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ON THE RANGE OF RANDOM WALKS 
IN RANDOM ENVIRONMENT**

Z h o u  X ia n y in *

A b strac t
The range of random walk on Z d in symmetric random environment is investigated. As 

results, it is proved that the strong law of large numbers for the range of random walk on Z d 
in some random environments holds if d >  3, and a weak law of large numbers holds for d =  1.
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§1。 Introduction
There are a lot of works on the random walk in random environment. Among them, 

two kinds of random environments, which include symmetric case and nonsymmetric case, 
have been widely investigated. However, most of them are concentrated on studying the 
recurrence or transience of random walk on Zd in a nonsymmetric random environment. But, 
the recurrence or transience of random walk on Z d in a symmetric random environment can 
be easily judged by comparing the effective resistance of an electrical network corresponding 
to this random walk. In fact, most of the works are concentrated on studying the invariance 
principle for random walk on in a symmetric random environment. For more details on 
this research direction, the reader is referred to see [5] or the references there in.

We also know that there are a lot of works on the range of the simple random walk on 
Zd. To be precise, we let X d =  {X ^ } n >〇  be the simple random walk on Zdi and

Then is the range of X d up to time n. As early as in 1951, Dvoretzky and Erdois^ 
obtained the strong law of large numbers for R ^ ii d >  2. After that, Jain, Pruitt, Le Gall 
and Rosen made systematically investigations for the range of more general random walks. 
Both the law of large numbers and the central limit theorem for the range are obtained by 
them. For more details, the reader is referred to [3, 4, 8] or the references therein.

Since a symmetric random walk is closely linked with an electrical network, some tech- 
niques in electrical network can be used to study some problems related to the symmetric 
random walk. The main purpose of this paper is to study the asymptotic behaviour of the 
range of random walk in symmetric random environment. Let X d =  {X ^ } n >〇  be a random
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walk on Zd in symmetric random environment, and =  Assume that
the environment process { ^ } a：>o with starting measure j f  is reversible and ergodic. Then 
the strong law of large numbers for with rf > 3 holds almost surely with respect to the 
measure //* under suitable assumptions (see Corollary 4.1 below), and a weak law of large 
numbers for also holds (see Theorem 4.1 below). To get Corollary 4.1, in Section 3 we 
will use the Birkh〇jffJs Pointwise Ergodic Theorem (see [6]) to prove a general limit theorem 
for the range (see Theorem 3.1). Unfortunately, we are so far unable to get a law of 
large numbers for and also unable to get the central limit theorem for with d >  2.

§2. A Preliminary Result
In this section, we introduce some notation and give a preliminary result for the invariance 

principle of random walk in symmetric random environment.
Consider the d dimensional lattice Z d and assign a conductor ae(x) to the bond (x}x +  e) 

for any x^e € Zd with |e| =  1. It is clear that ae(x) =  a_e(^ +  Denote by S the space of 
the environment

s =  Se{Zd) =  {ae : Z d [6, r x], |e| =  1}
where 9 G [0,1]. Let /j, be the environment measure on s which is translation invariant and 
ergodic with respect to space translations. As in [5], we let

|e|=l
and SLe be defined by = 《 *， where G (x ) =  ^ (a :  +  e)， \/a;，e’ 6 with |e’| =  1. 
The transition probability (p(^, G s) of the environment process {̂ fc}fc>o with state
space s is given by

W )  _  f  01 ⑷ _1“ (〇)“ ’ =  H  for some e e  Zd with |e| =  1 
$ ’ \  0, otherwise.

Let
T f (〇  =  p ( ^ s - em s ~ e 〇 , e §

|e|=l
and 0T denote the time - translation operator which is defined by 0r^(t) — — r) . For
convenience， we denote by PM (resp. P^) the law of the process {̂ fc}fc>o with starting 
measure \i (resp. with =  and by (resp. E^) the expectation with respect to PM 
(resp. P^)t

The random walk {X (k) — X(C,k)}k >〇  starting at 0 with the given environment = 
^ £ S is defined by

D  =  〇，

< X ⑴ = e， iff 匕 = 5 一 J o ， （ 2 〇
⑴  〇6 —l ̂ 1

Obviously, if ae(x) =  1 for any x,e  £ Zd with |e| =  1, then is the simple random
walk on Zd,
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R em ark 2.1* If the rates ae are periodic with period less than or equal to two in a 
coordinate direction, then (2.1) is meaningless. However, the following arguments also work 
for this case, provided the state space s is suitably enlarged (see [5j).

Let /i* be the measure on § defined by ^ (d^ ) =  where (〇：(〇 ) =
f  Then, it is easy to check that the process (^)fc>o with starting measure /j,*
is reversible and ergodic (see [5, Lemma 4.3]). Let == rT xf2X{[nt}). We say that the 
process =  (Xjn ^)f>〇 converges weakly in /x*-measure to an i?rf-value process F , if for 
every bounded continuous function F  on D =  D([0,oo),R d) (equipped with the Skorohod 
topology),

E ^ (F (X ^ 〇  =  〇 E(F(Y))
as n —  ̂oo in //^-probability. Let D* =  =  !,■ *• ,d) be given by

where 0*(a) =  ^(^)~1[^ei (〇) — I  is the identity. The next theorem is actual
([5, Theorem 4.5 (i)]).

TheoYexa A . Suppose that the following is satisfied:
^({ae(〇) > 〇}) -  1； {ae(0 ) )^ < 〇〇. (2.2)

Then, the process converges weakly in -measure to a Brownian motion 
in Rd with the finite diffusion matrix D*.

§3〇 A General Result
.

Let jRn =  #{X (0), ••• ,X (n)} ， where {_X"(n)}n2〇 is the random walk on irua random 
environment defined by (2.1). In this section, we use the ergodic theory to prove a limit 
theorem for the range Rn. In fact, the ergodic theory has been used to prove that the strong 
law of large numbers for the range of simple random walk on Z d holds ii d > 3 (see [7]). 
Fortunately, this argument also works for the random walk on Zd in random environment 
if d > 3. The maiu result in this section is as follows.

HheoYem 3.1, Assume that p is translation invariant and ergodie with respect to space 
translations， and (2 .2) is satisfied, and let

F =  F (〇  =  P^{X(u) =  0 for some u > 1), e  S〇(Zd).
Then there is a subset !T2〇 C S${Zd) with =  1 such that

p J \ i m  ^  = i -  e ^ f ) = i, ve e n 〇.s \n-H>oo n /
To prove this theorem, we begin with several lemmas.
Lem m a 3.1. The following holds

lim =  1 -  E„.F.n—+〇〇 71
Proof. Let

^  =  ( 1, k =  n ，
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Then, we have
(3.1)

fc=0
By definition, -X'(l) can be represented as /(^ 0,^ 1 ) (see [5]). Then X (l)  〇 Oi î = 

Since the reversible process {^}fc>o is stationary with respect to we have
E (̂f>k — Pfj,*(X(u) ^  X (k )y ^ =  A； + 1, • • • ,n)

PM* ( ^ X ( l ) 〇0 ^ O ,  u =  k,
.1 /-fc

= P *̂ X (l)  〇 氏 —0， " = fc,… , n  — 1) 
v«=o

=  一  0, i/ =  l ，，. . ，n —(fc +  l)}.
Thus, for any fixed k > 0, lim Eu*^~k =  1 ~ E ^F . By (3.1), we get the desired resultn—ooimmediately.

L em m a 3 .2〇 There is a subset Ŝ〇 C S〇(Zd) with fi*(Q〇) =  1, such that
R np A  m  —  < =  i, g o 〇.\n~>oo u  )、n~>oo ft

[n/Af]+l
P roof, For any M  > 1, let Rn,M =  Z) wherefe=0

Zk(M) =  # {X (k M ),X (k M  +  1 ) ,- - - ,X((k +  1)M -  1)}. 
It is clear that Rn < Rn,M- Therefore

' •  D -, [n /M]+l
认 ni im  - ^  <  -  V  Z fc( M ) ,  V M  >  1.n —►〇〇 Tl n—o o T i^ ^fc=0

If there is a subset C <Se(Zd) with , ( ¾ )  =  1， such that
— , [n/M]+l

lim n s  — y  Zfc(M) =  1 -  =  1, 处  e  % ，s ViiFT^n-K» n ^  / (3.2)
、M—oo—  .- fc=〇

then the desirable result follows immediately.
We now use the ergodic theorem to show (3.2). Let T = 0m * Then T  : § ~> s is a one-to- 

one map. By the stationary property of {^}i>〇, we also know that T  is a measure-preserving 
transformation, i.e., P ^ ^ f^ E )  ~ P ^ (E ), \/E  C §. Let /(^) — #{X (0 ),X (l)j * • * ,X (M — 
1)}. Then we get the following immediately from the Birkhoff Js Pointwise Ergodic Theorem 
(see [6, Chapter 2])

[n/M]+l
lim -  =  a .e . - P , . .n—̂oo Tl Mfc=0

In other words,
[n /M}+lE Zk(M) =  - E ^ R M) = l .

k—0
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Note that P^*(A) =  f s P^(A)fj/*(d〇 , VA C s and P^(A) < 1, V̂ 4 C s, € S. Therefore, 
there is a subset C S with =  1 such that

ln/M} + l

P j  Um -  V  =  — = 1 ? V M € N ?\n—K)〇 n M /fc=0
Thus, we get (3.2) immediately from Lemma 3.1.

Lem m a 3.3, There is a subset C s with == 1, such that

M'i lim R n
n >  1 E ^ F ^ j 1， v e  e  n 〇 .

nProof. Let =  E  分fc， where
A:=0

ifX (k  +  u ) - X ( k ) ^ 0 ,  Vzv =  l ; 2,-.* ? 
otherwise.

Clearly, we have Rn > Fn and =  E^ipo — l - E ^ F t V/c =  0,1,2, * • • . As in the proof
of Lemma 3.2, we can use the Birkhoff5s Pointwise Ergodic Theorem to get the following

lim -n— 〇〇 几 乂一̂fe=0
= 1 — Ê i* Fy Cl.6. — Pfj,* ■

By this, we get the desired result immediately.
Having Lemma 3.2 and Lemma 3.3, we have actually finished the proof of Theorem 3.1. 
R em ark  3.1. In fact, it is easy to check that 1 - E ^ F  = 0 for the simple random walk on 

Zd with d < 2 . To get a law of large numbers for Rnj we should study when 1 — E ^ F  > 0. 
In the next section, we will study when 1 — E^*F > 0 for transient random walks on Zd in 
random environmeat.

§4# Law of Large Numbers
In this section, we first prove that a weak law of large numbers for the range of random 

walk on Z l in random environment holds, and then prove that the strong law of large 
numbers for the range of transient random walk holds in some random environments.

Let P  be the probability law of the Brownian motion {^z)^(f)}t>〇 starting at 0 which is 
determined in Theorem A, and E  the expectation with respect to P.

T heorem  4»1. Suppose that d 1, (2.2) is satisfied  ̂ and the probability measure ix is 
translation invariant and ergodic. Then for all bounded continuous function f  on R 1

E ^ (f(n ~ 1/2R n )\^〇 = 〇  — > Ef(sup{wD*(s) ： s < 1} -  in{{wD.(s) : s <  1})
as n —— > oo in -probability.

Proof. Recall that if d =  1,
Rn z=z ^t{X(0)3 • * * , X(n)} =  sup{X(s) : s < n} -  iuf{X(5) : s < n}.

Thus, we get the desired result immediately from Theorem A.
Now we consider the transient case. Remember the conclusion of Theorem 3.1. In fact, 

we need only to study when 1 — E ^ F  > 0. Let Y  =  (Ffe(〇 ) fc>〇 (or be the
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random walk corresponding to the given environment ^ : = (ae^)) G Se(Zd), i.e.,

|e|=l
n r x  w i f T r t

Let Qx^ be the probability law of Y  starting at x. Then, we can get the next lemma from 
(2.1) and the definition of Y.

Lem m a 4.1. For any ii, * • * , in ^ Z d  ̂ Vn > 1; the following holds:
剛 = 《1，… ，從 ) = 、 ) = 啡 ⑴ = k … ，刷 = U

d

L e t  Pescape(〇 =  〇； V?7. >  1 ) . T h e n  Pescape(〇 — 1 — - ^ (0 *  L e t  B a{u) =  I j[ [a i +
n,ai -  n] and Sa(n) =  dBa(n)y i.e.,

Sa(n) =  {(x -  1, * -  ,¾ ) G Ba{n) : 3z =  1, • • * , d, s.t. =  +  n, or =  -  n},
where a =  (ai, * • • ,aa). Given aa environment ^ =  (ae(x)) € Se(Zd), we consider the 
electrical network Ba(n) in which a conductor ae(x) is assigned to the bond (x ,x  +  e) for 
any x ,e  e Z d with |e| =  1. Let be the effective resistance of J5〇(n) between 0 and
5〇(n), and R eff(^) =  lim By a well known result (see [1]) and Lemma 4.1, we
know

Pescape(〇
1

E  a e (〇) R e f f {〇 
|e |= l

Thus, if ae(〇) ^ (〇；°〇) for almost all ^ G S〇(Zd) with respect to then one needs
|e |= l

only to study when the following holds for studying when 1 — E ^ F  > 0
/i*{e ： R e f f i O  < 〇〇}>0.

Remember the relation between /m and //*. Then, it suffices to show
■ R eff(〇  < 〇〇} > 0 • (4.1)

For this purpose, we begin with a lemma.
h em m a 4：.2. Let . , be independent random variables with identical distribution

in a probability space (Q, P ). If there is a constant H  G (0, oo) such that
£ [ex p (^〇)] < oo, Vt < i?,

then there is a constant C £ (0, oo) such that
n—1

-  (1〇S n)2n) ^  C exp(-(logn)2).
Proof* By [7, Lemma III.5], there are constants g and T  € (0 ,〇〇), such that

£；[exp(^〇) ] < e ^ 2, V t € ( - r ,  T).
Then, by [7, Theorem III. 15] we know that there is a constant n〇 > 1 such that

n—1
-  n (1〇S n )2) ^  exP ( - ( loSn )4)> > n〇.

i=0
This implies the desired result.
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T heorem  4.2, Suppose that ae(x) e  (0, oo) for any £ Zd with |e| =  1 are independent 
random variables with identical distribution relative to a probability measure /x. / /  d > 3 
and there is a constant C G (0 ,〇〇) such that j  Qxp(ea^x(0))4^ <  oo, Vt < H, then 
1 一五卩* > 0•

Proof. W ithout loss of the generality, we may assume that ^ is translation invariant and
ergodic with respect to space translations. By the arguments as before, we know that it
suffices to show (4.1). By Cutting Law on resistance (see [1]), we also know that it is enough
to show (4.1) for d =  3. To this end, we first construct a tree in Z3 in the following way.
We start three rays off from the origin going north, east and up. Whenever a ray intersects
the plane x +  y +  z =  2n — 1 h i  some n, it splits into three rays, going north, east and up.
This process is actually illustrated in [1, Figure 6.17]. One easily sees that the Figure 617
in [1] can be thought of as the tree which is also shown in [1, Figure 6.18]. For convenience,
we denote the Figure 6.17 in [1] by G. Let An be the set of those points at which the plane
x +  y +  z  — 2n ~ l  and those rays described as above intersect. Then, one easily sees that
#(A n) =  3n， Let An =  {a?i，o：2, • .. , $3n}， and for i =  1，2,3 be the intersection points
at which the plane x +  y +  z =  2n+1 - 1  and the three rays starting from intersect for any
k == 1 ,2 ,- -  ,3 n. Then An+i =  i ~  1?2,3}. Let R ^ \i)  be the effective
resistance of the line segment which connects Xj and Xj(i) for z =  1,2,3, and j  ■ = V . . ，3 '

2nThen i^_n)(i) can be written as =  where 〇 , • " ，¢2沒 are independent random
variables with the same distribution as Let BjU\ i )  =  {R^n\ i )  > n22n}. By Lemma
4.2 and our hypothesis, we know that there is a constant C\ G (0, cx>) such that

<  C ie x p (-n 2) (4.2)
for any j  =  1,2, * * * ,3n , i =  1,2,3, n > 1.

We now use (4.2) to show (4.1). Let
00 3n 3

〜 = n  n  f K  ⑷ )cn=iV i= l
Then, (4.2) tells us that

00 3n 3 〇〇

^ n ) < 5 3  ^ 3Cl £  3n exp (-n2)
n=N  .7 = 1  i= l n=JV

< C 2exp(-iV2/2 )) V iV > l
for some constant C2 G (0,〇〇). On the other hand, there is a constant C3 G (0 ,〇〇) such 
that i in  < N,

T̂l

> 22N) < > 2N) < C3ex p (-N 2).

Hence, there is a constant C4 € (〇,〇c) such that

(̂U U ^  22JV>) ^  ^ e x p (~ N 2/2).
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Thus, one can choose a suitable iV〇 > 1 such that
"(f2〇) > 0， (4.3)

where
N〇 Z71 3

^〇  =  ^ 〇n p |  f l f | { ^ ( 〇 < 2 2̂ }.
n = l  j = l  i = l

Now we assign a resistor with resistance 22N〇  to the line segment xnxn(i) for i =  1,2,3 and 
any n < N〇, and a resistor with resistance n22n to the line segment xnxn(i) for i =  1,2,3 
and any n > iV〇, where xy is the line segment connecting x and y. By Thomson^ principle 
and Cutting Law (see [1]), it is easy to check that if ^

N〇 / 〇 \ n °° 9
^ / / ( 0  < E  2 ^ ( - )  +  n2( - r < o o .

n^=0 n=iV〇+ l
Thus from (4.3) we get : Ref f (〇  <  〇〇} > ^(fi〇) > 0.

So far, the proof is complete.
From Theorem 3.1 and Theorem 4.2, we get the next result.
Corolletry 4,1. Assume that all hypotheses of Theorem 4.2 are satisfied. Then there are 

a constant 6 (0,1] and a subset CM with = 1 such that
Pe ( lira ~  =  6〇) =  1, V ^ e fi〇.\n-+oo U  /

In other words， the strong law of large numbers for Rn holds in this case.
R em ark  4.1* In Theorem 4.2, we only assume ae(x) E (0,〇〇) for any e,x  e Zd with 

|e| — 1, so we need a further assumption on aG(x). Actually, if d > 3 and there is a constant 
6 G (0,1] such that 9 < aG(x) < 9~xy Vx,e G Zd with \e\ ~  1, then by the Thomson^ 
principle and Cutting Law on resistance (see [1]) or Theorem 4.2 above one can check that 
Reff(^) < 〇〇, € S〇(Zd)̂  d > 3. Thus we get immediately 1 — E ^ F  > 0. In other words, 
the strong law of large numbers for Rn holds in this case if fj, is also translation invariant 
aud ergodic with respect to space translations.
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