PURE STATE APPROACH TO $C(X) \times_{\alpha} \mathbb{Z}_n^*$

LI BINGREN* LIN QING*

Abstract

Consider a C^* -system $(C(X), \mathbb{Z}_n, \alpha)$, where α is a homeomorphism of X such that $\alpha^n = id$. The authors characterize the pure state space of $C(X) \times_{\alpha} \mathbb{Z}_n$, the transition probability and orientation on it. Two special cases (free action and n = 2) are studied in detail.

Keywords C^* -crossed product, Pure state space, Transition probability, Orientation. 1991 MR Subject Classification 46L.

The C^* -crossed product $C(X) \times_{\alpha} \mathbb{Z}_n$ has been studied for a long time. For instance, Effros and Hahn have studied the equivalence classes of the pure state of $C(X) \times_{\alpha} \mathbb{Z}_n$ (or primitive ideal space with Jacobson topology) (see [3]). When \mathbb{Z}_n acts freely on X, their result showed $P_r(C(X) \times_{\alpha} \mathbb{Z}_n) \cong X/\alpha$, where X/α is the orbit space. But the understanding of this simple C^* algebra is still far from being complete. And it is not so clear why we should view $C(X) \times_{\alpha} \mathbb{Z}_n$ as a topological object. F. W. Shultz has shown that the pure state space carrying the W^* -topology, transition probability and orientation is dual (prefactly dual) to the C^* -algebra^[1,9]. And for the C^* -algebra $C(X) \times_{\alpha} \mathbb{Z}_n$, it is not so hard to describe its dual (in the sense of Shultz). We feel that the C^* -algebra $C(X) \times_{\alpha} \mathbb{Z}_n$, especially the various topological phenomena on it, is better understood through its dual.

In this paper, based on X/α , we first explicitly characterize the pure state space of $C(X) \times_{\alpha} \mathbb{Z}_n$, specifying the W*-topology (or W*-closure), transition probability and orientation on it. Then we study two special cases in detail. One is when \mathbb{Z}_n acts on X freely, the structure mentioned above on the pure state space agrees with the classical flat PU_n -bundle over X/α , where $PU_n = U_n/S^1$ and U_n is the $n \times n$ unitary matrix group. This gives a hand to study the structure of $C(X) \times_{\alpha} \mathbb{Z}_n$ through its dual, which is partly known by geometers and topologists. One interesting consequence of our work may be quoted here:

If X is a connected compact Hausdorff space, \mathbb{Z}_n acts on X freely (the action is denoted by α) and $H^2(X/\alpha, \mathbb{Z})$ has no element annihilated by n (i.e., $na = 0 \Rightarrow a = 0$), then

$$C(Y) \times_{\beta} \mathbb{Z}_n \simeq C(X) \times_{\alpha} \mathbb{Z}_n \Leftrightarrow \mathbb{Z}_r$$

acts on Y freely and $X/\alpha \cong Y/\beta$.

Remember in this case $X/\alpha = P_r(C(X) \times_\alpha \mathbb{Z}_n)$.

Manuscript received September 15, 1992.

^{*}Institute of Mathematics, Academia Sinica, Beijing 100080, China.

^{**}Project supported by the National Natural Science Foundation of China.

The second special case is when n = 2, the action of \mathbb{Z}_2 may not be free. In this case we may geometrically visualize the dual of $C(X) \times_{\alpha} \mathbb{Z}_n$ and we may think it to be picture of this nontrivial C^* -crossed product. An example of this case is given.

For simplicity, we shall assume X to be a connected compact Hausdorff space in this paper (some generalizations are obvious). And we identify a \mathbb{Z}_n -action $\alpha : \mathbb{Z}_n \to \operatorname{Aut}(C(X))$ with $\alpha(1)$, denoted still by the letter α . Thus $\alpha^n = id$. Also, a pure state of C(X) will be denoted by $ev_x, ev_x(f) = f(x)$. A vector state of $M_n(\mathcal{C})$ will be denoted by φ_{λ} ,

$$\varphi_{\lambda}(T) = \langle T\lambda, \lambda \rangle / \langle \lambda, \lambda \rangle,$$

where λ is nonzero in \mathbb{C}^n .

76

æ

Recall that $C(X) \times_{\alpha} \mathbb{Z}_n$ is the topological vector space $C(X), \times \cdots \times C(X)$ with the following *-algebraic operation:

$$f = (f_j)_{j \in \mathbf{Z}_n}, \quad g = (g_j)_{j \in \mathbf{Z}_n}, \quad f_j \text{ and } g_j \in C(X),$$
$$f \cdot g = \left(\sum_{j \in \mathbf{Z}_n} f_j(g_{s-j} \circ \alpha^j)\right)_{s \in \mathbf{Z}_n},$$
$$f^* = (\bar{f}_{n-j} \circ \alpha^j)_{j \in \mathbf{Z}_n}.$$

With these formulas in hand, it is easy to check

Proposition 1. The map $\varepsilon : (f_j)_{j \in \mathbb{Z}_n} \mapsto (f_{i-j} \circ \alpha^{-i})_{i,j}$ is a *-algebraic embedding of $C(X) \times_{\alpha} \mathbb{Z}_n$ into $C(X) \otimes M_n$.

Let $\varepsilon(f)(x_0)$ be denoted by $\varepsilon_{x_0}(f)$, $f \in C(X) \times_{\alpha} \mathbb{Z}_n$.

Corollary 1. Any pure state of $C(X) \times_{\alpha} \mathbb{Z}_n$ is of the form $\varphi_{\lambda} \circ \varepsilon_{x_0}$, where φ_{λ} is a vector states on M_n .

Proof. Any pure state of $\varepsilon(C(X) \times_{\alpha} \mathbb{Z}_n)$ can be extended to a pure state of $C(X) \otimes M_n$, which is the tensor product of two pure states $ev_{x_0} \otimes \varphi_{\lambda}$ (see [7,8]). Finally,

$$\varphi_{x_0,\lambda} = (ev_{x_0} \otimes \varphi_{\lambda}) \circ \varepsilon = \varphi_{\lambda} \circ \varepsilon_{x_0}.$$

Note that if $x_1 \notin \mathbb{Z}_n \cdot x_0$, then $\varphi_{x_1,\lambda_1} \ncong \varphi_{x_0,\lambda}$.

Now, the problem left to us is "for each x_0 , which λ makes $\varphi_{x_0,\lambda}$ pure ?"

The following definition follows from the observation that $\varphi_{x_0,\lambda}(f)$ only depends on the values of f on the α -orbit of x_0 .

Definition 1. Let $x_0 \in X$, $X_0 = \alpha$ -orbit of x_0 , $r: C(X) \to C(X_0)$ the usual restriction map. Then

$$C(X) \times_{\alpha} \mathbb{Z}_n \xrightarrow{r^*} C(X_0) \times_{\alpha} \mathbb{Z}_n$$

defined by

$$r^*((f_j)_{j\in\mathbf{Z}_n}) = (f_j|_{X_0})_{j\in\mathbf{Z}_n}$$

is an onto *-algebraic homomorphism, which is called the localization of $C(X) \times_{\alpha} \mathbb{Z}_n$ at x_0 . Note that

$$\varphi_{x_0,\lambda} = \psi_{x_0,\lambda} \circ r^*, \qquad (*)$$

where $\psi_{x_0,\lambda}$ is defined similarly on $C(X_0) \times_{\alpha} \mathbb{Z}_n$.

The advantage of this localization comes from two sides.

Te first side consists of two easy principles, which we state here without proof.

Lemma 1. If $A \xrightarrow{\pi} B$ is an onto C^* -homomorphism, then any state φ on B is pure $\Leftrightarrow \varphi \circ \pi$ is pure on A. Moreover, if $\varphi_1 \neq \varphi_2$ on B, then $\varphi_1 \circ \pi \neq \varphi_2 \circ \pi$.

Lemma 2. If $\varphi_1 \simeq \varphi_2$ on B through a unitary in B of exponential form, then $\varphi_1 \circ \pi \simeq \varphi_2 \circ \pi$.

Remark 1. The (*) formula above and Lemma 1 tell us that, for a given x_0 , a λ makes $\varphi_{x_0,\lambda}$ pure if and only if it makes $\psi_{x_0,\lambda}$ pure.

The second side is the simplicity of $C(X_0) \times_{\alpha} \mathbb{Z}_n$.

We say $x_0 \in X$ is of *p*-degree, if $\alpha^p(x_0) = x_0$, but $\alpha^j(x_0) \neq x_0$ for all $1 \leq j < p$ (i.e., $\#\mathbb{Z}_n \cdot x_0 = p$). In this case, pl = n.

Case 1. x_0 is of *n*-degree.

In this case, $C(X_0) \times_{\alpha} \mathbb{Z}_n \xrightarrow{\sim} M_n$ (ε_{x_0} is introduced as before). **Case 2.** x_0 is of 1-degree.

In this case,

$$C(X_0) = \mathscr{C} \text{ and } C(X_0) \times_{\alpha} \mathbb{Z}_n \xrightarrow{F} C(\widehat{\mathbb{Z}}_n),$$

where F is the classical Fourier transform defined by

$$F((a_j)_{j \in \mathbf{Z}_n})(z) = \sum_{j=0}^{n-1} a_j z^{-j},$$

where $z \in \widehat{\mathbb{Z}}_n = \{1, \gamma, \cdots, \gamma^{n-1}\}$ and $\gamma = e^{2\pi i/n}$.

Case 3. x_0 is of *p*-degree, pl = n.

This time, $\alpha^p = id$ on X_0 and each point of X_0 is *p*-degree. Moreover, we have **Proposition 2.**

$$C(X_0) \times_{\alpha} \mathbb{Z}_n \xrightarrow{\psi} (C(X_0) \times_{\alpha} \mathbb{Z}_p) \otimes C([0, l-1])$$

$$\stackrel{\varepsilon_{x_0} \times id}{\to} M_p \otimes C([0, l-1]),$$

where $[0, l-1] \stackrel{\text{def.}}{=} \{0, 1, \dots, l-1\}$, and if $f = (f_{tp+j})_{0 \le t \le l-1, 0 \le j \le p-1}$ is in $C(X_0) \times_{\alpha} \mathbb{Z}_n$, then

$$\psi(f)(k) = \left(\sum_{t=0}^{l-1} f_{tp+j} \gamma^{-k(tp+j)}\right)_{0 \le j \le p-1}, \quad \forall k \in [0, l-1].$$

Since this result is a finite version of a well-known result about mapping torus that

$$C(X) \times_{\alpha} \mathbb{Z}_n \simeq M_{\hat{\alpha}}(C(X_0) \times_{\alpha} \mathbb{Z}_p),$$

we only sketch the main line of proof (see [2]).

Let $C(X_0)$ be denoted by $A, \widehat{\mathbb{Z}}_l = \{1, \delta, \cdots, \delta^{l-1}\}$, where $\delta = \gamma^p = e^{2\pi i/l}$. Then any function g on $\widehat{\mathbb{Z}}_l$ can be converted into the function \tilde{g} on [0, l-1] by $\tilde{g}(k) = g(\delta^k)$. Define a function β on C([0, l-1]) by $\beta(k) = \gamma^{-k}$. Write

$$\Omega = \{ (f_t)_{t \in \mathbf{Z}_n} : f_t \in A, f_t = 0 \text{ if } t \not\equiv 0 \pmod{p} \}.$$

Clearly, Ω is a C^{*}-subalgebra of $A \times_{\alpha} \mathbb{Z}_n$ and $\Omega \xrightarrow{\sim} C(\widehat{\mathbb{Z}}_l, A)$ by Fourier transform

$$\Lambda: (f_{pt})_{0 \leq t \leq l-1} \to \sum_{t=0}^{l-1} f_{pt} z^{-t}, \ z \in \widehat{\mathbb{Z}}_l.$$

Let $(0, 1, 0, \dots, 0)$ in $A \times_{\alpha} \mathbb{Z}_n$ be denoted by λ , then

$$\lambda^{-1} = \lambda^* = (0, \cdots, 0, 1) \text{ and } \lambda^{\pm + p} \in \Omega, \quad \hat{\lambda} = \beta^{\pm + p}.$$

Now we can uniquely decompose an element of $A \times_{\alpha} \mathbb{Z}_n$ into $\sum_{j=0}^{p-1} a_j \lambda^j$ and the map

 $(a_0, \cdots, a_{p-1}) \to \sum_{j=0}^{p-1} a_j \lambda^j$ is a topological linear isomorphism of Ω^p onto $A \times_{\alpha} \mathbb{Z}_n$.

Think of $A \subseteq A \times_{\alpha} \mathbb{Z}_p$ in the natural way, and let $L = (0, 1, 0, \dots, 0)$ be in $A \times_{\alpha} \mathbb{Z}_p$, then we may write

$$A \times_{\alpha} \mathbb{Z}_p = \Big\{ \sum_{j=0}^{p-1} f_j L^j : f_j \in A \Big\}.$$

In fact, $(f_j)_{j \in \mathbf{Z}_p} = \sum_{j=0}^{p-1} f_j L^j$.

Then the composition of the following maps is a topological linear isomorphism:

$$\sum_{j=0}^{p-1} a_j \lambda^j \to (a_j)_{j \in \mathbb{Z}_p} \to (\tilde{a}_j)_{0 \leq j \leq p-1} \to \sum_{j=0}^{p-1} \tilde{a}_j \beta^j L^j$$

$$\stackrel{\text{th}}{A \times_{\alpha} \mathbb{Z}_n} \stackrel{\text{th}}{\Omega^p} (C([0, l-1], A))^p C([0, l-1], A \times_{\alpha} \mathbb{Z}_p)$$

Let it denoted by ψ . It is easy to check that this ψ is also a *-algebraic isomorphism of $A \times_{\alpha} \mathbb{Z}_n$ onto

$$C([0, l-1], A \times_{\alpha} \mathbb{Z}_p) = (A \times_{\alpha} \mathbb{Z}_p) \otimes C([0, l-1]).$$

Finally, if $f = (f_{tp+j})_{0 \le t \le l-1, 0 \le j \le p-1}$ is in $A \times_{\alpha} \mathbb{Z}_n$, then $f = \sum_{j=0}^{p-1} a_j \lambda^j$, where $a_j = (g_s^{(j)})_{0 \le s \le n-1}$ with

$$g_s^{(j)} = \begin{cases} f_{s+j}, & s \equiv 0 \pmod{p}, \\ 0, & \text{otherwise.} \end{cases}$$

So

$$\tilde{\hat{a}}_j(k) = \hat{a}_j(\delta^k) = \sum_{t=0}^{l-1} f_{tp+j} \delta^{-kt}$$

and then $\psi(f)(k)$ has the desired formula.

Now we can apply these results to the pure state problem we set before.

Caes 1. x_0 is of *n*-degree.

The following diagram obviously commutes:

which shows the subjectivity of \mathcal{E}_{x_0} from $C(X) \times_{\alpha} \mathbb{Z}_n$ into M_n . Since $\varphi_{x_0,\lambda} = \varphi_{\lambda} \circ \mathcal{E}_{x_0}$, Lemmas 1, 2 together with general relation of a pure state and its associated irreducible representation yield

Theorem 1. If x_0 is of n-degree, then $\psi_{x_0,\lambda}$ is pure for any $[\lambda] \in \mathbb{P}(\mathbb{C}^n)$. Moreover, $\varphi_{x_0,\lambda}$'s are all mutually unitarily equivalent. The corresponding primitive ideal is

$$J^{(n)}(x_0) = \ker r^* = \{ f = (f_j)_{j \in \mathbf{Z}_n} : f_j(\alpha^i(x_0)) = 0, \quad \forall 0 \le i, j \le n-1 \}.$$

Remark 2. It is clear that $C(X) \times_{\alpha} \mathbb{Z}_n / J^{(n)}(x_0) \simeq M_n$.

Case 2. x_0 is of 1-degree.

In this case, $\varphi_{x_0,\lambda}$ is pure if and only if it is one of

$$\varphi_k = ev_{\gamma^k} \circ F \circ r^*, \quad 0 \le k \le n-1,$$

where $\gamma = e^{2\pi i/n}, ev_{\gamma k} : C(\widehat{\mathbb{Z}}_n) \to \mathcal{U}$, and $F : C(X_0) \times_{\alpha} \mathbb{Z}_n \xrightarrow{\sim} C(\widehat{\mathbb{Z}}_n)$ are defined as before. Note that $\varphi_k(f) = \sum_{i=0}^{n-1} f_j(x_0) \gamma^{-kj}$ are all multiplicative, thus the associated primitive ideal

$$J_{K}^{(1)}(x_{0}) = \ker \varphi_{k} = \{ f \in C(X) \times_{\alpha} \mathbb{Z}_{n} : (f_{0}(x_{0}), \cdots, f_{n-1}(x_{0})) \perp \delta_{k} \}$$

 $0 \leq k \leq n-1$, where $\delta_k = \{1, \gamma^k, \cdots, \gamma^{(n-1)k}\} / \sqrt{n}$.

Theorem 2. If $\alpha(x_0) = x_0$, then $\varphi_{x_1\lambda}$ is pure $\Leftrightarrow [\lambda] = [\delta_k]$, and $\varphi_{x_0,\lambda} = \varphi_k$ for some $0 \leq k \leq n-1$. Moreover, $k_1 \neq k_2$ implies $\varphi_{x_0,\delta_{k_1}} \neq \varphi_{x_0,\delta_{k_2}}$.

Proof. Let

$$A_{n} = \begin{pmatrix} 0 & & 1 \\ 1 & \ddots & 0 \\ & \ddots & \ddots & \\ 0 & & 1 & 0 \end{pmatrix}_{n \times n}$$

then $A_n \delta_k = \gamma^{-k} \delta_k$. Since A_n is a unitary, $\{\delta_k\}_{0 \le k \le n-1}$ forms an orthonormal basis of \mathcal{C}^n . In particular, if $k_1 \neq k_2$, then $J_{k_1}^{(1)}(x_0) \neq J_{k_2}^{(1)}(x_0)$, so $\varphi_{k_1} \neq \varphi_{k_2}$.

Since
$$(f_{i-j}(x_0))_{i,j} = \sum_{j=0}^{n-1} f_j(x_0) A_n^j$$
, if $\|\lambda\| = 1$,
 $\varphi_{x_0,\lambda}(f) = \sum_{j=0}^{n-1} f_j(x_0) \langle A_n^j \lambda, \lambda \rangle$.

From this, it is easy to see that $\varphi_{x_0,\delta_k} = \varphi_k$, and if $\lambda = \sum \alpha_k \delta_k$ $(\sum |\alpha|^2 = 1)$, then $\varphi_{x_0,\lambda} = \beta_k \delta_k$ $\sum_{k=0}^{n-1} |\alpha_k|^2 \varphi_k.$ So if $|\lambda| \neq |\delta_k|$ for all k, then $\varphi_{x_0,\lambda}$ is not pure.

i=0

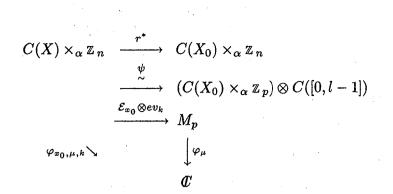
Case 3. x_0 is of *p*-degree, 1 , <math>pl = n.

In this case, the pure state on $C(X_0) \times_{\alpha} \mathbb{Z}_p$ returns to the case 1 discussed. Thus, $\varphi_{x_0,\lambda}$ is pure if and only if it is one of

$$\varphi_{x_0,\mu,k} = (\varphi_{x_0,\mu} \otimes ev_k) \circ \psi \circ r^*,$$

where $[\mu] \in I\!\!P(I\!\!C^p)$, $0 \le k \le l-1$, and ψ is given in Proposition 2 above.

We can picture the definition of $\varphi_{x_0,\mu,k}$ by the following diagram:



The first thing coming out from this picture is the primitive ideal associated to $\varphi_{x_0,\mu,k}$ $(0 \le k \le l-1)$:

$$J_k^{(p)}(x_0) = \ker[(\varepsilon_{x_0} \otimes ev_k) \circ \psi \circ r^*]$$

= {f = (f_{tp+d})_{t,d} \in C(X) \times_{\alpha} \mathbb{Z}_n : (f_{tp+j} \circ \alpha^j(x_0))_{0 \le t \le l-1} \perp \tilde{\delta}_k, 0 \le i, j \le p-1},

where $\hat{\delta}_k = (1, \delta^k, \cdots, \delta^{(l-1)k} / \sqrt{l}$. Clearly,

$$C(X) \times_{\alpha} \mathbb{Z}_n / J_k^{(p)}(x_0) \cong M_p.$$

 \mathbf{Set}

$$A_{l} = \begin{pmatrix} 0 & & 1 \\ 1 & \ddots & 0 \\ & \ddots & \ddots \\ 0 & & 1 & 0 \end{pmatrix}_{l \times l},$$

then $A_l \tilde{\delta}_k = \delta^{-k} \tilde{\delta}_k$, $0 \le k \le l-1$. By normality of A_l , $\{\tilde{\delta}_k\}_{0 \le k \le l-1}$ forms an orthonormal basis of \mathbb{C}^l . Thus $k_1 \ne k_2$, $J_{k_1}^{(p)}(x_0) \ne J_{k_2}^{(p)}(x_0)$, which implies $\varphi_{x_0,\mu,k_1} \ne \varphi_{x_0,\mu,k_2}$.

Since $\varphi_{\mu_1} \simeq \varphi_{\mu_2}$ must be through a unitary of exponential form and $(\varepsilon_{x_0} \otimes ev_k) \circ \psi \circ r^*$ is onto M_p , $\varphi_{x_0,\mu_1,k} \simeq \varphi_{x_0,\mu_2,k}$.

Now for each pair $(\mu, \nu) \in \mathbb{C}^p \times \mathbb{C}^l$, we define $\mu \otimes \nu \in \otimes \mathbb{C}^{pl}$ by

$$(\mu \otimes \nu)_{pt+d} = \mu_d \nu_t, \ 0 \le t \le l-1, \ 0 \le d \le p-1.$$

Lemma 3. If $\mu, \mu' \in \mathbb{C}^p$, $\nu, \nu' \in \mathbb{C}^l$, then for each $f \in C(X) \times_{\alpha} \mathbb{Z}_n$

$$\langle \varepsilon_{x_0}(f)\mu \otimes \nu, \mu' \otimes \nu' \rangle = \sum_{\substack{0 \le t \le l-1\\0 \le a \le p-1}} \left[\sum_{\substack{d=0\\d=a}}^{a} \overline{\mu'_a} \mu_{a-d} \langle A_l^t \nu, \nu' \rangle (f_{tp+d} \circ \alpha^{-a}(x_0)) \right]$$
$$+ \sum_{\substack{0 \le t \le l-1\\0 \le a \le p-1}} \left[\sum_{\substack{d=a+1\\d=a+1}}^{p-1} \overline{\mu'_a} \mu_{p+a-d} \langle A_l^{t+1}\nu, \nu' \rangle (f_{tp+d} \circ \alpha^{-a}(x_0)) \right]$$

Proof. For any pair $(\lambda, \lambda') \in S^{2n-1} \times S^{2n-1}$, we have

$$\langle \varepsilon_{x_0}(f)\lambda,\lambda'\rangle = \sum_{\substack{i,j\in\mathbb{Z}_n}} f_{i-j} \circ \alpha^{-i}(x_0)\overline{\lambda'_i}\lambda_j$$

$$= \sum_{\substack{i,j\in\mathbb{Z}_n}} f_j \circ \alpha^{-i}(x_0)\overline{\lambda'_i}\lambda_{i-j}$$

$$= \sum_{\substack{0\le t\le l-1\\0\le a\le p-1}} \left[\sum_{d=0}^a f_{tp+d} \circ \alpha^{-a}(x_0)\left(\sum_{s=0}^{l-1}\overline{\lambda'_{sp+a}}\lambda_{(s-t)p+a-d}\right)\right]$$

$$+ \sum_{\substack{0\le t\le l-1\\0\le a\le p-1}} \left[\sum_{d=a+1}^{p-1} f_{tp+d} \circ \alpha^{-a}(x_0)\left(\sum_{s=0}^{l-1}\overline{\lambda'_{sp+a}}\lambda_{(s-t-1)p+p+a-d}\right)\right].$$

Substituting λ by $\mu \otimes \nu$ and λ' by $\mu' \otimes \nu'$, we get the desired formula.

Corollary 2. For $\mu = (\mu_j)_{0 \le j \le p-1}$, we define $\mu^{(k)} = (\mu_0, \mu_1 \gamma^k, \cdots, \mu_{p-1} \gamma^{(p-1)k})$. Then $\varphi_{x_0,\mu,k} = \varphi_{x_0,\mu^{(k)} \otimes \tilde{\delta}_k}, \ 0 \le k \le l-1$. Moreover, since $\mathbb{C}^n = \bigoplus_{k=0}^{l-1} \mathbb{C}^p \otimes \tilde{\delta}_k$, a unit vector λ of \mathbb{C}^n has a unique decomposition

$$\lambda = \sum_{k=0}^{l-1} \alpha_k \mu_k \otimes \tilde{\delta}_k, \quad \alpha_k \ge 0, \quad |\mu_k|| = 1, \quad \sum |\alpha_k|^2 = 1.$$

Then $\varphi_{x_0,\lambda} = \sum_{k=0}^{l-1} |\alpha_k|^2 \varphi_{x_0,\mu_k \otimes \tilde{\delta}_k}$.

Summarizing these works, we have

Theorem 3. $\varphi_{x_0,\lambda}$ is pure if and only if $\lambda = \mu \otimes \delta_k$ for some unit vector $\mu \in \mathbb{C}^p$ and $0 \leq k \leq l-1$. Moreover,

$$\varphi_{x_0,\mu_1\otimes\tilde{\delta}_k}\simeq\varphi_{x_0,\mu_2\otimes\tilde{\delta}_k} \quad and \quad \varphi_{x_0,\mu\otimes\tilde{\delta}_{k_1}}\neq\varphi_{x_0,\mu\otimes\tilde{\delta}_k}$$

if $k_1 \neq k_2$.

Let the pure state space of the C^{*}-algebra A be denoted by P(A). We shall now specify the topology and additional structure on $\overline{P(A)}$, where $A = C(X) \times_{\alpha} \mathbb{Z}_n$, and the closure of P(A) relative to the W^{*}-topology.

Proposition 3. If X is connected with a dense n-degree point (relative to α), then the map $\Psi: X \otimes IP(\mathcal{C}^n) \to \overline{P(C(X) \times_{\alpha} \mathbb{Z}_n)}$ defined by

$$(x, |\lambda|) \mapsto \varphi_{x,\lambda}$$

is continuous and onto.

Recall the definition of A_n and $\varepsilon(\varepsilon(f) = (f_{i-j} \circ \alpha^{-i})_{i,j})$, then the following lemma can be directly verified.

Lemma 4. For each $f \in C(X) \times_{\alpha} \mathbb{Z}_n$, $\varepsilon(f) \circ \alpha = A_n \varepsilon(f) A_n^*$. Thus $\varphi_{\alpha(x),\lambda} = \varphi_{x,A_n^*\lambda}$, $\lambda \in IP(\mathbb{C}^n)$ and $x \in X$.

Using $\tilde{\delta}_k$'s introduced before, we have an orthogonal decomposition $\mathcal{C}^n = \bigoplus_{k=0}^{l-1} \mathcal{C}^p \otimes \tilde{\delta}_k$.

Let I_k be the identity map of $\mathcal{C}^p \otimes \tilde{\delta}_k$, then

$$U_p = \left\{ \bigoplus_{k=0}^{l-1} \theta_k I_k : \theta_k \in S^1 \right\} \cong \mathbb{I}_l(l - torus)$$

is a subgroup of U_n . It acts on $I\!P(\mathbb{C}^n)$ naturally. Let the U_p -orbit of $[\lambda]$ be denoted by $[[\lambda]]$, then we have

Lemma 5. Let x_0 be a p-degree point of X, pl = n, $[\lambda]$ and $[\lambda']$ be in $\mathbb{P}(\mathbb{C}^n)$. Then

$$\varphi_{x_0,\lambda} = \varphi_{x_0,\lambda'} \Leftrightarrow [\lambda'] \in [[\lambda]].$$

 $Thus \ [[\lambda]] \to \varphi_{x_0,\lambda} \ provides \ a \ natural \ isomorphism \ of IP({\mathcal C}^n)/U_p \ with \ \{\varphi_{x_0,\lambda}: [\lambda] \in I\!\!P({\mathcal C}^n)\}.$

Proof. Let $\lambda = \sum_{k=0}^{l-1} \alpha_k (\tilde{\mu}_k \otimes \tilde{\delta}_k)$ with $0 \le \alpha_k \le 1$ and $\|\tilde{\mu}_k\| = 1$, $\sum |\alpha_k|^2 = 1$. Then Corollary 2 tells us

$$\varphi_{x_0,\lambda} = \sum_{k=0}^{l-1} |\alpha_k|^2 \varphi_{x_0,\tilde{\mu}_k \otimes \tilde{\delta}_k}.$$

Thus the direction " \Leftarrow " is clearly true.

Note that $\varphi_{x_0,\mu,k} = \varphi_{\mu} \circ (id \otimes ev_k) \circ (\varepsilon_{x_0} \otimes id) \circ \psi \circ r^*$ and

$$\operatorname{ange}[(\varepsilon_{x_0}\otimes id)\circ\psi\circ r^*]=M_p\otimes C([0,l-1]).$$

So

$$\sum_{k=0}^{l-1} \alpha_k^2 \varphi_{x_0,\mu_k,k} = \sum_{k=0}^{l-1} \alpha'_k^2 \varphi_{x_0,\mu'_k,k} \, (\alpha_k, \alpha'_k \ge 0)$$

implies

$$\sum_{k=0}^{l-1} \alpha_k^2 f(k) \langle T\mu_k, \mu_k \rangle = \sum_{k=0}^{l-1} \alpha'_k^2 f(k) \langle T\mu'_k, \mu'_k \rangle$$

for each $T \in M_p$ and $f \in C([0, l-1])$. Taking $f = \chi_k$ the characteristic function supported at k, we have $\alpha_k = \alpha'_k$, and if $\alpha_k \neq 0$, $[\mu_k] = [\mu'_k]$. Combining this with Corollary 2, we get the desired result.

Remark 3. Let the standard n-simplex be denoted by

$$\Delta_n = \Big\{ \sum_{k=0}^{n-1} \alpha_k \delta_k : \alpha_k \ge 0, \quad \sum \alpha_k = 1 \Big\}.$$

Then if x_0 is a fixed point of α , $\Delta_n \xrightarrow{\sim} \{\varphi_{x_0,\lambda} : \lambda \in I\!\!P(\mathcal{I}^n)\}$ provided by

$$\sum_{k=0}^{n-1} l_k \delta_k \to \varphi_{\substack{n-1\\x_0, \sum \\ k=0}} \alpha_k \delta_k.$$

If x_0 is of degree n, then $\{\varphi_{x_0,\lambda} : \lambda \in I\!\!P(\mathcal{C}^n)\} \cong I\!\!P(\mathcal{C}^n)$ by

$$\varphi_{x_0,\lambda} \stackrel{i=1}{\leftrightarrow} [\lambda].$$

We shall treat the above natural isomorphisms as the identification.

Proposition 4. If x_0 , $[\lambda]$ are all as in the lemma above and Ψ is the map defined in Proposition 3, then

$$\Psi^{-1}(\varphi_{x_0,\lambda}) = \{ (\alpha^j(x_0), [\lambda']) : [\lambda'] \in [[A_n^j \lambda]], \quad 0 \le j \le n-1 \}.$$

Proof. Note that $A_n^p = I \otimes A_l = \bigotimes_{k=0}^{l-1} \delta^{-k} I_k \times \tilde{\delta}_k$ is in U_p . So

$$[[A_n^{pt+d}\lambda]] = [(A_n^p)^t [A_n^d\lambda]] = [[A_n^d\lambda]], \quad 0 \le d \le p-1, \quad 0 \le t \le l-1.$$

83

Thus we may assume $[\lambda'] \in [[A_n^j \lambda]]$ for some $0 \leq j \leq p-1$. By Lemmas 4 and 5, we then have

$$\varphi_{\alpha^{j}(x_{0}),\lambda'} = \varphi_{\alpha^{j}(x_{0}),A_{n}^{j}\lambda} = \varphi_{x_{0},\lambda}. \tag{(**)}$$

Conversely, if $\varphi_{x,\lambda'} = \varphi_{x_0,\lambda}$, then $x \in \alpha$ -orbit of x_0 . Assume $x = \alpha^j(x_0)$, then, by the (**) formula and Lemma 5 above, we have $[\lambda'] \in [[A_n^j \lambda]]$.

This proposition induces an equivalent relation in $X \in \mathbb{P}(\mathbb{C}^n)$ by

$$(x, [\lambda]) \sim (x', [\lambda']) \Leftrightarrow x' = \alpha^j(x_0) \text{ and } [\lambda'] \in [[A_n^j \lambda]], \quad 0 \leq j \leq n-1,$$

where the meaning of $[[A_n^j \lambda]]$ has to depend on the degree of x.

Let π be the corresponding quotient map. Then the following theorem becomes clear:

Theorem 4. If n-degree points are dense in X, then the map $\tilde{\Psi} : X \times IP(\mathbb{C}^n)/_{\sim} \to \overline{P(\mathbb{C}(X) \times_{\alpha} \mathbb{Z}_n)}$ given by

$$\Psi(\pi(x,[\lambda])) = \varphi_{x,\lambda}$$

is well-defined and is a homeomorphism.

Remark 4. Let σ be the natural map of $X \to X/\alpha$ and $p_1 : X \times \mathbb{P}(\mathbb{C}^n) \to X$ the projection onto the first component, then a projection from $X \times \mathbb{P}(\mathbb{C}^n)/_{\sim}$ onto X/α is induced by $p(\pi(x, [\lambda])) = \sigma(x) = \mathbb{Z}_n \cdot x$. Obviously the following diagram commutes:

$$\begin{array}{cccc} X \times I\!\!P(\mathcal{C}^n) & \xrightarrow{\pi} & X \times I\!\!P(\mathcal{C}^n)/_{\sim} & \xrightarrow{\Psi} & \overline{P(C(X) \times_{\alpha} \mathbb{Z}_n)} \\ \sigma \circ p_1 \searrow & & & \downarrow^p & \swarrow & p \circ \tilde{\Psi}^{-1} \\ & & & X/\alpha \end{array}$$

Let $p \circ \widetilde{\Psi}^{-1}$ be denoted by p', then $p'(\varphi_{x,\lambda}) = \mathbb{Z}_n \cdot x = \sigma(x)$. Think $\overline{P(C(X) \times_{\alpha} \mathbb{Z}_n)}$ to be fibred space over X/α (not a fibre space, or a fibration in general) through p', then $\varphi_{x,\lambda} \cong \varphi_{x',\lambda'} \Leftrightarrow$ they are on the same fibre. Thus we may identify the fibred space $p' : \overline{P(C(X) \times_{\alpha} \mathbb{Z}_n)} \to X/\alpha$ with that of $p: X \times I\!P(\mathbb{C}^n)/_{\sim} \to X/\alpha$.

The transition probability and orientation on $P(C(X) \times_{\alpha} \mathbb{Z}_n)$ now may be identified with the fibred space $p: X \times I\!\!P(\mathbb{C}^n)/_{\sim} \to X/\alpha$ with specified structure groups on each fibre type through the natural identification (see [9]):

if x is of degree n, then this group is PU_n on $p^{-1}(\mathbb{Z}_n \cdot x) \cong I\!\!P(\mathbb{C}^n)$;

if x is of degree 1, then this group is the map of all simplicial automorphisms of $\Delta_n \cong p^{-1}(\mathbb{Z}_n \cdot x)$.

If x is of degree p, 1 , then we may think of

$$p^{-1}(\mathbb{Z}_n \cdot x) \cong I\!\!P(\mathbb{C}^n)/U_p = \left\{ \left[\left[\sum_{k=0}^{l-1} \alpha_k u_k \otimes \tilde{\delta}_k \right] \right] : (\alpha_k)_{k=0}^{l-1} \in \Delta_l \right.$$

and $u_k \in \mathbb{C}^p$ with $||u_k|| = 1 \right\}$

as a generalized *l*-simplex with various copies of $I\!\!P(\mathcal{C}^p)$ as vertices. Let S_l be the *l*-th permutation group, then $S_l \times (PU_p)^l$ acts on $I\!\!P(\mathcal{C}^n)/U_p$ faithfully (not freely) by

if $(\tau; [\varphi_0], \cdots, [\varphi_{l-1}]) \in S_l \times (PU_p)^l$, where $\varphi_j \in U_p$, then

ł

$$(\tau; [\varphi_0], \cdots, [\varphi_{l-1}]) \cdot [[\sum_{k=0}^{l-1} \alpha_k u_k \otimes \tilde{\delta}_k]] = [[\sum_{k=0}^{l-1} \alpha_{r(k)} \varphi_k(u_k) \otimes \tilde{\delta}_k]].$$

We may call $S_l \times (PU_p)^l$ the group of generalized simplicial automorphisms. The structure group on $I\!\!P(\mathbb{C}^n)/U_p \cong p^{-1}(\mathbb{Z}_n \cdot x)$ is $S_l \times (PU_p)^l$.

When every point of X is of n-degree, or \mathbb{Z}_n acts on X freely, this fibred space (with specified structure group) is just a classical flat PU_n -bundle over X/α , which we shall describe now.

Let $\{U_i\}$ be an open cover of X/α with each U_i and $U_i \cap U_j$ connected s.t. for each i

$$\sigma^{-1}(U_i) = \widetilde{U}_i \cup \alpha(\widetilde{U}_i) \cup \cdots \cup \alpha^{n-1}(\widetilde{U}_i),$$

with $\widetilde{U}_i \cap \alpha^k(\widetilde{U}_i) = \emptyset$, $\forall k \not\equiv 0 \pmod{n}$.

The choice of \widetilde{U}_i is not unique.

Lemma 6. If $U_i \cap U_j \neq \emptyset$, then there is an integer k_{ji} (unique up to a multiple of n) s.t. $\alpha^{k_{ji}}(\widetilde{U}_i \cap \sigma^{-1}(U_i \cap U_j)) = \widetilde{U}_j \cap \sigma^{-1}(U_i \cap U_j).$

Proof. From the assumption, σ gives a homeomorphism of \widetilde{U}_i onto U_i . Note that $\sigma(\widetilde{U}_i \cap \sigma^{-1}(U_i \cap U_j)) = U_i \cap U_j$. So

$$\widetilde{U}_i \cap \sigma^{-1}(U_i \cap U_j) = \widetilde{U}_i \cap \sigma^{-1}(U_j) = \bigcup_{t \in \mathcal{T}} \widetilde{U}_i \cap \alpha^t(\widetilde{U}_j)$$

is connected, which forces for all t but one -k

$$\widetilde{U}_i \cap \alpha^t(U_j) = \emptyset,$$

$$\widetilde{U}_i \cap \sigma^{-1}(U_i \cap U_j) = \widetilde{U}_i \cap \alpha^{-k}(\widetilde{U}_j).$$

$$\alpha^k(\widetilde{U}_i \cap \sigma^{-1}(U_i \cap U_j)) = \alpha^k(\widetilde{U}_i) \cap \widetilde{U}_j.$$

Similarly, $\widetilde{U}_j \cap \sigma^{-1}(U_i \cap U_j) = \alpha^l(\widetilde{U}_i) \cap \widetilde{U}_j$, and if $t \neq l$, $\alpha^t(\widetilde{U}_i) \cap \widetilde{U}_j = \emptyset$. Thus $k = l = k_{ji}$ is unique (mod n) and has the desired property.

With U_i as above, we have $p^{-1}(U_i) = \pi(U_i \times IP(\mathcal{C}^n))$ and thus

$$\phi_i = (\sigma \times id) \circ (\pi|_{U_i \times IP(\mathcal{C}^n)})^{-1}$$

is a well-defined homeomorphism $p^{-1}(U_i)$ onto $U_i \times I\!\!P(\mathcal{C}^n)$. The following calcultion shows that $(U_i, \phi_i)_i$ gives a coordinate system of $X \times I\!\!P(\mathcal{C}^n)/_{\sim}$ as PU_n -bundle over X/α :

where $x \in \widetilde{U}_i \cap p^{-1}(U_i \cap U_j)$ and $y = \alpha^{k_{ji}}(x) \in \widetilde{U}_j \cap p^{-1}(U_i \cap U_j)$.

Thus $\phi_i \phi_j^{-1} = g_{ij} = [A^{k_{ij}}] \in PU_n$. We may identify the PU_n -bundle with the 1-cocycle $(U_i \cap U_j, [A_n^{k_{ij}}])_{i,j}$, which is clearly flat.

Let E be the U_n -vector bundle corresponding to the 1-cocycle $(U_i \cap U_j, A_n^{k_{ij}})_{i,j}$, then its projectivilization $I\!\!P(E) \cong X \times I\!\!P(\mathcal{C}^n)/_{\sim}$ (see [6]). The equivalence of $E_1 \cong E_2$ clearly implies

85

 $I\!P(E_1) \cong I\!P(E_2)$. Now $E \cong \bigoplus_{k=0}^{n-1} L^k$, where L is the U_1 -bundle $(U_i \cap U_j, \gamma^{k_{ij}})_{i,j}$ (remember $\gamma = e^{2\pi i/n}$) and L^k is the k-th tensor power of L.

Proposition 5. If \mathbb{Z}_n acts on X freely (generated by α), and $H^2(X/\alpha, \mathbb{Z})$ has no element annihilated by n, then

$$C(Y) imes_{eta} \mathbb{Z}_n \cong C(X) imes_{lpha} \mathbb{Z}_n \Leftrightarrow \mathbb{Z}$$

acts on Y freely and $X/\alpha \cong Y/\beta$.

Proof. In this case, since $[L^n] = n[L] = 0$ in $H^2(X/\alpha, \mathbb{Z})$ (*L* is described as above), we have [L] = 0, i.e., *L* is trivial. Thus $X \times IP(\mathbb{C}^n)/_{\sim}$ as PU_n -bundle over X/α is trivial. By the consideration of the dimension of irreducible representations, the above statement is clearly true.

E.g. Let $X_0 = T^2$, then $H^1(X_0, \mathbb{Z})$ and $H^2(X_0, \mathbb{Z})$ are both free abelian groups.

$$H^1(X_0, \mathbb{Z}_n) \cong \mathbb{Z}_n^2 \neq 0.$$

Thus any nonzero element in $H^1(X_0, \mathbb{Z}_n)$ will give a *n*-fold regular covering X of X_0 with \mathbb{Z}_n as its deck transformation group. Of course this \mathbb{Z}_n action on X is free with the obrit space X_0 .

When n = 2, we may visualize the fibred space $\overline{P(C(X) \times_{\alpha} \mathbb{Z}_n)}$ over X/α , which may be thought to be the dual of $C(X) \times_{\alpha} \mathbb{Z}_2$. Let $X^{\alpha} =$ fixed point set of α . We still assume it to be nowhere dense in X. We may put a metric d on X if X is 2nd countable.

At first, we may identify $X \times I\!\!P(\mathcal{C}^2)$ with $X \times S^2$ (thus the PU_2 action becomes SO_3 action on S^2) by

$$(x,[\lambda,\mu]) \stackrel{\Phi}{ o} (x;2{
m Re}ar\lambda\mu,2{
m Im}ar\lambda\mu,|\mu|^2-|\lambda|^2),$$

where $(\lambda, \mu) \in \mathbb{C}^2$ with $|\lambda|^2 + |\mu|^2 = 1$. The equivalence relation introduced after Proposition 4 on $X \times \mathbb{P}(\mathbb{C}^2)$ is now translated to $X \times S^2$ by

if $x \neq \alpha(x)$, $(x; x_1, x_2, x_3) \sim (x'; x'_1, x'_2, x'_3) \Leftrightarrow$ either x = x', $(x_1, x_2, x_3) = (x'_1, x'_2, x'_3)$ or $x' = \alpha(x)$, $(x'_1, x'_2, x'_3) = (x_1, -x_2, -x_3)$;

if $x = \alpha(x)$, $(x; x_1, x_2, x_3) \sim (x'; x'_1, x'_2, x'_3) \Leftrightarrow x = x'$ and $x_1 = x'_1$. Define a continuous map $T: X \times S^2 \to X \times I\!\!R^3$ by

$$T(x; x_1, x_2, x_3) = (x; x_1, d(x, X^{\alpha})x_2, d(x, X^{\alpha})x_3).$$

Let the range T be denoted by Y. Let p_1 be the natural projection of $X \times \mathbb{R}^3$ onto X. Then if $x \notin X^{\alpha}$, $(p_1|Y)^{-1}(x)$ carries the metric and orientation induced from S^2 (by using T). We shall call it the natural metric on $(p_1|Y)^{-1}(x)$. Identify the point

 $(x; x_1, d(x, X^{\alpha})x_2, d(x, X^{\alpha})x_3)$ with $(\alpha(x); x_1, -d(x, X^{\alpha})x_2, -d(x, X^{\alpha})x_3),$

and let the resulted quotient space be denoted by Y/\sim . Then clearly $Y/\sim \cong X \times S^2/\sim$ and the following diagram commutes:

$$\begin{array}{cccc} Y & & \longrightarrow & Y/\sim & \stackrel{\sim}{\longrightarrow} & X \times S^2/\sim \\ \sigma \circ p_1 \searrow & & & & \downarrow \sigma \sigma p_1 & & \swarrow & p' \\ & & & & & X/\alpha \end{array}$$

Thus the fibred space Y/\sim over X/α may be identified with that of $X \times S^2/\sim$ or $(P(C(X) \times_{\alpha} \mathbb{Z}_2), p')$. This Y/\sim is visualizable. It is dual to $C(X) \times_{\alpha} \mathbb{Z}_2$.

E.g. Let $X = \{(t,0) : |t| \le 1\} \cup \{(0,y) : |y| \le 1\}$. The automorphism $\alpha : X \to X$ is given by $\alpha(t,0) = (-t,0), \ \alpha(0,y) = (0,y)$. Thus $\alpha^2 = id$, and

$$X^{\alpha} = \{(0,y) : |y| \le 1\}, \quad X/\alpha = \{(t,0) : 0 \le t \le 1\} \cup \{(0,y) : |y| \le 1\}.$$

From the provious work, we have (the W^* -topology on the pure state space)

$$P(C(X) \times_{\alpha} \mathbb{Z}_2) \cong [\{(t,0) : 0 < t < 1\} \times I\!\!P(\mathcal{C}^2)] \cup \{((0,y), [\lambda]) : |y| \le 1\}$$

and
$$\lambda = (0, 1)$$
 or $(1, 0)$.

Using Φ and the induced topology from $X/\alpha \times IR^3$, we have

$$\overline{P(C(X) \times_{\alpha} \mathbb{Z}_2)} \cong \{((t,0); x_1, tx_2, tx_3) : 0 \le t \le 1 \text{ and} \\ (x_1, x_2, x_3) \in S^2\} \cup \{((0,y); \mu, 0, 0) : 0 < |y| < 1, \ \mu = \pm 1\} \subseteq X/\alpha \times I\!\!R^3$$

The projection of this fibres space is the natural one onto the first component (to t - y plane) and the metric and orientation on fibred are all the natural ones.

This gives a geometric picture of the "dual" of $C(X) \times_{\alpha} \mathbb{Z}_2$.

Remark 5. We have extended this "dual study" of $C(X) \times_{\alpha} \mathbb{Z}_n$ to $C(X) \times_{\alpha} \mathbb{Z}$ with $\alpha^n = id$ (see [5]). Along this line, a classification of rational rotation C^* -algebras on unit circle has been reproduced (see [4]).

REFERENCES

- Alfsen, E. M., Hanche-Olsen, H. & Shultz, F. W., State spaces of C^{*}-algebras, Acta Math., 144 (1980), 267-305.
- [2] Blackadar, B., Notes on the structure of projections in simple C^* -algebras, Semesterbericht funktionalanlysis, W82, Tübingen, March 1983.
- [3] Effros, E. & Hahn, F., Locally compact transformation groups and C^{*}-algebras, Mem. Amer. Math. Soc., 75 (1967).
- [4] Lin, Q., A new look on $C(X) \times_{\alpha} \mathbb{Z}_n$ with α purely periodic (preprint).
- [5] Li, B. & Lin, Q., Pure state space of $C(X) \times_{\alpha} \mathbb{Z}$ with $\alpha^n = id$, Lecture Notea in Contemporary Mathematices, Institute of Mathematics, Academia Sinica, 2 (1991), 147-162.
- [6] Karoubi, M., K-theory, Springer-Verlag, Berlin, Heidelberg, New York, 1978.
- [7] Pedersen, G. K., C*-algebras and their automorphism groups, Academic Press, 1979.
- [8] Takesaki, M., Theory of operator algebras, Springer-Verlag, New York, Berlin, Heidelberg, 1979.
- [9] Shultz, F. W., Pure state as a dual object for C*-algebras, Commun. Math. Phys., 82 (1982), 497-509.