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FEASIBILITY OF THE REICH PROCEDURE
IN THE DECOMPOSITION OF PLANE
QUASICONFORMAL MAPPINGS**

LAl WanNcar*

Abstract

In the decomposition problems, studied by Reich, of quasiconformal self mappings of the
unit disc which keep the boundary points fixed, the construction of the first one requires the
application of the Hahn-Banach theorem (so it is abstract) and it is only a variational decom-
position (a small weight one), and that of the second one avoids the Hahn-Banach theorem
and gets rid of the restriction to the variational decomposition. But the success of the sec-
ond decomposition procedure (the Reich procedure) is guaranteed only when minimal maximal
dilatation K(f) is sufficiently small. Therefore, it can not guarantee even a variational de-
composition. Huang Xinzhong then proved that the inverse Reich procedure was successful for
any K(f). But the inverse Reich procedure is not so natural as the Reich procedure and the
corresponding decomposition can not replace the first one. It is still an open: problem whether
the Reich procedure is successful for any K(f). The present paper gives an affirmative answer
to this problem.
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§1. Introduction

Let @ be the class of quasiconformal self mappings of the unit disc U = {|z| < 1}.
For f € @, Qf denotes all mappings in @) that agree with f on the boundary 8U. Write
Qr=Q,. Let fH denote the mapping in @ with complex dilatation p, normahzed so that

FH(£1) = £1, f(6) =

-Set
=32 k() = sl = esssuplus(2))
fz ) ) zelU ‘
k
K-8 F=lwifeqn,

To avoid triviality we assume k(f) > 0.
Let B be the Banach space of functions ¢(z) holomorphic in U, with

Il = f 6(2)ldody < 00, 7= +iy.
- )1
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For g* € Qg, g* is called an extremal mapping in @, if
K(g*) = inf K(f).
(9°) = jnf (f ) |
N will be the class of all complex valued measurable functions v(2), z € U, such that

lvlloo < oo, v(z)¢(z)dwdy =0, for all ¢ € B.
i ,

For ue F 3 the expression
#( ) 1 I |2 Yy

defines a bounded linear functional over B. By the Hahn-Banach theorem and the Riesz
representation theorem there exists a complex measurable function 7(2), z € U, such that

[Tlleo = sup 7 (2)| = (| Ll
and | ,
7 o
/U/ W(ﬁdwdy = /J Tédzdy, for all ¢ € B.
Hence o .
v(2) = F%%ﬂi - T(z) € N. N (1.1)

We are concerned with the question of the possibility of decomposing a given f € @ into
factors

f=faof, fi€Qr,  K(fi)<K(f), i=12
We further require that a decomposition should have a step length, i.e., a decomposition
procedure {P;, P;} is said to be feasible (or successful), if for h € Qr, P.h = h; € Qy,
i=1,2, we have h = ho o h; and ' :
| sup  max{K(Pih), K(P:h)} < K(f).
heQr . .
K(h)SK(f)

The procedure of the first decomposition is as follows: For f € @ and its complex
dilatation u, '

i) Find v € N in (1.1) as above;

ii) For 0 < t < 1/|[v]|oo, let g1 = f¥ and go = fog;', we have f = g2 01, g; € Q,
1=1,2; :

iii) Let g* be an extremal mapping in Qg , set fi = g*~
f=feofi, i €Qr1=12

There are two weaknesses in the above decomposition. One is that the construction
of the decomposition depends on the Hahn-Banach theorem, thus it is abstract. And the
other is that ||[v|lec < k(f)/(1 — k(f)) (see (2.11) of [1]), and the decomposing weight ¢ is
restricted by ¢t < 2/(K(f)—1). Thus t — 0 as K(f) — o0, and hence it is only a variational
decomposition (a small weight one).

The procedure of the second decomposition is as follows: For f € @ and its complex
dilatation p,

log, and f, = g5 0 g*, then
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1) For0<t<1,let g1=ft“andgz=fogl"1,weha,vef=g20g1, giE€Q,i=12;

2) Let g* be an extremal mapping in Q,, set fi = g*"1 o g and f; = g 0 g%, then
f=frofi, fi€Qri=12

In what follows we call the above procedure the Reich procedure. The inverse Reich
procedure is as follows:

1) For 0 < t < 1, let g = fO-01/A—tul®) and g, = fogr?, we have f = ga0 g1, g; € Q,
i=1,2;

2") Let ¢g* be an extremal mapping in Q,,, set f; = g* o g; and f; = go 0 g*, then
f=faofr, i€Qri=12.

The construction of the second decomposition avoids the Hahn-Banach theorem and
gets rid of the restriction to the variational decomposition. But Reich!!!l proved that the
success of the second procedure is guaranteed only when minimal maximal dilatation K(f) is
sufficiently small. Therefore, it can not guarantee even a variational decomposition. Huang
Xinzhong!? then proved that the inverse Reich procedure was successful for any K(f).
But the inverse procedure is not so natural as the Reich procedure and the corresponding
decomposition can not replace the first one. It is still an open problem whether the Reich
procedure is successful for any K(f). Our present paper gives an affirmative answer to this
problem. | '

We need two known resultst®4 for reference later:

Lemma 1.1. Ifp € F, then for any fun'ction ¢ € B,

// 1”—(zm( Tk / i |i‘<¢()72 dody

Lemma 1.2. Suppose g € Q, with complex dzlatatzon k(z). If g* is an extremal mapping
in Qg, K(9*) = (1+&")/(1 - k), then

e <1+ A,
where
= sup / / )9 ¢S)|2drvdy ,
ll¢ll<1
and
<1

§2. Feasibility of the Inverée Reich Procédﬁre

We will first point out the fact that “the inverse Reich procedure is feasible for ¢ =

(K(f) + 1)/(VK(f) + 1)? and any K(f)” is easy to prove.
Indeed, for f € Qr and its complex dilatation p, write K = K(f), t = (K +1)/ (\/R'_ +1)2,

wi(2) = (1 = t)u(z)/(1 — t|u(2)|?). For f; in 2'), i = 1,2, we have
K(fi)=K(g* "o g1) < K(¢")K(91),
K(f2) = K(g20g") < K(9")K(g2)-
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Since the complex dilatation of gy is 1, k(g1) = %3:—5%,

Cl+k(e)  Q+R)(1-th) =
Klo) = 1= k(gi) T (L-R)( k) K-
If we set p2(2) = gaz/g2a, then

o) =L, K= g = VE.

Thus
K(fz) < \/-EK(Q*L 1= 1’2'

We now want to estimate K (g*) from above.
By the definition of 1,

// T ey = (1~ t)// - mtz tM t)ziulz)&xdy-

1—t ,
=177 // Y 12d:z:dy+t// t2| Izd:zsd,y]
1—¢ tk '
<
=113 _1—k2+1—t2k2]

-tk -tk (1-Dk
T 1-E)(1-2k2) A+t +Ek)
In the above inequality we have made use of Lemma 1.1. On the other hand,

/ 1?4 1aPlel g f/( (1 —£)%|ul?|¢] dady
1

J 1=l — ()1 -2 |ul?)

(1- t)%2
(1~ kz)(l — 12k2)’

We obtain by Lemma 1.2

k(g*) < (1 — t)k(1 — tk?) (1-1t)k (1 —t)%k?
Tk = (=1 —2) G+ 00+h | 1= k(1 - k)
_VK-1_ K~-1
T2 WK(K+VEK+1)
Hence
K(f;) < \/EK(g*)=\/_(1+ 2’“(9) )—K——-I‘iil—— i=1,2. (21)

1= k() K+vVE+1
The above proof is simpler than that of Theorem 1 in [2], and the result (2.1) is better
than that of Theorem 1 in [2] except 1 < K < Ko = 3.38297 - - !

§3. Feasibility of the Reich Procedure

Our main result is
Theorem 3.1. The Reich procedure is feasible for any K(f) and 0 < t < (K(f) +

)/(VE(f) +1)2

1Ky is the root of the equation K2 — 2KVE +1=0.



No.1 Lai, W. C. DECOMPOSITION OF PLANE QUASICONFORMAL MAPPINGS 113

The proof of Theorem 3.1 is much more difficult than that of the result (2.1) and I benefit
by the graduation thesis of my student Wu Zhemin which completely improves Theorem 1
in [2] and the result (2.1) by introducing a parameter.

Proof. For f € Qr and its complex dilatation u, write K = K(f), 0 <t < (K +
1)/(VK +1)? and py(2) = tu(z). For f; in 2), i = 1,2, we have

K(fi)=K(g" og1) < K(g")K(91), (3.1)
K(f2) = K(g209") < K(g")K(g2)- 4 (3.2)
Since the complex dilatation of gy is u1, k(g1) = tk,

1+tk +1

If we set py(2) = g2z/g2., then

_ ﬁ_:ﬁzﬁ ke
ﬂ‘z(gl( )) (1 t):u'(z) glz K(gz) 1—-tk — (1 + k)(l tk) (3 4)

“Hu(P 7 - s_k& (=R FR)
Combmmg (3.1), (3 3) and (3.2), (3.4), we need only to prove
1+tk or sup k(g*) < tk
—tk T 1-k(g*) " 1-tk’
where the supremum is taken, for ﬁxed t, over every g* corresponding to p with ||u]|e < k.
Therefore, we need only to prove the following
Fundamental Lemma. Suppose p € F, |[pll =k >0,0<t <1, g= f*. If g* is an

extremal mapping in Qq, K(g*) = —'tk—*, then
" k2 . { (1) (1425 —k? ~2(1—k)tk— (1+k2)t2k2] }

sup K(g*) <

(AFR2)(1-tk)(1—2%2)
1—-k* = 1+tk min 2(148)—(1—8)th—22 k2
(k) (2—12k2)

- 94212
52 { s Lo L 0<k<2-+v3,0<t<) }

<

14tk | Q+o)[1+2k—k2~2(1~k)th—(1+k>)t%k?]
(1+E2)(1—tk)(1—~t2k2)

_ k) tk
=1-9@tk) ~1-tk

, otherwise

or
k* < ¢(t, k) < tk.
For the proof of Fundamental Lemma we first prove the following
Lemma 3.1. Suppose that

k A

1—t2k2 ~ 1—%2 2

) P(.’I:): A :ma:, OS:L‘SIC,
1—k2 ~ 1-x

where 0 < k < 1, 05 t < 1. Then
P(0) > P(z) > P(k?).
Proof. We first show that P(z) is left continuous at = &2, ie., zlg%Z P(z) exists.
Because P(z) can be rewritten as
-k JF e

_2L2 - 1 — & Jz
1-—t%k 1m'1'7——k7—-f:%

P(z) = 0<z <k
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we have
1-k? k e
lim P(z) = - lim S
z k? 1"“t2k2 1—‘k2 w/kzz—J—m—(—l—f—;:v

11—k (1_ 2k 1-+¢? )
C1- 122 1+ k21— 12k
(L= K2)2(1+ £247)
T 1+ k)1 - 2k2)2
For the rest we need only to prove P'(z) < 0.

= P(k?). (3.5)

Write
a=k/(1-1°k%),  B(z) =z/(1 -t),
y=k/(1-k?), §(z) = va/(1 - x).
Hence '
1y =B @)y = 6(z)) + (o — B(=))8' (x)
P = O~ 3@
_ Nz k 1+ t22
“{(1—95 - 1—k2> 2/z(1 — 2z)2
k N 1+2 1
" (1 -k 1- tzw) 2Vz(1 - :v)z} (v = 6(x))?
1 (V1 1+t 1+:1:>
Nz {1—w1—'t2x (1——t2:1: T 1l-z
14+ 14tz 1
t [(1 —2R2)(1 -2 (1-k2)(L- tzw)z} } (v - 6(x))?
= - 12:/5 {20 - ¥®)(1 - £2k%)2*/? + K[k — (3 —(1+ kD)

+ (1 + 12— 3t2kD)a? + 228}/ (1 — k)1 - 2N (1 - 2)2(1 - ?2)2 (r — 8(z))*.
We are to prove
fly) =k — 8- 1+ 2)&Jky® + 21 - #2)(1 - £%2)y°
+ (1482 -32kD)ky* +t2ky® >0, 0<y<k.
By immediate computation we have
F(y) =2[(1 + 2)k? — 3]k + 12(1 — k2)(1 ~ £2k?)y + 12(1 + t* — 3t%k?)ky® + 30t ky*
and
" (y) = 12(1 — E2)(1 — £2k%) + 24(1 + ¢ — 3t%k2)ky + 120t%ky°.
Because f(®)(y) = 720tky > 0, 0 < y < k, we see that f”(y) is convex downward. In
addition,
F(0) = 12(1 — k2)(1 - £*k*) > 0,
(k) = 12(1 — k?)(1 ~ £2K?) + 24(1 + t?)k® + 48¢%k* > 0.
Therefore either f/(y) > 0 or f"(y) has two real zeros on 0 < y < k. But the latter is
impossible. It is proved that f"(y) is increasing on 0 < y < k. From

F70) =2[(1 +t*)k* - 3lk < 0
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and
(k) = 2[3 + (1 + t3)k® + 3t%k4k > 0

we know that f”(y) has a unique zero on 0 < y < k and it is the minimum point of f'(y).
Because f'(0) =0 and

Fk) =2[(1 + t2)k? — 3]k? + 6(1 — k?)(1 — 2Kk + 4(1 + 2 ~ 3t%k*)k* + 6t%k° = 0,
we have f' ( 1<0,0<y <k Thus f(y) is decreasmg on 0 < y < k. Moreover,
F(0) =
flk) = k3 + 11 +12)K% — 3]k + 2(1 — kB)(1 — t2k2)k® + (1 + % — 362k%) k5 + 1267 = 0.
We have f(y) > 0,0 <y < k. Lemma 3.1 is proved.

Let us turn to the proof of Fundamental Lemma. On the one hand, we have by Lemma
1.2

*

< I(n)+ A, 39)
where
N tu(2)¢(z)

I(tp) = Zgg // )'dedy ) , (3.7)

loit<t

2

Afb) = o / 2 zl)tl l(qi()Tz dudy. (3.8)

H¢ll<1

On the other hand it holds for arbitrary real constant s depending only on k that

// tz‘ 'zd“’dy =s(1 —t) // m— |2d:cdy

plr (1 = |pf?) — s(1 - ¢2|u?)]o
dle=roE IO
Write ,
Az
M) = _f”)‘ (1(_)1%), 0<z <K
where

t
Az) = m(l ~z) - s(1 - t2x).
Applying Lemama 1.1 we obtain

// tzl E ———dzdy

Obvmusly A(z) > 0 is equivalent to
t 11—z

< lsl(1 - ) // WO oy / AP igldady.  (3.9)

ST E(z), 0<z<k. (3.10)
Under the condition (3.10), it is easy to see that h(z) < h(k?) is equivalent to the inequality
b rew TRt
s < =1 tP(m).

1—-k?
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Because E'(z) = "Ti_tzﬁgv < 0, we have E(0) > E(z) > E(k?) = if_—i-l—p——kkg 15 P(0).
In view of Lemma 3.1 we know h(z) < h(k?), if
0<s< 1—%13(192). (3.11)

We get thereby from (3.9) that
b B k[ - k) — s(1—t)(1 - £22)]
// T N ey ()

tk s(1 -1tk
T1-¢k 1+ (12)
In addition,
leul®lgl £k
L —55. .
/ 1= [t mdy—l—-tzkz (3.13)
U

Hence we deduce by (3.6), (3.7), (3.8), (3.12) and (3.13) that
k* < tk(1 + tk) 3 s(1 -tk _ tk s(l—t)—
1—k* 1 - t2k2 14+% 1-th 1+k'
Thus it can be seen that the larger the value of s, the better the estimate of 1—_—;7 According
to (3.11) and applying (3.5), we take
£ (1-k%)2(1 + t2k?)
1—-t(1+k2)(1 —t2k2)2’

and then it follows that
Btk tk(l — k)1 — k?)(1 + £2k?)

1—k*~ 1-tk (1 + k2)(1 — t2k2)2

B t(1 + t)k?
(14 k2)(1 - t2k2)

S[1+2k — k% — 2(1 - k)tk — (1 + £%)%k?).
(3.14)
If we take s = T%%k—:g, then |A(z)| < —A(k?). Hence h(z) < h(k?) still holds. By
(3.9) we have

k2 kls(1 —t)(1 — ¢2k?) — t(1 — k%))
// t2| Toappde® SsU-O TGy = —a_ma- ey
k tk 2—tk? k tk
=s(1—-1) - 575 = b 212
1—k 1-t2k2 2-82k21-k 1-—82k2 "(3.15)
Combining (3.6), (3.7), (3.8), (3.15) and (3.13), we get
k* 2-tk? k tk t2k2
kS ppi—k 1-8k  1-0F
- 2-tk* 1 1 ) _tRA2(1 4 t) — (1 — )tk — 2¢%k?)
T2 -2k21 -k 14tk) (L-E)(1+tk)(2 - 2k?) (3.16)

Merging (3.14) and (3.16), we find that ,
{ (1+8)[1+2k—k%—2(1—k)th— (1+k2)t2k2] }

k* th?

AT (1~tk)(1—12k2)
<
- = 1xth

2(14t) = (1—t)tk—2t2 k%
(1—k)(2—12k7)
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In what follows we prove that if 0 <k < 2—+/3,0<t < -12~, then the inequality
2(1 +t) - (1 — t)tk — 2t°k2 < A+D[t+2k— k2 —2(1 — k)tk — (1 + k?)t2k?)
(1 - k)(2 - t2k2) - (1+&2)(1 - th)(1 — £2k?)
holds. Multiply the two sides by k and write = = tk. The inequality (3.17) becomes
2k + (2 — k)z + (1 — 2k)z? < (k+z)[1+2k - k2 -2(1 —k)z — (14 k?)z?] )
1-k)@-2%) .~ (1+4£2)(1—2)(1 - 2?) '
A simple computation tells us that
(1= k)2 — 22)(k + 2)[1 + 2k — k2 — 2(1 — k)z — (1 + k)2?]
— (1+ k)1 — z)(1 — 2®)[2k + (2 — k) + (1 — 2k)2?]
=2k2(1 — 4k + k?) + k(1 + k®)z — (3 — 8k + 2k? — 4k> — k*)2® — 2k(1 + k?)2®
+ (1 -4k - k*)a* + k(1 + k%)z® = F(z).
| Obviously F((z) = 120k(1 + k?) > 0. Therefore
FO(z) = ~12k(1 + k) + 24(1 — 4k — k*)z + 60k(1 + k)2
is a convex downward function. And further, from

F®(0) = ~12k(1 + k?) <0

and

F® (g) = —48k2 +3k% + 3% < 0

we know F()(z) <0,0 <z < £. Thus
F"(z) = — 2(3 — 8k + 2k% — 4k® — k*) - 12k(1 + k*)z
+12(1 — 4k — k*)z® + 20k(1 + £%)2®
is decreasing on 0 < z < g Because 1 — 4k + k2 > 0 for 0 < k < 2 — /3, we have
F"(0) = —2(3 — 8k + 2k* — 4k3 — k%)

= —2[3(1 — 4k + k?) + k(1 — 4k + k) + 3k + 3k* — 5k% — k*] < 0.

Hence F"'(2) <0,0<z < g So F(z) is convex upward on 0 < z < g But
F(0) = 2k*(1 — 4k + k?) > 0,
3

k_32 9 12 _§__4 2.5 16 2
F(3) = SR~ 4+ ) + 8+ b+ 28 + B (1= K) > 0,

Consequently F(z) >0,0<z < g The inequality (3.17) is proved.
What remains is only to prove
B(t, k) tk

1—¢(t, k) Si1Tw tk # 0.
In fact,
tk ___¢,k) o th tk? (1 +1t)[1+ 2k — k% — 2(1 — k)tk — (1 + k*)£2k?)
1-tk 1—¢(tk) ~ 1—th 141tk (1 +k2)(1 - th)(1 — t2k2)
. 1.2 21.2
=tk(1 k)(1 k)(1+tk)>o.

(1 + k2)(1 — t2k2)?
Fundamental Lemma is completely proved.
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The fact that the decomposition obtained by the Reich procedure can replace the first
decomposition will be proved in another paper.
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