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HORMANDER MULTIPLIER THEOREM ON SU(2)
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Abstract

A boundedness criterion is set up for some convolution operators on a compact Lie group.
By this criterion a Hérmander multiplier theorem is proved in the Hardy spaces on SU(2).
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§1. Notation

Let G be a connected, simply connected, compact semisimple Lie group of dimension n,
and g be the Lie algebra of G . Then g can be identified with T,(G), the tangent space
of G at the identity element e of G. Let d be the bi-invariant metric on G and denote
d(z,e) by | z | for £ € G. Let exp be the exponential map from g into G. Then exp is an
analytic diffeomorphism on an open neighborhood of the origin of g. Choose ¢ and § to be
the maximal positive numbers so that exp~!:L,-1 is such a diffcomorphism from B(z,¢)
onto B(0,6). For a positive integer k& we define

Pi = {P: P(z) = g(exp~*(z;'x)),q is a polynomial on T.(G) with degree < k}
as the set of polynomials on B(xo,€) with degree less than or equal to k. |

Let Y3,Ys,--,Y, be an orthonormal basis of g and define the differential operators on
space CIVI(G) by ‘ :
Yp@) = (YY), fe
where.J = (ji,--+ ,j,) is a multi-index and | J | = j1 + jo + -+ + Jn.

We now introduce the atomic Hardy spaces H? on compact Lie groups. An exceptional

atom is an L function bounded by 1. A regular (p,2, N) atom for 0 < p < 1 is a function
a(z) supported in some ball B(y, p) satisfying

Il afl2< p™?~ /" and / a(z)P(z)dz =0,
¢

where p < € and P is any polynomial on B(y,¢) of degree less than or eqﬁal to N =
[»(1/p - 1)].

The atomic HP space HE(G), 0 < p < 1, now is the space of all f € §'(Q) (S'(G) is the
Schwartz distribution space on §(G)) of the form

f= chak with Z]cklp < 00,
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where each a(z) is either a regular atom or an exceptional atom. The “norm” || f ||g» is
the infimum of all expressions (3 | cx [)}/? for which we have such a representation of f.
Various characterizations of Hardy spaces on compact Lie groups were studied in [2, 3,4].

Finally, throughout this paper, the letter “C” will denote (possibly different) constants
that are independent of the essential variables in the argument; this independence will be
clear from the context. |

§2. A Boundedness Criterion

Let L be a positive number. A function K(z) on G is said to be in class M(2, L) if K
satisfies the following conditions:

/ V7K (y)|"dy < OR~*+2ID, (2.1)
R<|z]<2R
where R >0, and | J |< L, andfor L=L+v,0<v <1
1/2
([ WKG)-Y Kl
R<|y|<2R

< { C(lz|R-1)YR- /24D o<y <1,

Ol in(R-w/24D) = @)

for all | © |< R/2, where | J |= L

Theorem 2.1. Suppose that0 < p<1,L>n/p-n IfK € M (2, L) and the convolution
operator T'f = K  f is bounded in L?(G), then T' can be extended to a bounded operator in
H? spdces:

N Tf Nz < Cl f a2 -
To prove this theorem, we need the following lemma.

Lmma 2.1. Suppose that T' is an operator as in Theorem 2.1. Then || Ta ||,< C for any
atom a(z). Here the constant C is independent of atoms.

Proof. It is enough to prove this lemma for any regular atom. For any regular atom a(z) -

having support B(zo,p), A(z) = a(zg,z) is an atom with support B(e,p). Thus, without
loss of generality, we can assume that a(z) is supported in B(e, p). Let ¢ be a non-negative
C® radial function which satisfies’

supp(¢) € {1/2 < e[ <2} and ) (@) =1 for y#0.

j=—co

Let n(z) =1~ § #(27772p~1 | z |). Then
=1 -

K(@)=n@K@)+ 3 K@)p27 2 a|)

j=—c0
= Ko(z) + ZK;().
Thus
K % a(z) = Kp * a(z) + ZK; * a(z).
Clearly, |

supp(Ko * a) C B(e,8p), supp(K; *a) C B(e,27™p), j = 1,2,
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Therefore using the condition K € M (2, L) and mimicking the proofs on R™ (see [6], p.359,
also see [3] for some special techniques on G), we can easily obtain
| Ko*alla< Co™2™P, and || Kj+allz< C(2p)™/> /P20,
Now the lemma easily follows by using Hoélder’s inequality.
We are now ready to prove Theorem 2.1. It is enough to prove that
| Tallgr< C (%)

uniformly for all regular (p,2, N) atom a(z).

In order to prove (x) we will introduce the generalized Riesz transforms on compact Lie
groups which were studied in [1]. For an integer L > 0 and a multi-index J = (j1,-++ , 1) €
{0,1,--- ,n}¥ let R;(f) denote the generalized Riesz transform R;(f) = R;, - -- R, f , Where
R;(f) is the j-th Riesz transform of G if j # 0 and Rof = f. It is proved in [1] that for
p>(n—-1)/(n-1+L)andall f € L*NHP

ZHRJ(f Ve = fllge, | Ra(f) lar<CH £ ilae -

The proof of Theorem 2.1 is now easily obtained from the inequalities above and Lemma
2.1. For any p € (0,1] take L > n/p—nsothat p > (n—1)/(n—1+L). For any (p,2,N)
atom a(z) we have the atomic decomposition of R ;(a)

Ry(a) = Z Aibs,
where bis are atoms and ¥ | A; |P ~ || Rs(e) ||%,< C. Now notice that both T and R; are

convolution operators. Hence

| Ta 1< 02 I T(Rs(a)) I5< C’Z | X 1P Tos B ©
and Theorem 2.1 is proved.

§3. A Hormander Multiplier Theorem on Hr (SU(2))

Consider the special unitary group G = SU(2). Any f € HP?(SU(2)) has a Fourier series
in the distribution sense:

) ~ 5 Frnxay)
n=1

6
where xn(y) = sin(nf)/sin(f) and y is conjugate to a diagonal matrix (60 egg) (see

[5]).
Let {A(n)} be a bounded sequence and define a Fourier multiplier associated with {A(n)}
by

Ty: f—T\f ~ ZX(n)nxn %f(y).

n=1

Clearly, T, is a convolution operator and T f = K * f. Here

K(y) ~ > nAn)xa(y)

is a distribution function.
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Recall the difference operators defined on {A(n)} by
8°(A(n)) = A(n), 6' (M(n)) = An + 1) = Mn), -+, 67 (A(n)) = 61(87(A(n)))-
If the sequence {A(n)} satisfies
| > #Qm)’ < CrR¥
R<[n|<2R

for any R > 0 and integer j between 0 and L, then the {A(n)} is said to be in Hérmander
multiplier class M(2,L). '

Theorem 8.1. Suppose that {\(n)} € M(2,L) and L > 3/p—3. Then T can be extended
to a bounded operator in the space HP(SU(2)).

Proof. By Theorem 2.1, we should prove that K € M (2,L) for some L > 3/p — 3. For

the sake of simplicity, we will prove only the case 2/3 < p < 1. The proof for the case of
general p will be clear after proving this special case together with an explaination.

For 2/3 < p <1, we need to prove that for small R > 0,
() Fpepyican K W)dy < CRS,
(i) fR<]y|<2R lK(y)[zdy < CR™3,
(i) [epy<ar [YiK(®) - YiK (yo™")dy < Clz|RC.
For simplicity, we denote | y | ~ R if C1R <]y |< C2R for some constants C; and Cs.

Notice that | 8 | ~ |y|, and dy = sin®(§)dfdS , where d¥ is the Harr measure of
(SU(2)/T). Clearly,
de)

(/|y|~R‘K(y)‘2dy)l/2:O(/ ‘d@ 2, Anle
d())l/ i

[n|<1/R -

o], Jb T,

In[>1/R
= El +Ez

We observe

B> = 0(R™){ fmmR\ T Mo 1) as}"”

In|>1/R

+O(R™? /0 A|n|)et™ (e 1)’ de}

0I~R Yy, |>1/R
=U+V

and

1/2
U = 0(R™%) + 0(R™){ / Y S nne| ds)
|n|>1/R

—orroE | Y Y wrar)”

k=—InR 2k |n|<2k+1

= O(R™%?) + O(R‘z){ i 2—’“}1/2 = O(R™%/?).
k=—IlnR
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Similarly,

veomd{ ¥ Y b0} + o) = or=r),

k=~In R 2k<|n|<2k+1

This shows that By = O(R™%/2).

Using the same argument, we have

= o&™{ ,/0]~R|:0< > /\(|nl)em9(e’9 1))jd9}

[n|<1/R

+ O(R 1){/0]~R n Z:I/R)\(In’ mo }
O(R™%/%) + O(R—l)( 3 2*) = O(R=3/2).
0<k<—-InR

This proves (ii). ‘ A
To prove (i) and (iii), we need the following formula proved by Mayer in [5}:
Vixa(8) = {(n+ Dxna(®) = (0~ ns1}EGw),
where '
E(y) = Yixa(0)(3 ~ xa@)) ™ = |01, Y/E(y) = o™,

By this Mayer’s formula and a simple calculation,

VK@) = {3 M+ 1)(n? + 30+ 2xa() = 3 An = 1(0® = 30+ 2)xa(y) } EW)

n>0 n>2
= {3 ' () (n +2>xn(y>}E<y>+{261<A n = 1))(n* + 2)xa(s) } BW)
n22 n>0 :
+{ 3 an(x n+1>+A<n*1)>xn<y>}E<y>+0<|or1>
n>2

Using the same argument that we used in proving (11), we easily obtain (i).

Now we turn to the proof of (iii). We first observe

{[ WK -YGK )
R<|y|<2R

= s | K@ YK )]
fec™ G
wupp(1)CB02\B(0,2)
=O(|z]) sup sup f Y;K(y f(yz)dy[
|lf|lz<1 lz|<R/2

og=n{[ S K G) dy} "

i=1
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By Mayer’s formula again, after a careful calculation, we have
VYK (y)

= Y;K@YEQ)/EW) + (308 + )5 (\(n)) = £ (n ~ 1)) ha(v)) E*(9)

n

+ (20702 + 6){8 (A(n + 1)) + 81 (A(w)) + 8 (A(n - 1)) + 8 (A(n - 2)) xn(v) ) EX(v)

n

+ (T onrxn+2)+ 2A(n) + A(n — 2} E2(y) +0(16 7).

Thus we easily obtain (iii) by mimicking the proof of (i). This completes the case of 2/3 <
p < 1. From the above estimate of Y;Y; K (y) , it is not difficult to see that '
(o
YIK@) =323 D PEm)E M+ k)xa)O(6 ™) + 007,
n 3=0 k=—1

where PF. iy (:c) is a polynomial dependent of k with degree < . For the reason of simplicity,
many P +1(n) may be zero in the above formula. Thus the case 0 < p < 2/3 is easily proved
by mimicking the proofs of (i), (ii) and (iii). Therefore the proof of Theorem 3.1 is complete.

Note. The Hormander multiplier theorem on compact Lie group G was first set up
in LP(G) by N. Weissl”l. Recently, in a way very different to this paper, we proved this
Hormander multiplier theorem on HP(G)( see [4]). But both Weiss’ result and ours need a
restriction {A\,} € M(2,L) with L > n/p —n/2 (L > n/2 for the case p > 1) and L being
an even integer. In this paper, we have no this restriction of even integer on SU(2).
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