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Abstract

This paper discusses the connectivity of the essential spectra of Toeplitz operators with
symbols in H%° 4-C on Hardy spaces and weighted Bergman spaces for several complex variables.
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§1. Introduction

It is well known that the spectra and the essential spectra of Toephtz operators on Hardy
spaces of one complex variable are connected. But in the case of Hardy spaces of several
complex variables and Bergman spaces, the similar results fail. For exa_mple, Ty o is a
compact operator on Bergman space L2(D), where D is the unit disk in @', and its spectrum

is total disconnected. In the case of Hardy space of several complex variables, Davie and

Jewelll"l give the following examples:

(‘1)' There exists a symbol ¢ € C (S) such that o(Z,,) is disconnected.

(2) There exists a symbol ¢ € L(8) such that ae(T ) is drsconnected
Hence, the following question is naturally mterestmg for Wthh pe L™ is the spectrum
or the essential spectrum of T, connected? In the case of Bergman space of one complex

variable, C. Sundbergm conjectured that the spectra of Toeplitz operators with harmonic .
symbols are connected. In 1988, D. H. Yu, S. H. Sun and Z. G. Dail®) proved that the‘

essential spectrum of Toeplitz operator with symbol ¢ is cqnnected, where ¢ is the harmonrc
extension of ¢ € H®(I') + C(I), and T is the unit circle in €. In the case of Hardy space
for several complex variables, Davie and Jewelll!! conjectured that the essential spectrum of
Toeplitz operator with symbol ¢ in H*(S) + C(S) equals the spectrum of ¢ in the algebra
H*®(8) + C(5), ie., 0e(T,) = ones(s)+0(s)(@) for ¢ C H®(S) + C(S). In this paper, we
will prove that the conjecture is true, and discuss the connectivity of the essential spectra
of Toeplitz operators with symbols of type H* + C on we1ghted Bergman space of several
complex variables, which extends the result in 8]
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In the paper, B denotes the unit ball in €™, S the boundary of B, ie.,§ = {z € @’"Hzl =
1}. ¢, is the automorphism of B:

: Z— Atz — (1~ |z ﬂ—‘?z
KZOE i f_ (L,'zi( 7).

Let v be Lebesgue measure on € ™ = R 2", so normalized that ’U(B)‘ = 1, and o the
rotation-invariant positive Borel measure on S for which ¢(S) = 1 (the positive measure
of total mass 1 is often called probability measure). L*°(B) and L*°(S) denote the spaces
of essential bounded measurable functions with respect to v and o, respectively; H*(B)
denotes the space of bounded analytic functions on B. For 1 < p < o0, L?(S) denotes the
space of integrable functions of power p with respect to o, and H?(S) is the Hardy space on
S.

Write
| 00 = o (€ B C€5),
@(0-——%}7%% (z€B, (€S),
a0 = iR e ces),

C(z,() is said to be Cauchy kernel, p(2, {) the invariant Poisson kernel, C,(¢) the normalized
reproducing kernel of H °°(§). It is known that C, — 0 weakly as |2| — 17, and |C,(( )=
p(z,¢). Let P 1l denote the mvanant P01sson integral of f. Then we have

/ fowz(C)dd(C) / FQIC.AQ)Pde(¢) = PIfI(z) (fefﬁ( ",

by the invariant mean value property of P01sson 1ntegra1 (consult Theorems 3. 3 7 and 3.3.8
in [5]).

Let P : L?(S) — H?(S) be the orthogonal projection. Clearly, Pf=k- hm C’[ 1] for
fe LZ(S), where k-lim F' is the k-limit of F' (consult [5]), C| il is the Cauchy integral of f,
ie., C‘Ifl = [¢ F(¢)C(z,{)da((). For ¢ € L*®(S), define | '

Tof = P(pf) = k=1mClef], fe H*(S).
T is called Toeplitz operator with symbol ¢. In §2, we will discuss the spectrum of T, and

the algebralc spectrum of ¢ for ¢ in H*(S) + C’(S’)
For a > —1, set A

-
Ko(z,w) = e '(z',w))"*‘l“"'".f
el = Ff:‘;)“ 11,*(”&“4)_ 5 (1~ hof?) ()

We know that dV, is a probablhty measure on B from §7.1 in [5]. For a ﬁxed a>— 1
L”(B dV,) (or L?(dV,)) denotes the space of integrable functions of power p ‘with respect ‘
to dV,, L2(B,dV,) (or L2(dV,)) denotes the Bergman space. For f € L?(B,dV,), write

P@f(z) = /B Ko (2, 0) f(1)dVi (w).
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From §7,1 in 5], we know that K (2, w) is the reproducing kernel of H°°(B), and when a > 0,
») is a bounded linear operator from LP(B,dV,) to L2(B,dV,), where 1 < p < co. When
a > —1, P{@ is the orthogonal projection from L2(B,dV,) to L%(B,dV,). If ¢ € L>(B),
define a bounded linear operator T(a) on L2(B,dV,) as

T® f(2) = PO (pf)(2) = /B Ka(z w)p(w) fw)dVa(w), f € L2(B,dV,).

Also define a bounded linear operator HS® from L2(B, dV,) to (L2(B,dV,))*
H{) f(2) = (1 = PD)(pf)(2).

Tg") and H ,S,a) are called Toeplitz operator and Hankel operator with symbol ¢, respectively.
For f € L*(B,dV,), it is easily seen that

[ fopstwiaviw) = [ ruK®w)Pav,w),
where '
(1 —- lz'Z)(n+1+a)/2
(= w, By
is called the normalized reproducing kernel of L2(B,dV,). When [z — 17, K () ¥ g
in L2(B,dV,). (Hereafter, the weak convergence is denoted by = .) K. H. Zhu®! and L.
Stroethoffl®! discussed the compactness and Stchatten Cy-class of TS and HS. In §3, we
will discuss the connectivity of the essential spectra of TS for ¢ € H®(B) + C(B).

KO(w) =

§2. The Essential Spectra of Toeplitz
Operators with Symbols in H*(8)+C(S)
Lemma 2.1 Let f,g € H>*(S) + C(S). Then

P F1P- 9] = Brlfellloo =0 (r—17),
where P,[f}(2) = P|[f](rz) (z € B).
Lemma 2.2. Let f € H*®(S)+ C(S). Then

ou=(sy+oes) () = [V PIAGIS <l <1},
§>0

where e (s)+-c(s)(f) denotes the spectrum of f in the algebra H ®(8) + C(S).
Proof. If n = 1, the result is classical, so we can suppose n > 2. Without loss of
generality, we assume 0 ¢ ﬂ {P[f1(2)I6 < |2| <1}. Then there are §,¢ > 0 such that

|P[flI(2)| > € Wherever §< Izl < 1. Let f = f1+ fa, f1 € H*®(S), f2 € C(S). Then
P[f] = Plfs] + Plfa, Plfi] € H(B), Plfs] € C(B).

P[fl] = fi1, a.e. [0}, Plfa]ls = fa, where P[f]* is the k-limit of P[f;]. Suppose that
{fx} is a sequence of polynomials of Zj, Z; such that fi converges to P f2] in C(B), and
Fi(2) = P[f1](2) + fx(2). Then there is an &9 > 0 and a large K > 0. When k > K, we have

[Fr(2)l 20 (6 <]zl <),

Since P[fi] € H*(B), 6;P[f] =0 (j =1,--- ,n), we have §;F} = 9;fr € C(B). Further-
more, 8;F}, is bounded on 5 = {2 € B|é < |2| < 1}.
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For any zo € {15, there is an open neighborhood V(z) of 2o such that |fx(2) — fi(20)| <
€0/4 when z € V(2¢) N Q5. So we have
IP[£1](2) + fi(z0)] > [P[fa] + fi(2)] = 1fu(2) — fizo)l > 3e0/4 (2 € V(20) N Q).

Consequently, P[fi] + fr(z0) is invertible in H*(V(z) N Qs) (here H®(W) denotes the
space of bounded analytic functions on W). Write

Gi(2) = [PIfi] + fe(zo) 7 (), 2 € V(20) N Q5

Gi(2) = Gi(2)(fi(2) = Fu(20)), 2 € V(20) N Q.
If z € V(20) N s, we have

|G(2) = |Gh(2)| - 1fe(2) = fi(zo)| < 1/3.
Hence, log(1 + Gy) is a bounded smooth function on V(z) N s, and
Fiu(2) = (P{f1](2) + fi(20))e'8+C:E) 1 5 € V(20) N Q.

Note

_ 1

T 1+ Gr(z)
_ Gil2)
- '1 + Gi(2)
So 8;log(1 + G) is also bounded on V/(z5) N Q5. Let V be an open subset of V(zo) which
contains 2o such that V C V(z) and V C {z € €"||z - 2| < (1L — §)/4}, let h be a smooth
function in €", such that hly = 1 and the support of  is contained in V(2). We dfine

h(z)log(1 + Gx(2)), 2 € V(20) Ny,
Hk(z)={0,(Z) ol (7)) zeBg[V}(zo)gQS]-

5;log(L + Gi(2)) 8,Gi()

8;fu(2), z€V(2)NQs.

Then Hj, is a smooth function on B, and

5, Hi(2) = { ([)a:jh(Z)] log(1 + Gx(2)) + h(2)0; lqg(l + Gr(2)), i 2 g&%}(r;o{)lg ol

Clearly, 5jH r and Hj are both bounded smooth functions on B. Hence, there is a u; €
CY(B) N (Lip})(B) such that duy = dHy by Theorem 16.7.2 in [5]. Thus d(uy ~ Hy) =0,
so uy — Hy is holomorphic in B, and ’

ur(2) — Hi(2) = up(2) —log(1 + Gi(2)), z€VNQs.
Let ﬁk_ = (P[f1] + fr(z0))eHe ¥+ . ¥+, Then
(Plf1] + fk(Z()))er”uk € H*®(B), e* € C(—B—), and ﬁk(z) = Fp(2) if 2 € VNQs.

For each z € Q, we can give the construction as above, so Qs is covered by finite open
sets {V;}72, such that ' '

Ff = (PLA)+ filzg))eevhe™t for z; € V; C V(z) N {z € €|l - 2] < (1~ 6)/4},
where H,f, - u?c € H*(B), et € C(B), and fg(z) = Fy(2) on V; N Q. Let
Qs ={z€B|§' <|z| <1} (1 >8> (1+6)/2).

Then there is a subfamily {Vj,} of {V;}7.; which covers Qs, and V;, N Qs = V;, N B. For
convenience, we still denote {V},} by {V;}7%;. Let Vo = B\Qly = {z||2| < §'}. Then {Vilto
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covers B. Set N
L = (PLAl+ fu(z)e™ ™ (=1, ,m).
Then L € H®(B). When 5,1 # 0, and z € V; N V; N Qs, we have
LI (2)e®) = LL(2)e%®) = Fy(2).
Forj=0, l#0, V;NViNQs =ViNnVy=ViNn{z||z] <&}, s0
L, € AVinV) = A(Vo nVinQs) = A(Von Vi N B)

'~ since It € H®(B), and L} is invertible in A(Vo N Vi N B). On V; NV, N B we define

o, =IiLY" (jl=1,2,---,m).
Then |
;= LLLY " = %% ¢ H®(V;nVin B)n C(V;NViN B)
= A(V;nVin B).

For | =0, j # 0, we define ®;9,Po; on V;NVu N B as

®jo = L), ®o;=Li".
Then ®;0, ®o; € A(V; N Vo N B). It is easy to see that

@1 P;-P55=1 on V;NVNV;NB,

and

P -®;=1 onV;NV,NB.

Then the second Cousin problem yields ®; invertible in A(V; N B) with ®;; = ®; "<I>;'1

(consult [4] p.363-364).
Let

Pl"=‘1>'.‘1-Lj Q?:(I).e“i (j=1,- ,m).
Then P"GH°°(V nB), Q’cEC(V N B). For z € V; NV;N B, we have
Fi(2) = Li(2)e) = PH2)QH() = PH)QH2),

and .
PE(2)PF 7 (2) = 7 (2) L3 (2)(®; (2) LL(2)) ™
= (®,871)(2)(L - L§ )(2) = 1.
Hence
k k
PJ’ ‘V,anB P ‘V'anB'
Similarly,

k — Nk
QJ’|V,~anB“ Qi IVjﬁV;nB'

Thus, if we set. Py(2) = Pf‘(z), z € V;NB(j = 1,-+-,m), and Qi(2) = Q%(2), z €
VinB(j=1,---,m), then P, € H>*(Qs), Qk € C(0s), and F,, = P,Qy, on Q5. Note that

each Pf is invertible in H*(V; N B)(j =1,---,m). Hence Py is invertible in H* (), i.

Ple H *(Qs). Clearly, Qy is invertible in C(Qs) By Hartogs theorem, we know that Pk
and P have analytic extensions on B. Write their extensions by B, and P,c , repectively.



98 ' CHIN. ANN. OF MATH. : Vol.16 Ser.B

Then P, and 13,; ! belong to H*(B) by the maximal model principle. We can continuously
extend @ and Q,:l onto B, and denote their extensions by Q) and Q;l, respectively. Thus

Qi = @@ =1, (BB = (PR =1
Consequently
(PQOE G = PiQel P Q5" | = BiPT Q] s@7 5= 1
Note Fy = PrQx|g= P;Qxlg, and
| BUQ o= (B Q| s€ H™(S) + O(S).
Hence Fy is invertible in H*°(S) + C(S), i.e., 0 ¢ ogee(syro(s)(Fz)- From [|[Ff — flloo —
0 (k — 00), we easily know that f~1 € H*®(S) + C(S) since H*(S) + C(S) is closed and f
is invertible in L°°(S5). .
Conversely, if f is invertible in H*(S) 4 C(8S), then ||P.[f1P:[f™}] = ljoo = 0 (r — 17)
by Lemma 2.1. Thus there are £, > 0 such that
IPAFIQPF NN 2 1= BB = U > 1= (0< e < 1)
holds for any ¢( € S and § < r < 1. Furthermore |P[f](2)] > (1 — ¢)/M (where M =
IP[flleo), 6 < |2| < 1, i.e., P[f] is below bounded on some Q5 = {z € B|§ < |2| < 1}; in
other words, 0 ¢ () {P[f](2)|6 < |2| < 1}. We complete the proof.
§>0

Lemma 2.3. Suppose f € H*(S) and g € C(S). Then

() 7/C. = PIN()C:, (€ B;

(i) |T4Cx — Plgl(2)C:llz = 0 (|2] — 17).

Proof. Since C, is the normalized reproducing kernel of H %(8), for any ¢ € H*(S), we

have

(. T3Cs) = (f9,Ca) = (1 - |2*) 3 P[f](2) - P[o](2)
= P[f](2){p, C:) = (¢, P[f(2)C:) = (@, P[f](2)C%).
Hence T7C, = P[f](2)C., it shows (i).
In the sequel, we always denote the ideal of compact operators on H2(S) by K. By L. A.
Coburn!®, we have T3Ty — Tigz € K; on the other hand,

(TiysCar Cs) = (|gPCsr Co) = /S 19PIC. Pdo(0)

= [ lafo(a,)d(0) = Pl
~ Similarly,
(TngCz) = P[g(2), (T3C., C.) = P[g}(2).
Thus
ITyC: — Plgl(2)C: 13 |
= (TyC,, TyCs) — (TyCs, Plgl(2)C:) — (P[9)(2)Cs, TyC) + (Plg)(2)Ce, Plgl(2)C) .
= (T3T,C,, C;) — Plgl(2)Plg)(2) — Plgl(2)P[g](2) + Plg](2)Plg] ()
= <T19|2027Cz) - |P[g](z)|2 + (KCZaCz>
= P[lg]*}(2) - |Plg}(2)* + (K C;, Cy),
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where K = T;T, — Tj,j2 € K. Note C, = 0(|z| —17), so }1m (KC,,C,) =0. By Lemma -

2.1,

. (Pllgl*](2) ~ [Plgl(2)*) =

Hence
lZ}i_rg_(HTng = Plgl(2)C:|l2) = 0,

that is, (ii) follows.
Theorem 2.1. Let f € H*®(S) + C(S). Then

0e(Ty) = ore=(s)+c(5)(f)
In particular, 0e(Ty) is a connected set.
Proof. Suppose f = fi + fz, f1 € H®(S), f» € C(S). First, we prove that

omo(s)+0(5)(f) € ae(T¥).
Without loss of generality we assume 0 ¢ o(T¥), i.e., T¢ is a Fredholm operator. Then
there is an S € L(H?(S)), K € K, such that ST = I + K. By Lemma 2.3, we have

T; C, = Pi)(2)C,, and ||T5,C. — Plf](2)Cill2 — 0(]2] — 17).
Thus
I(T7 ~ PLA(2))Cella = IT7,Cs — PIRI()Cla = 0 (j2] = 17).

By Lemma 2.2, we know

0H°°(S)+C(S)(f) m {P[fl(2)|6 < |2] < 1}.

6>0

Hence it is sufficient to prove

0¢ (Y PIAGE <#I<1}.

§>0

If 0 € () {P[fl(2)|6 < |#| < 1}, then there is a sequence {2} of points in B, such that
12| — fzoas k — 00, and P[f}(z) — 0(k — ). Since |[(Tf— P[f](2))C:lla — 0 (2] — 17),
IT#Cllz — 0 (k — o0),

we have
1STFC, |2 — 0(k — o0).
Note }
STp=I+K, KeKk, .
50 ||Cy + KCy ll2 = 0, but [|Cyll2 = 1, |KCy|l2 — 0; we get a contradiction. It shows

o (s)+c(s)(f) C oe(Ts).
The inversive inclusion follows from [4]. The proof is complete.
Corollary 2.1. Suppose n.> 1, f € H*®(S) + C(S). Then

ow(Ty) = 0o(T}),
where 0.,(Ty) denotes the Weyl spectrum of Ty.
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Proof. Since 0y, (T5) = 0e(Tf) U {A € pe(T¥)|Ind(Ty — A) # 0}, where p.(T%) denotes
the Fredholm domain of TY, it is sufficient to prove that Ind(Ty — A) = 0 if A € p.(T¥). And
this is a direct consequence of Lemma 2.2 and Theorem 3.1 in [4].

§3. Toeplitz Operators on Weighted Bergman Space

Lemma 3.1. Leta > —1/2, T € L(L%(B,dV,)) commute with T;Ef) (j=1,---,n), where
2; 1s the coordinate function. Then there is an h € H*°(B) such that T = T,Ea).

Proof. For any ¢ € H*®(B), let <pr(z) = ¢(rz), 0 < r < 1. Then 1_1)1{1_ pr(2) =
©(2) (2 € B), ¢, € A(B), and |l¢r]loo < [l@lloo- Since A(B) is a uniformly clos:ad subalgebra

of H*(B) generated by z; (j = 1,--+ ,n), we know that {Té“) o € H*®(B)} is a w-closed
algebra generated by Tz(f ) (j = 1,---,n). Hence, for any ¢ € H*®(B), T commutes with
TS, Let h = T1. Then h € L2(dV,), and for any p € H®(B),

Ty =TT1 =TT = TS h = ph.

Since H*(B) is dense in L2(B,dV,), for any ¢ € L2(B,dV,), there are ¢, € H®(B) such
that {|¢on — ¥l|z2(av,) — 0(n — 00). Note T' € L(L%(dV,)), so T4 € LZ(dV,), and

1Tpn — T¥llzz(ave) S ITN - llon — Plzz(aviy — 0,
ie., flonh — T"J"“Lﬁ(dVa) ~ 0. Thus

1ho — Tl Li(ava) < [1BY — @nblly@ava) + llonh = Tl L1 ava)
| < hllzz @va)ll¥ — enllrzava) +llenh — Tl r2av.) — 0.
Hence T4 = hiy. Now we prove that A is bounded. Since h = T'1, we have
h(2) = (hK@, K, = (KT, KY), = (TK®, K(),,
({»-)a denotes the inner product in Lz(dVa)) Consequently |h(z)] < ||T| - ]IK;G)H%E(W&) =
|IT||. Hence h is bounded and T' = Tf(f).

Theorem 3.1. Let A be any closed subalgebra of L(L2(dV,)) containing Tz(f) (G =
1,-++,n). Then A is an irreducible algebra.

Proof. It is sufficient to prove that there is no nontrivial orthogonal projection in the
commutant A’ of A. Let P € A’ be an orthogonal projection. Then there is an h € H*(B)
such that P = T,(l“) by Lemma 3.1, since T,,gf) € A(j = 1,-++,n). Furthermore T,E‘;) =
T,L(L“)2 = T,(La), i.e., k2 = h. Hence h = 1 or 0, i.e., P = I or 0. The proof is complete.

Let £®(C(B)) and L (H>®(B) + C(B)) be the closed algebras generated by

{T¢Np € C(B)} and {T{"|p € H(B) + C(B)},
respectively. We know that £(®)(C(B)) and £(®) (H*(B)+C(B)) are irreducible by Theorem
3.1. .
Let ©{*) and € (@ denote the commutator ideal of £(*)(C(B)) and L (H>(B)+C(B)),
respectively, K(® = K(®)(L2(dV,)) the ideal of compact operators in L(L2(dV,)). Then we

" have the following
Lemma 3.2. ¢{ =€ ©® =K@,
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Proof. First, we prove that H<(pa) is a compact operator if ¢ € C(B). Since ¢,(w) —

((z = ¢ € 8) for any w € B, p(¢x(w)) = ¢(¢) (2= (). So
lle 0 9. = P (000l z2(av,) — 0(|2] — 17).
Hence Hé,a) is compact by Theorem 16 in [6]. For any k,k € L2(dV,), we have
(B HPh, k) = (B, B ko = (I - P@)gh, (I - P@) fk)
= ((I - P®)gh, fk)a = (gh, fK)a ~ (PVgh, fk)a
= (T, k)o = (TTyh, k) (f,9 € L®(B)).

Hence @™ H(® = 7(®) _ @@ Furthermore, T® — 79T js a coinpact operator for
—f g fe Foe fa F e
g€ C(B), § € L®(B). Consequently, [T\*, T{*] = T}“)Téa) - Tg(a)T}“) is also a compact
operator for any f,g € C(B). Hence € ) ¢ K@, Clearly, © {a) = {0}, since £(@(C(B))
is an irreducible C*-algebra, K c £(&)(C(B)) by Corollary 2 of Theorem 1.4.2 in [1].
Therefore @ (" = K@,
To complete the proof, let f,g € H*(B)+C(B), f=fi+fy, g=g1+ 9, fr,01 €
H*(B), f2,92 € C(B). Then
(@) (e (a)
Tfa Té - T5,
— (7{a) (@)y((a (a)
=(T . +1, )(Tél) + Té:)) - T(f1+f2)(91+92)
_ q(a)pla (@) pr(a (@)rp(a (a) (e
- Tf1 Tg(l) +T2a Tél) +Tf1 Ty(z) +Tf2 Ty(z)
(a) (a) (a) (a)
figr Tf:gt - Tflgz T " fag2

— (mte)mia (a) (a)p(a {a) a
- (Tff Ty(2) ‘Tffgz) + (T 2 Ty(z) _szagz) € K:( ).

Hence K@ = ¢ c ¢©@ c K@), je., ¢V = €@ = K@,

Write _ ,

Z(B) = {f € C(B)| fls = 0}; N(B) = {f € H*(B) + C(B)|f* = 0}.

Lemma 3.3. (i) Z(B) = N(B);

(ii) Let f € H®(B) + C(B). Then T}“) is compact if and only if f € N(B).

Proof. The proof of (i) is easy. We prove only (ii). First, we assume f € N(B). Then
f € C(B) and f|, = 0 by (i). For any ¢ > 0, choose g € C(B) such that ||f — gllec < ¢,
and g vanishes on some neighborhood of S. Suppose that h,, is a sequence of unit vectors

in L2(dV,) converging weakly to 0. Set K = {z € B|g(z) # 0}. Then K is a compact subset
of B. Since h,, — 0 in L2(dV,), we have h,,|x — 0 uniformly. Hence

1T bl 2ave) = HP(f’)ghmHLg(dva) < Mghmllzzava)
< llglloollPmlxllL2(ave) — O (m — o0).
So Tg(a) is compact, and TJE“) is also compact by |
IT = TN < 1f - glloo <.

Conversely, if T is a compact operator, then for h, = {®) we have
f

1T Rall 3 avy — 0 (1) — 17)



102 CHIN. ANN. OF MATH. Vol.16 Ser.B

since h, = 0 in L2(dV,). Furthermore,
(PR, K)o = (TR, K)o = 0(12] = 17).

Note ({(fK{*, K{),)* = f*. Hence f* =0, i.e., f € N(B). The proof is complete.
Lemma 3.4. Let f € H*(S), g € C(S). Then
(i) Tith K = PIA() KL,
(ii) if 2 — ¢ € 8, then TS KL — g(Q) K | aav,) — 0.
The proof is similar to that of Lemma 2.3.
Theorem 3.2. Let f € H®(B) + C(B). Then

Oe(T}a)) = O geo(s)+0(s)(f”)

for any a > —1/2. In particular, ae(T}a)) is @ connected set.

Proof. Since f* = (P[f*])*, a. e. T(“) - T(‘E) .1 is compact by Lemma 3.3. Hence

0e(TEV) = 0o(TS))

It is sufficient to prove that

Oe (Tl(aﬁ]) = opes(s)+c(s)(f)
if f € H*(S) + C(S). By Lemma 2.2 and Lemma 3.4, the proof of o g (s)+c(s)(f) C
Oe (Tszlf)]) is similar to that of Theorem 2.1. Now we prove that

ore(s)+o(s)(f) D Ge(T,Sf})])-
Without loss of generality, we assume 0 ¢ 0o (s)+c(s)(f). Then f~1 € H®(S) + C(S).
Note (P[f]P[f~'])* =1 a.e. Hence I — Tl(,[}u,[ i € K(®). Since

Pf], Plf™ € H(B)+C(B), TENTS o —TE ooy €K@

by Lemma 3.2, we have I — T(?ITI(,T} 1y € K@), Similarly, I — TI(,‘E)f ]TI(;E}] € K(®), It shows

that TI(J[}I is a Fredholm operator, i.e., 0 ¢ o¢(T (a[}]) So ae(Tl(,[}]) C ogeo(s)+c(s)(f), the
proof is complete.
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