gk = 5*k5k, 0 < k <1 - 1. By normality of 4, "{gk}og'ksl—1 forms an orthonormal
basis of €. Thus k1 # ks, J)(z0) # J7) (o), which implies Gay,u b, % Pao,ks

Since ¢, =~ ¢, must be through a unitary of exponential form and (&g, ® evg) 0 o r*
is Onto Mp’ (p:tO’I‘llk = (PxOy/JQJk' '

Now for each pair (y,v) € €P x €', we define u® v € QTP by

(@ V)ptra = pave, 0<t<1—1, 0<d<p-L

Lemma 3. If u, 4/ € €P, v,v' € €', then for each f € C(X) Xa Zp,
CeolDpBvp ®Y) = 3 [ HatamalAft, V) fipra o™ (ao))]

0<t<gl—1 d=0
0<a<Llp-1

p-1 | '
b Y [ X Htrrealdf ) prao a7 (z0))]

0<t<i~1 d=a+l
0<a<lp—1 ‘
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Proof. For any pair (), )) € §2"~! x §2"~1 we have

(Eaa(HNN) = Y fijoa™ (z0)MA;

4LJ€EZn
= E fi 0 a @)\ A
= Z [Z fp+a© 0™ ? (o) (Z)\ sp+a)\(s-t)p+a d)]
0<i<l—1 d=0 s=0
0<a<p—1
-1
+ Z [ Z fipraoa” (wo (E)\ sp+a/\(s t—1)p+pta— d)]
0<tgi—1 d=a+l = s=0
0<a<p—1 . A
Substituting A by u ® v and Y by ' ® v, we get the desired formula
Corollary 2. For y = (M])o<g<p—1, we deﬁne M(k) = (po, 1Y*, -+, tip— 17 P=1R), Then
-1
Pao,uk = Py yWI @b 0 S k _<_ [—1. Moreover, since @"’ = C? ®6k, a unit vector A of
’ k=0
‘@™ has a unique decomposition
-1 5
A= o ®5k, ok > 0 el =1, S el =1
k=0

Then @g,, A= Z Iak‘ (’Owo Mk®6k .

Summamzzng these works, we have 5

Theorem 3. @y, x is pure if and only if A = u® 8 for some unit vector -y € C'P and
O<k<l—1 ~Moreover, - : :

P, @8 = (pfvo u2®5k and (pmo,lt@&kl ;é Pao,u@8k,
Let the pure state space of the C*-algebra A be denoted by P(A). We shall now speczfy
the topology and additional structure on P(A), where A = C(X) X Zn, and the closure of
P(A) relative to the W*-topology.
Proposition 3. If X is connected with a dense n-degree pomt ( relative to a), then the
map ¥ : X @IP(C") — P(C(X) Xo 2 n) defined by

( 71)‘|) = Op)

s continuous and onto.

Recall the definition of 4, and e(e(f) = (fi—;j 0 @™%);;), then the following lemma can

be directly verified.

Lemma 4. For each fe C(X) Xq Zn, e(f) oa= ne(f)

Thus Pa(z)r = Pz, Az2hr A elP(C™) and ¢ € X.

I T
Usz’ng 81 ’s introduced before, we have an orthogonal decomposition €™ = @ C? ® by
= ' k=0
Let Iy, be the zdentzty map of €7 ® 6k, then
- _

{@Qkfk O € Sl} NT[(Z — torus)
k=0
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is a subgroup of U,. It acts onIP(C'™) naturally. Let the Up-orbit of [A] be denoted by [[A]],
then we have
Lemma 5. Let zo be a p-degree point of X, pl =n, [\ and [N] be in]P(G‘ "), Then

Paon = P, & [N] € [A]].

Thus [[A]] = @z,,x provides a natural isomorphism of INC™) /Uy, with {pg,x : [N € IH(C™)}.
1-1
Proof. Let A =3 o (jix ® &%) w1th 0<ar <1land ”Mk” =1, ¥ |ag/? = 1. Then
k=0
Corollary 2 tells us

-1

(pw()sA = Z IaklZSD:vaﬁk@sk.
k=0

Thus the direction “ <=' ! is clearly true.
Note that <,om0 b = = 9, 0 (zd ® evk) o (eg, ®1d) Por®and

| range[(sa,o ® zd) ¢ or¥] = M ® C([0,! — 1]).
So

-1 -1 '
. 2
za%(pxo’“k)k = Ea,kww(ﬁﬂ;ﬂk (ak’a;ﬁ? Z 0) ’
. k=0 . k=0
implies
-1
Y o F(R)(T e, i) = Z o kf(k <Tuk,,uk>
k=0 k=0 ~

for each T' € M, and f € C([0,! — 1}]). Taking' f = % the characteristic function supported
at k, we have oy, = o, and if o # 0, [pz] = [,u,g] Combining this with Corollary 2, we get
the desired result.

Remark 3. Let the standard n- 81mplex be denoted by

A, ={E ol : ak‘z. 0, za@ = 1} '

Then if 2o is ﬁxed pomt of &, A, “’{%o »:AeP(@T)} Provided'by |

Elkék =P g |

pard Zo, ):0 ak5k

If o is of degree n, then {pz,  : A €IP(C")} 2IP(C™) by
(me’A 1:-)1 [)\}'
We shall treat the above natural isomorphisms as the identification.

Proposition 4. If zg, [)\] are all as in the lemma above and ¥ ‘is the map deﬁned in
Proposztzon 3, then

U (gzg,0) = {(07 (20}, N]) : V] € [[45X], 0<j<n-—1}.

-1 L
Proof. Note that A2 =I® A; = @ 8711, x b is in Up. So
k=0

[APHX]] = [(AZ)[ALN] = [[A%N]], 0<d<p—1, 0<t<i-L
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Thus we may assume [X'] € [[A%A]] for some 0 < j < p— 1. By Lemmas 4 and 5, we then
have . :

Pai(zo), N = Poi(zo), Al A = Proe : : (#%)
" Conversely, if ¢z ' = @q, 1, then z € a-orbit of zo. Assume z = af(z), then, by the
(++) formula and Lemma 5 above, we have [A'] € [[47)]].
This proposition : 1nduces an equlvalent relation in X Eﬂ’(@' ") by

(2, (A]) ~ (&, [N ) & &’ = o’ (zo) and [N] E (4f All, 0<j<n- 1,
where the meaning of [[A \]] has to depend on the degree of z.
Let m be the corresponding quotient map. Then the followmg theorem becomes clear
Theorem 4. If n-degrée points are dense in X, then the map ¥ : X xIP(€ ™)/
P(C (X) Xo Zn) given by |

‘I’(W(w, [AD) = ¢z
1s well-defined and is a homeomorphism.
Remark 4. Let o be the natural map of X - X/a and pi : X xIP(C ") — X the
projection onto the first component, then a projection from X X IP(C ") [~ onto X/ is
induced by p(r(z,[\)) = o(z) = z,, - z. Obviously the following diagram commutes:"

X X(@") — X xIAG")/~ —— POK) ¥a27)

gop N\, lp / po¥l
- X/a :

Let po U~ be denoted by p', then p'(¢z,2) = Zn - z = o(z). Think P(C(X) XoBn)
to be fibred space over X /o (not a fibre space, or a fibration in general) through p', then
Yz = Qg x & they are on the same fibre. Thus we may 1dent1_fy the ﬁbr_ed space p’
P(C(X) XaZn) — X/a with that of p: X xIP(@ ™)/~ — X/a. ’

The transition probability and orientation on P(C (X) X Z5) oW may be identified with
the fibred 'space p: X xIF{@ ™)/ — X/a with specified structure groups on each ﬁbre type
through the natural identification (see [9]): :

if z is of degree n, then this group is PU, on p~}(z, - z) NIP((L" ")

if = is of degree 1, then thls group is the map of all simplicial automorphisms of A, =
P Zn - 7). "

If z is of degree p, 1 < p < n, then we may think of

p Nz ) XIP(C™)/U, = { Eakuk®§k] (k)i GAz

and up € €7 with |lugl| = 1}

as a generalized [-simplex with various copies of IP(€ ?) as vertices. Let S; be the [-th
permutation group, then S x (PU,)! acts onP(€'")/Up faithfully (not freely) by
if (1;[pol, -+ , [p1-1]) € Si x (PU,)}, where ¢; € Uy, then
-1 -1

(Tilpol,+  [or-a) - [ conir ® 8] = {Zar_(k)%(uk) ® 5k]]

k=0 k=0
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We may call S; x (PU,)* the group of generalized simplicial automorphisms. The structure
group on I(C™) /U, 2 p~1(z,, - z) is S x (PU,). '

When every point of X is of n-degree, or z, acts on X freely, this fibred space (with
specified structure group) is just a classical flat PU,-bundle over X/a which we shall

describe now. 7
Let {U;} be an open cover of X/a with each U; and U; N U; connécted s.t. for each i

o™ U) =T Ua(T;) U -+ - U o™ Y(Ty),
with T; N a*(T;) = 0, Vk =0 (modn).

The choice of U is not unique.
Lemma 6. IfU;N U; # 0, then there is an mteger kji (umque up to a multzple of n) s.t.

o (U o U NTy) = U; no™ (U nU;).
Proof. From the assumption, o gives a homeomorphlsm of U onto U;. Note that a(U N
o~} (U;nU;)) = U;NU;. So S
Ui N 0'—-1(Ui NU;) = ﬁz N 0_1(Uj) = U ﬁz n at(ﬁj)
, _ _ . _ t€z, .
is connected, which forces for all ¢ but one —k

ﬁi N Olt(Uj) =0,
[7,' N 0'_'1(U1; N U]) = sz ] Oé—k(fjj).
Or
o*(U; N o~ (U; N T;)) = o (U;) N ;.
Similarly, U; No~1(U; NU;) = &(T;)NT;, and if ¢ # 1, at(U)ﬂU = 0. Thus k = l= lc]z
is unique (mod n) and has the desired property. - ‘
With U; as above, we have P~ Y(U;) = n(U; xI(C™)) and thus
= (o x id) o (n]y, P(E ™) )“

is a well—deﬁned homeomorphlsm p~1(U;) onto U; xIP(@™). The followmg calcultion shows
that (U;, #;); gives a coordinate system of X xIP(@' ™)/~ as PU,-bundle over X/a:

p~ Y (U;NT;) LR U;nU;) xIA(C™)
(e, An? [\)) "= (g, ) - — (o), [\])

| :
| hiod"
kij
(o(y), An? [A])
(U-ﬂU-) XP(GJ") '
where z € U; ﬂp“l(U NU; ) and y = a’“ﬂ(a:) el; Np~ X U;n ;).
Thus qﬁ,qﬁ = g;; = [AFi] € PU,. We may 1dent1fy the PU,-bundle with the 1- cocycle
(U: nU;, [A 71)s,5, which is clearly ﬂat .
Let E be the U,-vector bundle correspondmg to the 1-cocycle (U; N Uj, Ak” )i j, then its
projectivilization I{E) & X XI{@ ™)/~ (see [6]). The equivalence of F; & E, clearly implies
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’ Tl',—l
IP(E,) 2 IP(E;). Now E @ L*, where L is the Uy-bundle (U; N Uj,v%4); ; (remember

v = ¢2™/™) and L* is the k- th tensor power of L. :
Proposition 5. Iz, acts on X freely (generated by a), and H 2 (X /a,2.) has no element
annihilated by n, then

C’(Y) X3 Zn 2 C’(X) XaZn ¢}z

acts on'Y freely and X/ o ."_’ Y/ 8.

Proof. In this case, since [L"] = n[L] =0in H 2(X a,z) (L is described as above), we
have [L] = 0, i.e., L is trivial. Thus X xIA€ ™)/~ as PUp,-bundle over X/ is trivial. By the
consideration of the dimension of irreducible representations, the above statement is clearly
true.

E.g. Let Xo = T?, then H'(X,,2) and H 2(Xo,z) are both free abehan groups.

H'(Xo,2n) =2, ;éo

Thus any nonzero element in H'(Xp,2,) will give a n-fold regular covering X of Xy with
Z . as its deck transformation group. Of course this 7, action on X is free with the obrit
space Xo. ' ' : Saon

When n = 2 we may visualize the ﬁbred space P(C(X) Xq Z#) over X/a, which may be
thought to be the dual of C(X) X, Z3. Let X® = fixed point set of &. We still-assume.it to
be nowhere dense in X. We may put a metric d on X if X is 2nd countable.

At first, we may identify X XIP(G’ 2) with X x §? (thus the PU, action becomes 5’03
action on $?) by :

(o, ) 2 5 2ReDys, 2 ~ AP,

where (A, p) € €2 with |A\|?+]u|? = 1. The equivalence: relation 1ntroduced after Proposmon
4 on X xIP(C?) is now translated to X x S? by _ ,
if z # a(x), (z;21,22,23) ~ (; $1,£I)2,£U3) & elther T = a: ((L‘1,ZE2,923) = (2}, x5, z5) or
' = a(z), (1,75, %3) = (1, ~22 ‘--:153), ' o
if £ = a(x), (z;21,2,3) ~ (s}, 25, 25) & =1 and z3 = xl
Define a continuous map T' : X X Szv — X xIR by
| T(z; 1, T2, T3) = (2; 21,d(z, X )29, d(z, X *)23).

Let the range T be denotec_l by Y. Let p; be the natural projection of X x IR onto X.
Then if z ¢ X<, (p1|Y)~'(z) carries the metric.and orientation induced from $? ( by using
T). We shall call it the natural metric on (p;|Y)~(z). Identify the point

(z;71,d(z, X*) 2o, d(z, X *)23) with (a(z);z1,—d(z, X*)xs, ~d(z, X*)x3),

and let the resulted quotient space be denoted by Y/ ~ . Then clearly Y/ ~2 X x §2/ ~
and the following diagram commutes:

Y —— Y/~ — Xx8%~
cop \ |7 /7
X/a
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'Thué the fibred space Y/ ~ over X/a may be identified with that of X x §%/ ~ or
(P(C(X) Xa z2),p'). This Y/ ~ is visualizable. It is dual to C(X) X4 2 2.
Eg. Let X = {(¢,0) : {t| < 1} U {(0,) : |y| <'1}. The automorph1sm a: X — Xis glven
by a(t,0) = (—t,0), «(0,y) = (0,y). Thus o? = id, and
*={0y: <1}, X/a={(t0):0<t<13U{(0,9) ]yl < i}-

From the provious work, we have (the W*-topology on the pure state space)
P(C(X) xa22) 2 [{(£,0):0 < ¢ < 1} xIHE*)] U {((0, ), [\]) : [yl < 1
~and A= (0,1) or (1,0)}.
Usmg ¢I> and the mduced topology from X/a xIR3, we have
P(C(X) x4 Z2) & {((t,0); 21,txq,tx3) : 0 <t <1 and
(&1, B2, 73) € SPFU{{(0,);1,0,0): 0< [y <1, p=%1} C X/ x IR
The projection of this fibres space is the natural one onto the first component (to t — y
plane) and the metric and orientation on fibred are all the natural ones. ‘
“This gives a geometric picture of the “dual” of C(X) X4 Z 2. , '
Remark 5. We have extended this “dual study” of C(X) Xq Z, to C(X ) X Z with

o” = id (see [5]). Along this line, a classification of- rat1onal rotation C*-algebras on unit
circle has been reproduced (see [4]).
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