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H O RM A N D ER M U LTIPLIER TH EO REM  ON SU(2)

Fa n  D a s h a n *  X u  Z e n g f u *

A bstract

A boundedness criterion is set up for some convolution operators on a compact Lie group. 
By this criterion a H6rmander multiplier theorem is proved in the Hardy spaces on 517(2).
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Let G be a connected, simply connected, compact semisimple Lie group of dimension n, 

and g be the Lie algebra of G . Then g can be identified with Te(G), the tangent space 

of G at the identity element e of G. Let d! be the bi-invariant metric on G and denote 

d(a:,e) by | a? | for a: €  G. Let exp be the exponential map from g into G, Then exp is an 

analytic diffeomorphism on an open neighborhood of the origin of g. Choose e and 8 to be 

the maximal positive numbers so that exp™1 *Lx-i is such a diffeomorphism from B(x^e) 

onto For a positive integer k we define

P k = { P : P (x ) = ：q(exp~'1(xQl x))^q is a polynomial on Te(G) with degree < fc} 

as the set of polynomials on B(x〇y e) with degree less thaa or equal to k.

Let Yi ,Y2 , • • ■ jYn be an orthonormal basis of g and define the differential operators on 

space C ^ (G )  by

where. J  = (ji, * • * yj n ) is a multi-index and \ J \ ~ j i  + J2 + ---- h in*

We now introduce the atomic Hardy spaces Hp on compact Lie groups. An exceptional 

atom is an L°° function bounded by 1. A regular (p, 2, N) atom for 0 < p < 1 is a function 

a(x) supported in some ball B(y^p) satisfying

where p < e and P  is any polynomial on B(y^e) of degree less than or equal to N ~

[n{l/p-l)\.
The atomic Hp space < p  < 1 ,  now is the space of all /  e S'(G) (S'(G) is the

Schwartz distribution space on 5 (G )) of the form

Special unitary group.
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§1. N otation

YJm  = (Y^Yt f  E
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where each a{x) is either a regular atom or an exceptional atom. The “norm” || /  is 

the infimum of all expressions | 〇k | ) ly/p for which we have such a representation of / . 

Various characterizations of Hardy spaces on compact Lie groups were studied in [2,3,4].

Finally, throughout this paper, the letter will denote (possibly different) constants 

that are independent of the essential variables in the argument; this independence will be 

clear from the context.

§2. A B oundedness C riterion

Let L be a positive number. A function K (x) on G is said to be in class M (2,L ) if K  

satisfies the following conditions:

f  \YJK (y)\2dy < C R ~ (n+2^ \
J R<\x\<2R

where > 0, and | J  |<  L, and foi L = L + 0 < u < 1

{ f  \YJK { y )~ Y JK{Vx -l )\2d y )112
KJR<\y\<2R }

< f C(|a;|JS-1 0 < 1/ < 1,

_ U = l,

for all | x \< i2/2, where | J  | — L.

Theorem  2 #1. Suppose that 0 < p < l, L > n/p - n. I fK E M (2 1L) and the convolution 

operator T f = K  ^ f  is bounded in L2{G)} then T can be extended to a bounded operator in 

Hp spaces:

(2.1)

(2.2)

II T f  \ \ ^ ( G ) <  C \\ f  \\m{G) ■

To prove this theorem, we need the following lemma.

Lmma 2.1。 成ait T is an operator as in 2%eorem 2.1. Tften || "Ta C /or any 

atom a(x). Here the constant C is independent of atoms.

P roof〇 It is enough to prove this lemma for any regular atom. For any regular atom a(a?) 

having support jB(x〇，/?)，4(0 ：) = a(a;0，;c) is an atom with support B (e，p). Thus， without 

loss of generality, we can assume that a(x) is supported in S(e, p). Let be a non-negative 

C°° radial function which, satisfies
OO

supp⑷  g  {1/2 引 ;r | S 2} and [ 冷(2 % |)  = 1 for y 妾 0.
jf = —OO

• OO
Let r}{x) = 1 — | ^  〇• Then

Thus

Clearly,

OO

K(x) = r](x)K (x) + [  K{x)(f}{2^"2p ^l \x\)
y = — OO

^ K 〇(x) + l：Kj (x).

K  * a(x) =  K〇 * a(x) -f EKj * a(x). 

supp(iif〇 * a ) C  B(e,8p), supp(Kj * a) C B(e,2j+4p), j  = 1,2, • • • .



Therefore using the condition K  e M(2^ L) and mimicking the proofs on R n (see [6], p.359? 

also see [3] for some special techniques on G), we can easily obtain

II * a | |2< Cpn^ - n/pf and || Kj * a | |2< p)nl%- nlvcP .

Now the lemma easily follows by using H6ider’s inequality.

We are now ready to prove Theorem 2.1. It is enough to prove that

\\T a\\Hp < C  (* )

uniformly for all regular (p,2jiV) atom a(a?).

In order to prove (* ) we will introduce the generalized Riesz transforms on cornpact Lie 

groups which were studied in [1]. For aa integer L > 0 and a multi-index J  = (ji, *' * jJl) ^ 

{0,1, ■ • • j n}L let R j(f )  denote the generalized Riesz transform R j{f) == Rjt • • * RjLf^ where 

R j(f) is the j-th  Riesz transform of G if j  ^  0 and i?〇/  = /. It is proved in [1] that for 

p > (n -  l )/ (n  -  1 + L) and all f e L 2 n m

. H I I  丑■ /(/) llP 叫 1 /  11价 ， II i u / )  CII /  | |HP •
J

The proof of Theorem 2.1 is now easily obtained from the inequalities above and Lemma 

2.1. For any p €  (0,1] take L > n / p - n  so that p > ( n - l ) / ( n - 1  + L). For any (p, 2,iV) 

atom a(x) we have the atomic decomposition of R j(a)

Rj{〇)  = [ A 也 ，

where are atoms and E  | A) |p 〜丨| ||^ p S  C. Now notice that both T1 and jRj  are

convolution operators. Hence

II Ta fHP< C J 2  II T (R j (^ ))  ll^< C-J； | A, H  Th  ||^<  C
J i

and Theorem 2.1 is proved.

§3〇 A H orm ander M ultip lier Theorem  on H^(SU(2))

Consider the special unitary group G = SU{2). Any /  & H^(SU(2 )) has a Fourier series 

in the distribution sense:
OO

f(y) ~
n = l

f 〇 \
where Xniy) — sin(n0)/sin(0) and y is conjugate to a diagonal matrix ( ^ ^ ie I (see

[5])-
Let {A(?^)} be a bounded sequence and define a Fourier multiplier associated with {A(n)} 

by
OO

Tx .. f — Txf 〜 X(n、nXn * f(y)-
n=̂ l

Clearly, T\ is a convolution operator and T \f  ~  K ^ f. Here

物 ）〜 J ^ n % )X n(y)
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is a distribution function.
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Recall the difference operators defined on {A(n)} by

8°(X(n)) = X ^ J ^ X i n ) )  = A(ra + 1) -  X (n),-■ ■ ,6j+1(X(n)) = ^(<5J'(A(n))). 

If the sequence {A(n)} satisfies

Y ,  |^ '(A (n ))|2 < CR1- ^
R<\n\<2R

for any R >  0 and integer j  between 0 and L, then the {A(n)} is said to be in Hormander 

multiplier class M (2，L) _

Theorem 3.1. Suppose that (A(n)} e M (21L) and L > 3 /p -3 . Then T\ can be extended 

to a bounded operator in the space H P(SU(2)).

Proof. By Theorem 2.1, we should prove that K \ e M(2, L) for some L > S/p -  3. For 

the sake of simplicity, we will prove only the case 2/3 < p < 1. The proof for the case of 

general p will be clear after proving this special case together with an explaination.

For 2/3 < p < 1 , we need to prove that for small R >  0, 

i ^ l R ^ R ^ K i y f d y ^ C R - 5,

^lR < iyi<2R \K (y)\2dy < c R - ^

(i}i) lR<\yl<2R \Yi K (y) -  Y jK iy x -^ d y  < C\x\R-Q.

For simplicity, we denote 12/ 1 ^  i? if CiR < | y |<  C%R for some constants C\ and 02- 

Notice that |y |, and dy = sin2(6)d9dE , where dE is the Harr measure of

{SU(2)/T). Clearly,

C L 1 物
1/2

\0\r̂ R
嘉 E A(w)w

+
° ( L

El + Ej2 .

|n |< l / i i
A ,|n |> l/K

2 、l/2
de)

S  A(|n|)e inO 2d〇Y /2

We observe

L 2) U J ^  E  A(W)e- ( ， - ^\n\>l/R

+  〇( R ~ 2 ) { f  | 乙 A ( |n |) ,V - l )
JI沒丨〜I . — _、 1 / t~«\n\>l/R

2M V2

1/2

u + v

and

U = 0 (R - 3/2) + 0 (R - 2) U  I <52(A (|n |))nein0
\n \> \lR

2de}1/2

= 〇 (r - ^ )  + 〇 (r ~2){ J 2  J 2  4 2(a m ) 丨2}1/2
k=^lnR 2ft <|n|<2fc+1 

oo 1/2
= o ( i r 3/2) + o ( i r 2){ 2- fc} = 〇 (r ~3/2).

k=—lnR
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Similarly,

F = 0(i?-2){ Y, E \m\n\))\2}1/2 + 〇(R-3/2) = 〇(R~3/2).
fe=—In R 2fc< |n |< 2 fc+1

This shows that E2 = 0 ( i T 3/2).

Using the same argument, we have

五1 =導 ”仏 」 基

+ 〇d

M < i / r

E  A( w )，

2M 1/2

2M V2

= 0 (J T 3’2) + 0 ( i T  i )  (  2fe)  = 0 ( R - ^ 2).
0< k < ~\n R

This proves (ii).

To prove (i) and (iii), we need the following formula proved by Mayer in [5]:

YjXn{y) =  { (n  +  l)xn-\{y) ~ ( n ~  l)xn^-i}E(y),

where

E(y) = YjX2( y ) ( i - X s ( y ) r 1 ^ \ 〇 r 1, YJE(y)

By this MayerJs formula and a simple calculation,

YjK(y) = A(n + 1) ( n2 + 3n + 2)xn{v) -  A(n -  l )(n 2 -  3n + 2)xn(y)^E (y)
n>0 n>2

= { X ] +  2)Xn(y)}E(y) +  { J ] < 5x(A(w -  l ) ) (n 2 +  2)x n(y)}E(y)
n>2 n>0

+ 3n^A(n + ^  + Â n ~ 1))Xn(y)}-B(y) + 〇( |^ |-1 )-
n>2

Using the same argument that we used in proving (ii), we easily obtain (i). 

Now we turn to the proof of (iii). We first observe

{ f  \YjK(y) -  Y jK iy x -^ d y }1̂ 2
l JR<\y\<2R

= sup f  {YjK(y) -Y j K{yx~'1)f(y)dy
f&c°° J g

su p p (/)C S (0 ,2 R )\B (0 ,/J )
I|/I|2<1

0(|ar |) sup sup 1 /  Yj K (y )^ 2 Yif{y^)dy\
\ \ f h < l  \z\<R/2UG  i=1 1
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By Mayer^ formula again, after a careful calculation, we have 

Y iY jK iy )

= Y j ^ Y ^ / E i y )  + ( ^ 2 ( n 3 + 7n){^2(A(n)) - 6 2(X(n -  l ))} Xn(y)) E 2 (y)
n

+ ( E ( 7n2 + 6){<5x(A(n + 1)) + ^ (A (n )) + ^ (A (n  -  1)) + ^ (A (n  -  2))}Xn(y ))E 2(y)
n

+ ( J 2  M A (n  + 2) + 2A(n) + A(n -  2 )} )e 2(V) + 0 ( | 9 |~2).
n

Thus we easily obtain (iii) by mimicking the proof of (i). This completes the case of 2/3 < 

p < 1. From the above estimate of Y{YjK(y) , it is not difficult to see that

M i

Yj K{y) ^ Y J L  E  ^ + i ( ^ ( A(w+ fc))xn(y)〇( ^ r |J |) + 〇( i ^ r |J |),
n i=〇 /c=—i

where is a polynomial dependent of k with degree < i. For the reason of simplicity,

many P^_1(n) may be zero in the above formula. Thus the case 0 < p < 2 / 3 i s  easily proved 

by mimicking the proofs of (i), (ii) and (iii). Therefore the proof of Theorem 3.1 is complete.

Note, The Hormander multiplier theorem on compact Lie group G was first set up 

in LV(G) by N. Weiss^. Recently, in a way very different to this paper, we proved this 

Hormander multiplier theorem on HP(G )( see [4J). But both Weiss5 result and ours need a 

restriction {An} €  M(2, L) with L > n/p — n/2 (L > n/2 for the case p > 1) and L being 

an even integer. In this paper, we have no this restriction of even integer on SU(2).
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