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SCALAR CURVATURES ON 
NONCOMPACT RIEMANN MANIFOLDS**

Z h o u  D e t a n g * *

A b strac t
The author obtains some theorems for a function to be the scalar curvature of some complete 

conformal metric of a noncompact complete Riemann manifold, and also presents a kind of 
manifolds on which Yamabe problem is unsolvable.
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§1. Introduction
A basic problem in Riemann geometry is studying the set of curvature functions that a

manifold possesses. Let (M, g) be an n-dimensional Riemann manifold with scalar curvature ^  \K(x) and let i f  (a:) be a given function on M . Does there exist a conformal metric g such 
that the scalar curvature of ^  is ^  ? When n > 3, the problem is equivalent to finding a 
positive solution to the equation

cnAgu-^ K ( x ) u ^  = K(x)% (1.1)
where

4 ( n —l ) 〜  , 4 , .Cn = -------- — , g =  u ^ g tn — 2
This problem has been extensively studied for compact manifolds with or without bound

ary (see [1, 5, 7,11,14]). The special case of deforming to constant scalar curvature is known 
as the Yamabe problem and has recently been completely resolved for compact manifolds 
by Schoent14'.

If M  is a complete uoncompact Riemann manifold, very little is known. In the special case 
M ~ Rn with Eucildean metric this problem has been studied by [8]. Recently Aviles and 
McOwenf2) discussed this problem on noncompact Riemann manifolds in case K{x) — — 1. 
The present paper is concerned with the general K(x). This paper is organized as follows: In 
§2 we give a completeness theorem for conformal metrics and the existence of the complete 
metrics with the prescribed scalar curvature and in §3 we obtain a class of manifolds on which 
the Yamabe problem is unsolvable. Unless otherwise stated, {M^g) is always assumed to be 
a complete noncompact simply-connected Riemann manifold.

Manuscript received September 14, 1992. Revised May 27, 1993.
*Institute of Mathematics, Fadan University, Shanghai 200433, China.

**Project supported by the Natural Science Foundation of Shandong and CPSF.



88 CHIN. ANN. OF MATH. Vol.16 Ser.B

§2. Existence Theorems
For a complete Riemann manifold (M^g) and a conformal metric g =  where /  > 0 

is a continuous function on M. A natural problem is under which conditions on / ,  g is 
also complete. If M  is compact, the continuity of /  can guarantee the completeness of g. 
So this problem is essential for noncompact Riemann manifolds. In what follows we give 
a completeness criterion which is almost o p t i m a l W e  shall omit the proof since it is 
straightforward by using the Hopf-Rinow Theorem.

T heorem  2,1. Let (M, g) be a complete noncompact Riemann manifold. Suppose that 
f  is a positive continuous function on M and satisfies f^(x) > c(r(x)) for r(x) > r 〇; where 
r〇 is a positive constant and x〇 is a fixed point in M and r(x) =  d(x,x〇) and c(t) is a real 
function subject to

+〇〇

c(t) dt ~  + 〇〇.
Then g = fg  is a complete metric on M. cConsider the following inequality ?

Agu > ~K{x)ua +  K(x)uy (2.1)
where a > K(x) ^K(x) are continuous functions on M. Suppose that 0  is a compact C°° 
Riemann manifold with boundary and. interior Q =  Q\dQ>t Then we have

Lem m a 2,1. Let K(x) < 0; K(x) > ~K〇} Va: € for some constant K〇 . Then for any 
compact subset X 〔 0>， there exists a constant l  0 such that any nonnegative continuous 
weak solution u £ of (2.1) satisfies

maxu(x) < C〇.
Proof, Since X  is compact, there exists a positive constant R > 0 and yi, y2 , * ,7/at

G X  such that
i =  1,2, * ； • , TV} d  X , B 2R { y i )  C 

Prom Theorem 8.17 in [6] we have for some i
sup u(x) < sup u(x) < CR-^\\u\\LP{B2R(yi)hxex xeBR(yi)

where p =  a  +  1 and the constant C depends on n  and K〇.
Let

< pec^(n), and ^ > 〇-
Multiply both the sides of (2.1) by mpq (q — and integrate to obtain

f  utpqA gudv K(x)ua+1ipq dv + f  K(x)u2(pq dv.
Similar to the proof of Theorem 1.1 in [2] we have

， f  K{x)ua+1ipq dv < Ci,Jn
where C\ is a constant independent of u. Then

f  u ^ l(pq dv < mBx{{-K{x))~1} f  (~K(x))ua+1(pqdv< C 2- Ju Ja
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Thus
M h (B 2R(yi)) ^  [  Ua+1ipqdv<C2

and this proves our lemma.
Lem m a 2.2. Assume that K(x), K(x) are continuous functions and K{x) < 0. Then 

there is a positive C°° solution u of (1.1) if and only if there is a nojinegative continuous 
function u— (Hf)\oc satisfying u— 辛  d and

cnAgu  ̂+ K(x)uZ~2 > K(x)u^, (2.2)
Moreover u > u ^ .

P roof. The necessity is obvious, we shall prove the sufficiency. Let Cl C  M be ^ bounded 
subset. Then K(x) is bounded below and we can define u to be a constant such that 
u > sup{u-(a;): a: € f2} and

0 =  cnA gu < —K(x)un̂  +  K(x)u. (2.3)
• .: • ■ • . .One can find a positive constant A such that

n + 2

/ ( x ?-u) — K ( x ) u ^  -  K(x)u + Au
is monotone increasing with respect to u G [u_,u]. Let Ui be the solution of following 
problem

- c n A g U i  +  Aui -  f(x ,u -), (2.4)
=  u -~\dQ  • ( 2 -5 )

Then
—cn^g(u\ — *u_) +  A(u± — U-) ^  0, (2.6)

-c nAg(u-U i) +  A ( u - u x) > f(x,u) -  f ( x yu^) > 0, (2.7)
丑一从1丨船 >  一以- I如 = 〇• (2*8)

It follows from (2.6), (2.7), (2.8) and the maximum principle that
0  <  U -  <  u i  < u .

Similarly we define for m =  1,2, • • • ,
一 Cn^gUm +  A.Um =  fix^Urn—l)-}

^  u m ~ l\ d C l  *

Then
0 <U- < Ui < U2 < * ' * < um < u.

Prom the monotone iteration schemef1̂ we know that there exists a weak solution u of (LI)
on Q such that û , < u < u. The standard elliptic theory shows that u € C°°(0). Then

. .  . . . •exhausting M  by a sequence of bounded domains we can show that the sequence of 
solutions {*ua；} of (1.1) on each a： has a subsequence which converges to the. solution of 
(1.1) oa M . The idea is similar to that of [8], so we omit the details.

Now let us prove the existence theorems.
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T heorem  2.2. Suppose that K(x), K(x) are continuous function on M and K(x) < 0 
K(x) < 0, Vrc € M. If there exists a constant e> 0 such that

• K(x)/K{x) > e, rc € M \M 〇,
where M〇 is a compact subset of M s then there exists a conformal complete metric g with 
scalar curvature K{x) .

P roof. By Lemma 2.2 it suffices to find a positive subsolution of (1.1). From [2] we can 
suppose that the conditions hold for all x e M, Set *u_ -  c > 0 such that

C n - 2  <  6  <  、K(x)
Then

0 =  cnA pu_ > -K (x)u l^2 +K(x)u^,^
namely, is a subsolution of (1.1); this proves our theorem.

In order to prove our next two theorems we need the following lemma.
Lem m a 2 .3^12] Let (M^g) be a complete Riemann manifold. Let us denote by r(x) =  

d(x, x〇) the distance function to some fixed point x〇 € M. If

e ( r ) ,
then in the distributional sense

+  ^  t2c(t)dt.

Lem m a 2 .4〇 Let (M,g) be a complete Riemann manifold with nonnegative scalar cur- 
vature K{x)} r(x) ~ d(x^x〇). If there, exists a constant R > 0 such that in distributional 
sense

2(n -  l)A 〇r  +  ~ ~ — — < -rK(x) as r(x) > /2, (2.9)T
then there exists a conformal complete metric g whose scalar curvature is K (x ) .

P roof, Let
u-(x) = (r2 + 6 ) - ^ ,

where 6 is a positive constant. Then
w r 5 (x) =  (r2 +  &)- ^ ,  

n2 — 4 〇  ̂ 〇 ,, rt+6 n — 2
4

n — 2 
~ 2 ~ "

r 2(r2 +  b ) ~ ^  —— Y~(r2 + b ) ~ ^ r A gr 
(r2 +  b ) - ^ ,

cn A5u_ __ (n -  l) (n  +.2)r2 2(n -  l)rA gr  2(n — 1)
U-

(2.9) implies
(n — l)(n  +  2)r2 

r2 + b

(r2 +  6)2 r 2 +  6 r2 + b

- 2(n — l)rAgr -  2(n -  1) > —K(x) +  K(x)(r2 + 6).
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Then we have
cn V h  > -K (x )u T ^  +K(x)u-,XL—

namely, we have obtained a subsolution of (1.1) and from Lemma 2.2 we know that (1.1) 
possesses a positive solution u >

Since
u^ ( x ) > u r ^ ( x ) > - ^ ,

by Theorem 2.1 we know that the metric g =  u ^ g  is a complete metric on M.
T heorem  2.3. Let (M}g) be a noncompact complete Riemann manifold with the scalar 

curvature K{x) <0 . For a fixed point x〇 € M  and r(x) =  d(x, x〇)

Ric“ ) L
for some function c(r). If there exists a constant R > 0 such that

0 >  K(x) > 2n(n - 1 )  +  r2K(x) —
f*r(x)

t2c(t)dt as r(x) > Ry
then there exists a conformal complete metric g whose scalar curvature is K (x ) . 

The proof of this theorem is straightforward from Lemma 2.3 and Lemma 2.4.

§3. Nonexistence Results
D efinition  3.1. Let M be an n-dimensional complete Riemann manifold

V(r) =  vol(5(^〇,r)).
The order of M  is defined 'to be

O(M) =  inf{fc| Um V(r)/rk < 〇〇}.' r—► +〇〇

T h eo rem  3,1； Let (M,gf)v6e a complete Riemann manifold with O(M) < 2 and scalar 
curvature K(x) < 0. Then any continuous function K{x) > 0  cannot be the scalar curvature 
of a conformal metric of g • -

Proof. Assume on the contrary that equation (1.1) possesses a positive solution u. Let 
/  =  ~u. Then f(x) < 0 for any x £ M  and

-cnA gf  = - K ( x ) ( - f y - 2 -K (x )f.
So -  Aff/  < 0. Hence /  is a negative subharmonic function on M. This contradicts a theoran 
of Chenig and Yau in [4].
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