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FEASIBILITY OF THE REICH PROCEDURE 
IN THE DECOMPOSITION OF PLANE 

QUASICONFORMAL MAPPINGS**

L a i  W a n c a i*

A b strac t

In the decomposition problems, studied by Reich, of quasiconformal self mappings of the 
unit disc which keep the boundary points fixed, the construction of the first one requires the 
application of the Hahn-Banach theorem (so it is abstract) and it is only a variational decom­
position (a small weight one), and that of the second one avoids the Hahn-Banach theorem 
and gets rid of the restriction to the variational decomposition. But the success of the sec­
ond decomposition procedure (the Reichi procedure) is guaranteed only when minimal maximal 
dilatation K (f)  is sufficiently small. Therefore, it can not guaraatee even a variational de­
composition. Huang Xinzhong then proved that the inverse Reich procedure was successful for 
any K (f) .  But the inverse Reich procedure is not so natural as the Reich procedure and the 
corresponding decomposition can not replace the first one. It is still an open problem whether 
the Reich procedure is successful for any K (f) ,  The present paper gives an affirmative answer 
to this problem.

K eyw ords Quasiconformal mapping, Decomposition, Reich5s procedure.
1991 M R  Sub ject C lassification  30C62.

§1。 Introduction
Let Q be the class of quasiconformal self mappings of the unit disc U =  {\z\ <  1}. 

For f  E Qj Qf denotes all mappings in Q that agree with /  on the boundary dU. Write 
Qi =  Qz* Let denote the mapping in Q with complex dilatation normalized so that 
， (土 1) =  土l ，， (〇 =  i.

Set

H  =  ^ r， K f )  =  Halloo =  esssupl^/^ )!，
jz  zeu

K (f )  =  j  F  =  Qi}-

To avoid triviality we assume k (f) >  0.
Let B  be the Banach space of functions holomorphic in U, with

iî ii =  / /  \(j>{z)\dxdy <  oo, z ~ x  +  iy. 
u
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For g* G g* is called an extremal mapping in Qg if

K (g*)  =  inf K ( f ) .

N  will be the class of all complex valued measurable functions v(z)^ z such that

IMI〇〇 <  〇〇， J J  v(z)(f)(z)dxdy ~  0, for all (j) £ B. 
u

For the expression

;(j)dxdyL̂ ) = //r4u 丨舛

defines a bounded linear functional over B. By the Hahn-Banach theorem and the Riesz 
representation theorem there exists a complex measurable function r(^), z e U ,  such that

and

Hence

//
u

|M U  =  su p |r ( ,) | =  W

<f)dxdy =  j j  T(j)dxdy, for all 4> E B.
u

M(么） t (z) € N. (1.1)
l - 丨" ⑷ |2

We are concerned with the question of the possibility of decomposing a given f  E Qi into 
factors

/  =  / 2 0 / 1, h  € Qi, K {f i)  <  K {f) ,  i =  l,2 .

We further require that a decomposition should have a step length, i.e., a decomposition 
procedure {P i ,P 2} is said to be feasible (or successful), if for h G Qi, P{h ^  hi e  Q j, 
i =  1,2, we have h — h2 〇 hi and

sup m ox{K (P ih ),K (P 2h)} <  K (f ) ,  
h€Q i

K ( h ) < K ( f )

The procedure of the first decomposition is as follows: For f  £ Qi and its complex 
dilatation " ，

i) Find v € N  in (1.1) as above;
ii) For 0 <  t <  1/||^||〇〇, let gx =  f tv and g2 =  f  〇 5i_1, we have f  =  g2 〇 9i, 9i e Q, 

i =  1,2;
iii) Let g* be an extremal mapping in Qgi, set /1 — g *~ x 〇 gi and / 2 =  92 0 9*^ then 

/  =  /2 ° / i ,  fi ^ Q i, i -  1,2.
There are two weaknesses in the above decomposition. One is that the construction 

of the decomposition depends on the Hahn-Banach theorem, thus it is abstract. And the 
other is that ||̂||〇〇 <  k ( f ) / ( l  — fc(/)) (see (2.11) of [1]), and the decomposing weight t is 
restricted by t <  2 /(K (f )  -  1). Thus t -> 0 as K ( f )  —>• oo, and hence it is only a variational 
decomposition (a small weight one).

The procedure of the second decomposition is as follows: For /  G Qj and its complex 
dilatation //,
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1) For 0 〈亡 <  1， let 讥 = / #  and 分2 =  /  〇 \  we have /  = 仍 〇 s u  € Q， i =  1，2;
2) Let g* be an extremal mapping in Qgi  ̂ set / i  =  g * " 1 〇 g\ and /2 =  g2 0 9*^ then

/  — /2 0 fly fi i ~  Ij2 .
In what follows we call the above procedure the Reich procedure. The inverse Reich 

procedure is as follows:
T) For 0 <  i <  1, let gi =  f  an(i g2 — f  〇 we have /  =  52 0 9¾ ^ <3?

i ~  1,2;
25) Let be an extremal mapping in QgiJ set /1 =  g*^1 〇 gi and /2 =  52 0 then

/ =  /2 0 /1，/i € Qjr，i =  1，2.

The construction of the second decomposition avoids the Hahn-Banach theorem and 
gets rid of the restriction to the variational decomposition. But Reichf1! proved that the 
success of the second procedure is guaranteed only when minimal maximal dilatation K (f )  is 
sufficiently small. Therefore, it can not guarantee even a variational decomposition. Huang 
Xinzhong^ then proved that the inverse Reich procedure was successful for any K (f) .  
But the inverse procedure is not so natural as the Reich procedure and the corresponding 
decomposition can not replace the jSrst one. It is still an open problem whether the Reich 
procedure is successful for any i f  ( /) . Our present paper gives an affirmative answer to this 
problem.

We need two known results^3,4] for reference later:
Lem m a 1.1. //  /̂  € F , then for any function <j) G B f

// 1 - 刚 丨 2
dxdy < //

u

⑷丨2# (刈
1 -  ⑷丨2

dxdy.

Lem m a 1.2. Suppose g E Q f with complex dilatation k (z). If g* is an extremal mapping 
in Qg, K (g *)  =  (1 +  k *) /( l  -  k^), then

< i (k) +  a (k),

where

I(tv) =  sup 
<t>eB

咖 0⑷  

i —丨《(办 2
dxdy

and

A (k) =  sup J J  j ^ ^ \ c t ) ( z ) \ d x d y .

W <i u

§2。 Feasibility of the Inverse Heich Procedure
We will first point out the fact that (<the inverse Reich procedure is feasible for t =  

{K (f )  +  l ) / (y /K (f )  +  l )2 and any K ( f ) n is easy to prove.
Indeed, for f  e Qi  and its complex dilatation /x, write K  — K (f ) ,  t =  ( K + 1 ) / (V K + 1 )2, 

— (1 - t ) f i (z ) / ( l  -  t\n(z)\2). For fi in 2'), ? =  1,2, we have

K ( f 1) =  K (g *：-1 〇g1) < K ( g * ) K ( g 1),

K ( f 2) =  K (g2 〇g * )< K (g * )K (g 2).
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Since the complex dilatation of g\ is jj，i , k(gi)

K(9l) =
If we set /i2 (^) =  92z i92ẑ  then

(1—■t)h 
1 一认2 ，

1 +  ^(gi) _  (1 +  fc)(l -  tk) _  rrz 
l - % 1) - ( l - f c ) ( l + t f c ) ~ V

^ (g i(z ) )  =  k (92) = Vk .

Thus

K (fi)  <  V K K (g *), i =  l,2 .

We now want to estimate ^ (g * )  from above.
By the definition of " i ，

u
- d x d y  =  ( l - t ) I J  (1 (匕 4 丨2)场

//
1 一 i
T + l //

L u - , w .
dxdy + 1

1 一 卩
dxdy

<
1 +  t

tk
1 — k2 1 — t2k2

(1 — t)k(l -  tk2) (1 — t)k
— (1 一 fc2)〇L — t2fc2) (1 +  ¢)(1 +  fc) •

In the above inequality we have made use of Lemma 1.1. On the other hand,

l̂ il2M _  / /  . (i -  〇2ImI2I0L//
u

i - M 2dxdy

<
" (i - N 2)(i - 作 I2)

U

(1 —t)2fc2 
(1 — k2)( l  — t2k2) '

dxdy

We obtain by Lemma 1.2

< (1 — t)k(l — tk2) (1 — t)k (1 -  t f k 2
k(g*) ~  (1 -  fc2)( l  -  t2fc2) (l +  t)( l +  k) { l - k 2) ( l - t 2k2)

\fK- K - l

Hence

K (fi)

— 2 2V K {K  +  y/K +  l ) '  

<  V K K (g *) — ^/K{1 +  ~  K
K - l

1,2. (2.1)
l - k { g * ) J ~ ^  i f + v T + 1 ’

The above proof is simpler than that of Theorem 1 in [2], and the result (2.1) is better 
than that of Theorem 1 in [2] except 1 <  K  <  K 〇 =  3.38297 ---1.

§3〇 Feasibility of the Reich Procedure
Our main result is
Theorem  3〇1〇 The Reich procedure is feasible for any K ( f )  and 0 <  t <  (K (f )  +

i ) / ( V m + i ) 2-

lK 〇 is the root of the equation K 2 — 2Ky/K  +  1 = 0 .
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The proof of Theorem 3.1 is much more difficult than that of the result (2.1) and I benefit 
by the graduation thesis of my student Wu Zhemin which completely improves Theorem 1 
in [2] and the result (2.1) by introducing a parameter.

Proof. For f  ^ Q i and its complex dilatation /x, write K  =  0 <  t <  (K  +
1)/(^/K  +  l ) 2 and =  tfi(z). For fi  in 2), i =  1,2, we have

仄 认 ） = H  瓦 ( ^ )尺(讥 )， （3.1)

K ( f 2) =  K (g2 〇g * ) < K ( g * ) K ( 92). (3.2)

Since the complex dilatation of g\ is k(gi) =  tk,

K ( g i )
1 +  tk
1 - t k

If we set n2(z) =  g2z/92z, then

(1 -  t)/^{z) glz

<  V F ， 0 < i <
K  +  l

{V k  +  i ) 2 '

^ 2 (g i(z ) ) K {9 2 )

i f ( l - t )k  
1 ^  1-tk2
1 — (工―抑 
1 1- t k 2.

(1 +  k)(l -  tk) 
(1 — fc)(l +

(3.3)

(3.4)

Combining (3.1), (3.3) and (3.2), (3.4), we need only to prove

s u p W ) < l ± ^  or sup <  tk
1 — tk — 1 — k(g*)  ̂ 1 -  tfc5

where the supremum is taken, for fixed over every g* corresponding to /x with || |̂|c5〇 <  k. 
Therefore, we need only to prove the following

Fundam ental Lem m a. Suppose /x G F ,  ||̂||〇〇 =  f c > 0 ; 0 < i < l , g , ~  f tfl. If g* is an 
extremal mapping in Qg，K (g*) =  then

k *
1 - k *

<

<

tk2 
1 +  ^

tk2

mm <

l~ k *
(1+*)丨 l+2fc-fc2—2(l-fc)ifc_(l+fc2)*2fc2l 

(l+fc2)(l—O〇(l-< 2fc2)
2(1+i) ~(l 一t'jth—

(l-fc)(2-t2fe2)

(X-fe)(2-i2fe2) 0 < f c < 2 - V 3 , 0 < f <

1 +  ^ 1  (l+t)[l+2fc-fc2-2(l~fc)tfc-(l+fc2)f2fc2l -
(  ^  ， OUte7 Wlbt

k) tk
<

1 — cj>(t,k) 1 _  tk
or

fc* ^  ^ ( t^ )  <  tk.

For the proof of Fundamental Lemma we first prove the following 
Lem m a 3.1. Suppose that

p ( ^ )

k —
j —t2k^ l~~t2x 0 < x  < k 2^

l  一  fc2  l -

where 0 <  k 0 <  t <  1. Then

P (〇) >  P (x) > P(k2).

P roof, We first show that P(x) is left continuous at a; =  fc2, i.e., lim P(x) exists.
x/"k2

Because P(x) can be rewritten as

l ~ k 2
畫~~ X一x — 1~~

l~ t 2x 1—̂ fc2
1 - 1 ~~ X i 一 ®

0 <  x  <  fe2,
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we have

lim P(x)
x / 'k 2

i - f c 2 

1 -  t2k2
k

lim
i - t 2

1 - k 2 x / ' k 2 2, / i ^ - x )2

1 - fc 2 f  2k2 l - t 2 \  
1 -  t2k2 \  1 +  fc2 1 -  t2k2)

— (1 —fc2)2(l +  ^fc2) =  p ，k2s 
~  (1 +  A：2)( l  -  i2fc2)2 ~  { h 

For the rest we need only to prove P f(x) <  0.
Write

(3.5)

a  == k /(l ~~ t2k2)y p(x) =  Vx/(1 -  t2x)^

j  ~  k /( l  — k2), 6(x) =  Vx/(1 -  x).

Hence
a -  6(x)) +  (a  -  0(x))8f(x)

p{x)=------------P P W -----------
1 +  t2x

2 -^ (1  -  t2x)2

2^/x

k Vx \  1 +  丨 1
1 — t2k2 1 — t2x )  2 ^ ( 1  — x )2 )
( \fx  1 / 1 +  1 +
\  1 — x 1 — t2x \1  — t2x 1 — x )

1

(7 -  啦 ))2

H- k
1 +  x l  +  t2x

.(1 — t2fc2)( l  — a:)2 (1 -  fc2)( l  — Pa〇2. (7 ~  Hx))2

= — 1 ^1.{2(1 -  k2)(l  -  t2k2)xz 2̂ +  k[k2 - ( 3 -  (1 +  t2)k2)x 
x

+  (1 +  i2 -  Zt2k2)x2 +  i2s3]}/(l -  fc2)(l -  t2k2)(l -  a;)2(l -  t2x)2(r -  S(x))2.

We are to prove

. f(y )  =  A;3 -  [3 -  (1 +  t2)k2]ky2 +  2(1 -  k2)(l -  t2k2)y3 

+  (1 +  -  3i2fc2)% 4 +  t2ky6 >  0, 〇 <  y <  k.

By immediate computation we have

f"(y )  =  2[(1 +  t2)k2 -  3]k +  12(1 -  k2)( l  -  t2k2)y +  12(1 +  t2 -  U 2k2)ky2 +  30t2ky4

and

f " ( y )  =  12(1 -  fc2)( l  -  t2k2) +  24(1 +  t2 -  U2k2)ky +  120t2ky3.

Because f ^ ( y )  =  720t2ky >  〇, 0 <  y <  k, we see that f " { y )  is convex downward. In 
addition,

f " { 0 )  =  12(1 -  k2)( l -  t2k2) >  0,

f " '{k )  =  12(1 -  k2)( l -  t2k2) +  24(1 +  t2)k2 +  ASt2k4 >  0.

Therefore either f" '(y )  >  0 or f 'n{y) has two real zeros on 0 <  y <  k. But the latter is 
impossible. It is proved that f" (y )  is increasing 〇n 0  <  y <  k. From

f" (0 )  =  2[(1 +  t2)k2 - 3 } k < 0
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and

f n(k) == 2[3 +  (1 +  t2)k2 +  3t2k4}k >  0

we know that f n(y) has a unique zero on 0 <  y <  k and it is the minimum point of f (y ) .  
Because / ’ (0) == 0 and

f ( k )  =  2[(1 +  t2)k2 — 3]fc2 +  6(1 — k2)(l  -  t2k2)k2 +  4(1 +  i 2 — Zt2k2)k4 +  6t2k6 =  0, 

we have / ; (y) <  0, 0 <  y <  fc. Thus f(y )  is decreasing on 0 <  y <  fc. Moreover,

/ ( 〇) -  k \

f(k ) =  kz +  [(1 +  t2)k2 — 3]k +  2(1 -  k2)(l  -  t2k2)k3 +  (1 + 12 — 3t2k2)k5 +  t2k7 =  0.

We have f(y ) > 0 , 0 < y < k .  Lemma 3.1 is proved.
Let us turn to the proof of Fundamental Lemma. On the one hand, we have by Lemma

1,2

where

=  sup
托 B

lW\<i
H i

u

tfM(z)<j)(z)
M 圳

dxdy

Z  J h : m w dxdv.

(3.6)

(3.7)

(3.8)
>̂QJ3\m<i

On the other hand， it holds for arbitrary real constant s depending only on that 
tjMj) ( 、 f  f  /Mj)/ /  r ^ dxdy =s(1 ~ / /  T ^ w dxdy

u u

+ (h //
"[古 (1 —丨川2) -  ~  *21川2)]彡

Write

where

h{x)

u

(1 — a:)(l -  t2x) 

t

， 0 < x <  k2,

dxdy.

A(x) =  -~ - ( l - x ) - s ( l - r x ) .
1 —亡

Applying Lemma 1.1 we obtain

//r
u

tpL(j)
；dxdy < N ( i - 0  h(\fi\2)\^dxdy. (3.9)

u u
Obviously A(x) >  0 is equivalent to

1 — x
s <

1 ~~ t l  — t2X
E(x), 0 <  x  <  k2. (3.10)

Under the condition (3.10)? it is easy to see that h(x) <  h{k2) is equivalent to the inequality
y/x

s <
k

1 k
1 一 A；2 1—27

l - t
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Because E \ x )  =  <  〇, we have E(0) 2
In view of Lemma 3.1 we know h(x) <  /i(fc2), if

E (k 2)2、— t 1 一  k2 
l^t 1-t^k5

0 < s <
1 - i P ( k 2)-

fP(0).

(3.11)

We get thereby from (3.9) that

//
u

i - i 2 H 2
dxdy

tk

k2 k[t(l — k2) — 5(1 — t)(l — t2k2)]
■ k2 (1 -  k2)( l — t2k2)

5(1 — t)k

In addition,

//
u

1 — t2k2

M M
l  +  k

M 1dxdy <
t2k2

1 -  t2k2 '

(3.12)

(3.13)

Hence we deduce by (3.6), (3.7), (3.8), (3.12) and (3.13) that

1 — k*
<

tk(l +  tk) 5(1 — t)k tk
t2k2 l +  k 1 一 tk

5(1 — i)
1 +  fe.

Thus it can be seen that the larger the value of s, the better the estimate of jrp r . According 
to (3.11) and applying (3.5), we take

t { l ~ k 2)2( l  +  t2k2)

and then it follows that 
k* ' tk

<
1 一 k* — 1 一 tk

—tk

+  k2)(l  — t2k2)2 5 

(1 —A〇(l —jfc2)(l  + 卢 P )
(1 +  k2)( l  — t2k2)2

(3.14)

If we take 5 
(3.9) we have

t 2 -tk 2
i - t 2- then |-A(x)| <  —A(k2). Hence h{x) <  h(k2) still holds. By

//
u

1 — P H 2
dxdy

s ( l  — f)
tk

(1 -  A;2)(l  — t2k2) 

2 — tk2 k tk
1 — k 1 -  t2k2 2 -  t2k2 k 1 — t2k2 (315)

Combining (3.6), (3.7), (3.8), (3.15) and (3.13), we get

k*

1 — k*
<  t~

2 -  tk2 k tk t2k2

tk

—t2k2 1 — k 1 — t2k2 1 — t2k2
( 2 -  tk2 1 1 \  tk2[2(l +  i) -  (1 — t)tk ~  2t2k2]

—t2k2 1 — k 1 +  tk 

Merging (3.14) and (3.16), we find that 

k*

( l - k ) ( l  +  t k ) ( 2 - t 2k2) • (316)

tk2 .<  ------r  mm
l ~ k *  -  1 +  tk

(l+i)[l+2fe— —2(1—k)tk~(X-]-k^)t^k^\
~(i+fc2)(r--tfc)(i-i2fc2)~ 5

2(l+t) -r(l — 2f̂
(1 -如 2二_ )
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In what follows we prove that if 0 <  fc <  2 — 0 <  t then the inequality

2(1 + 1) -  (1 -  t)tk — 2t2k2 ^  ( l  +  i)[l +  2k — k2 — 2(1 — k)tk - ( 1  +  k2)t2k2} 
(厂 硕  2 : 1 2̂  一  (1 +  ̂ )(1

holds. Multiply the two sides by k and write x — tk. The inequality (3,17) becomes 

2k +  (2 -  k)x +  ( 1 -  2k)x2 < {k +  x )[l +  2k — k2 -  2(1 -  k)x - ( 1  +  k2)x2} 
(1 — k)(2 — x2) 一 (1 +  k2)(l — x )(l  — x 2)

A simple computation tells us that

(1 — k)(2 — x2)(k +  a;)[l +  2k — k2 — 2(1 -  k)x - ( 1  +  k2)x2}

- ( 1  +  fc2) ( l  — x )(l ~  x2)[2k +  ( 2 -  k)x +  (1 — 2k)x2]

=2A;2(1 -  4A: +  k2) +  fc(l +  k2)x  — (3 ~  +  2¾2 -  4¾3 -  kA)x2 -  2^(1 +  k2)xz

+  (1 -  4A: -  kA)x^ +  k(l +  k2)x5 =  ^(^)*

Obviously F ^ \ x )  =  120k(l +  k2) >  0. Therefore

F ^ ( x )  =  —12fc(l +  k2) +  24(1 -  4fc -  k^)x +  60fc(l +  k2)x2 

is a convex downward function. And further, from

F ^ ( 0 ) ^ - 1 2 f c ( l  +  fc2) < 0

and

F( 3) ( 鲁) = -48A:2 +  3fc3 +  3¾5 <  0

we know F^3\ x )  <  0, 0 <  a： <  | .  Thus

F "{x )  =  -  2(3 -  8fc -h 2fc2 -  4k3 -  A:4) -  12A:(1 +  k2)x 

+  12(1 - 4 k -  k4)x2 +  20k(l +  k2)xz

is decreasing on 0 <  a; <  | .  Because 1 — +  fc2 >  0 for 0 <  fc <  2 — -\/3, we have

F 〃(0) =  -2 (3  — 8fc +  2fc2 -  4fc3 ~  fc4)

= -2[3(1 - i k  +  k2) +  k (l - 4 k  +  k2) +  3fc +  3fc2 -  5fc3 -  A;4] <  0. 

Hence F "(x )  <  0, 0 <  a; <  | .  So F (x )  is convex upward on 0 <  a; <  | .  But 

F(0) =  2fc2( l  - 4 k  +  k2) >  0,

n ~k2(l -4 k  + A;2 ) +  z k2 +  - ¾ 4 +  +  - k \ l  -  fc2 ) >  0.

Consequently F (x )  >  0, 0 <  x <  | .  The inequality (3.17) is proved. 
What remains is only to prove

tk
< tk ^  0 .

In fact, 
tk k)

>

1 —处 ，fc) 1 - 认 ， 

tk tk2 ( 1  +  t)[l +  2 f c  -  A : 2  -  2 ( 1  -  k)tk - ( 1  +  k2)t2k2]
l — tk 1 — — 1 — tk 1 +  tk ( 1  +  k2){l ~  i A r ) ( l  —  t2k2)

— — f e 2 ) ( 1  + t2fc2) 、 n
— (l +  a：2)( i  -

Fundamental Lemma is completely proved.
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The fact that the decomposition obtained by the Reich procedure can replace the first 
decomposition will be proved in another paper.
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