
Chin. Ann. of Math.
16B: 2(1995),139-152.

EXPLICIT CONSTRUCTION OF

HARMONIC MAPS FROM R2 TO U(N)**

Gu Chaohao* Hu Hesheng*

Abstract

Darboux transformation method is used for constructing harmonic maps from R2 to U(N).

The explicit expressions for Darboux matrices are used to obtain new harmonic maps from a
known one. The algorithm is purely algebraic and can be repeated successively to obtain an
infinite sequence of harmonic maps. Single and multiple solitons are obtained with geometric
characterizations and it is proved that the interaction between solitons is elastic. By introducing

the singular Darboux transformations, an explicit method to construct new unitons is presented.
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§1. Introduction

In the present paper, we consider the explicit construction of harmonic maps from R2 to

U(N). This is one of the most interesting problems in geometry and mathematical physics.

It is well-known that the equations of harmonic maps from R1+1 and R2 to a Lie group

admit a Lax pair with a spectral parameter. Hence the technique for solving integrable

soliton equations is a powerful tool to study the harmonic maps form R1+1 and R2 to Lie

groups, especially, to U(N). Among various methods the Darboux transformation method

has the advantage that new solutions can be obtained explicitly by using purely algebraic

algorithm and the same algorithm can be used successively to obtain an infinite sequence of

explicit solutions. For the R1+1 case, the general method was introduced in [1]. By using

this method, single and multiple soliton solutions were constructed with explicit formulas

and the interaction of solitons has been proved to be elastic[2]. Harmonic maps from R1+1 to

U(N) have been studied also by Beggs[3], but the soliton solutions have not been expressed

explicitly and the interaction of solitons has not been considered.

For the harmonic map from R2 or S2 to U(N), there is a famous paper of K. Uhlenbeck[4].

She uses the loop action and Birkohoff factorization to construct new harmonic maps. Be-

sides, the Bäcklund transformation and singular Bäcklund transformations are mentioned as

tools for obtaining new harmonic maps and unitons. We find that Darboux transformation

method, which we have used to study the harmonic maps from R1+1 to U(N) in [1], is also

valid for the case of R2 to U(N). Explicit solutions can be obtained too. The object of
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the present paper is to present this method and give the explicit formulas for new harmonic

maps and unitons.

In §2, we recall the generic formulation of harmonic maps from R2 to U(N) and the Lax

pair. §3 is devoted to the Darboux transformations. In particular, explicit formulas for new

harmonic maps are established. In §4, we construct single and multiple soliton-like solutions,

they are the Darboux transformation of a kind of trivial solutions. Global behavior of these

solitons is sketched. §5 is devoted to obtain the explicit formula for obtaining unitons from

a known one by introducing the singular Darboux transformation.

§2. Harmonic Maps from R2 to U(N)

A harmonic map ϕ(x, y) from R2 = {(x, y)} to the group U(N) is a critical point of the

energy integral

S[ϕ] =

∫
tr(ϕxϕ

−1ϕxϕ
−1 + ϕyϕ

−1ϕyϕ
−1)dxdy (ϕ ∈ U(N) ). (2.1)

Let

U = ϕxϕ
−1, V = ϕyϕ

−1. (2.2)

We have

Uy − Vx + [U, V ] = 0, (2.3)

Ux + Vy = 0, (2.4)

U + U∗ = 0, V + V ∗ = 0. (2.5)

Here (2.3) follows from (2.2), (2.5) is the condition for unitary group and (2.4) is the Euler

equation for the variational problem. Thus, harmonic maps from R2 to U(N) are defined

by (2.3), (2.4) and (2.5). If (2.3), (2.4) and (2.5) are satisfied, ϕ can be constructed by

the integration of (2.2) provided that the initial data, say ϕ(0, 0), satisfy the condition

ϕ(0, 0) ∈ U(N).

Introducing the complex coordinates (ζ, ζ̄) for R2

ζ = x+ iy, ζ̄ = x− iy; (2.6)

∂

∂ζ̄
=

1

2

( ∂

∂x
+ i

∂

∂y

)
,

∂

∂ζ
=

1

2

( ∂

∂x
− i

∂

∂y

)
. (2.7)

Denoting

A =
1

2
(U + iV ) = ϕζ̄ϕ

−1, B =
1

2
(U − iV ) = ϕζϕ

−1, (2.8)

the equations (2.3)-(2.5) become

Aζ −Bζ̄ + [A,B] = 0, (2.9)

Aζ +Bζ̄ = 0, (2.10)

A∗ = −B, (2.11)

respectively. Here ∗ denotes the conjugate and transpose of matrices. The Lax pair of the

equations (2.9) and (2.10) is

Φζ̄ = λAΦ, Φζ =
λ

2λ− 1
BΦ, (2.12)
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i.e. the integrability condition (or zero-curvature condition) of (2.12)

Φζ̄ζ = Φζζ̄

for all λ (λ ̸= 1/2) is equivalent to (2.9) and (2.10).

If Φ(λ) is a fundamental solution to the Lax pair (2.12) and valued in U(N) at some

point in R2 for all λ with |2λ− 1| = 1, then Φ(λ) is valued in U(N) for all (x, y) ∈ R2 and

all λ with |2λ− 1| = 1. Moreover, Φ(1) is a harmonic map. Φ(λ) is essentially the extended

harmonic map in [4].

§3. Darboux Transformation

In our previous work [1,2], we use Darboux transformation to obtain explicit formulas

for the harmonic maps from R1,1 to U(N) and elucidate their behavior. The method is

applicable to the case R2 → U(N) with some modification.

Let Φ(λ) be an extended harmonic maps of R2 → U(N), and A,B its potentials. We

want to construct an N ×N matrix α(ζ, ζ̄), which is independent of λ, such that

Φ1(λ) = SΦ = (I + λα)Φ (3.1)

satisfies

Φ1ζ̄ = λA1Φ1, Φ1ζ =
λ

2λ− 1
B1Φ1 (3.2)

with some A1, B1 satisfying the U(N) condition (2.11), then S = I+λα is called a Darboux

matrix and (3.1) the Darboux transformation. Substituting (3.1) to (3.2), it is seen that

A1 = A+ αζ̄ , B1 = B − αζ ; (3.3)

αζ̄α = αA−Aα, αζα+ 2αζ = Bα− αB. (3.4)

(3.4) is a system of nonlinear equations of the matrix α. Explicit solutions α of (3.4) can be

constructed by using Φ(λ) in the following way.

Let λ1, λ2, · · · , λN be N numbers such that at least two of them are unequal and λα ̸=
0, 1

2 , 1 (α = 1, 2, · · · , N). Choose N constant columns lρ (ρ = 1, 2, · · · , N) and let

hρ = Φ(λρ)lρ (ρ = 1, 2, · · · , N) (3.5)

such that

H = [h1, h2, · · · , hN ] (3.6)

is a non-degenerate matrix. Note that hρ is a column solution to the Lax pair (2.12) with

λ = λρ. We have

Theorem 3.1. The matrix

α = −HΛ−1H−1 with Λ =


λ1

λ2

. . .

λN

 (3.7)

is a solution to (3.4).

Proof. From the definition, hρ satisfies

hρζ̄ = λρAhρ, hρζ =
λρ

2λρ − 1
Bhρ. (3.8)
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Hence

Hζ̄ = AHΛ, Hζ = BHΛ′.

Here

Λ′ =


λ1

2λ1 − 1
. . .

λN

2λN − 1

 . (3.9)

Thus

αζ̄ = −Hζ̄Λ
−1H−1 +HΛ−1H−1Hζ̄H

−1

= −A+HΛ−1H−1AHΛH−1 (3.10)

and further we have

αζ̄α = −Aα+ αA. (3.11)

The first equation of (3.4) is satisfied. The second one of (3.4) can be verified similarly.

Remark 3.1. It is easily seen that (3.4) is completely integrable and each solution α can

be determined by the value of α at a given point. Consequently, (3.7) gives all solutions of

(3.4) which are similar to −Λ−1 at the given point, and then at every point the property

holds true.

From the expressions (3.3) of A1, B1 and the U(N) condition (2.11), we should have

(αζ̄)
∗ = αζ or (α∗ − α)ζ = 0. (3.12)

Moreover, in order that the solution obtained can be defined on the whole R2 we should

have detH ̸= 0 in R2. The following choice of λρ’s and lρ’s gives the explicit formula of α,

which satisfies the above requirement.

We choose a complex number λ
1
, and let

λ
2
=

λ̄
1

2λ̄
1
− 1

,

λρ =

{
λ
1

(ρ = 1, · · · , k),

λ
2

(ρ = k + 1, · · · , N).
(3.13)

Here λ
1
satisfies

(i) |2λ
1
− 1| ̸= 1,

We choose lρ’s such that

(ii) Φ(λ
1
)L1 and Φ(λ

2
)L2 are of rank k and N − k respectively at some point (say (0, 0)),

where

L1 = [l1, · · · , lk, 0, · · · , 0], L2 = [0, · · · , 0, lk+1, · · · , lN ], (3.14)

and

(iii) at a fixed point, say (0, 0),

h∗
pha = 0 (a = 1, · · · , k; p = k + 1, · · · , N). (3.15)
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We note that

(h∗
p)ζ̄ = (hpζ)

∗ =
( λ

2

2λ
2
− 1

Bhp

)∗
= −λ

1
h∗
pA

and hence

(h∗
pha)ζ̄ = 0. (3.16)

Similarly, we have

(h∗
pha)ζ = 0. (3.17)

Therefore (iii) holds on R2 if it holds at a fixed point. Thus we have

Lemma. Let ha and hp be two column solutions of (2.12) corresponding to the parameter

λ
1
and λ

2
respectively. If h∗

pha = 0 at a point in R2, then h∗
pha = 0 everywhere.

Besides, it is easy to see that if ha’s (resp. hp’s) are linearly independent at some point,

they should be linearly independent everywhere. From this construction, we have detH ̸= 0

on R2.

Theorem 3.2. If the λρ’s (given by (3.13)) and the constant columns lρ’s satisfy the

requirements (i) (ii) and (iii), then the potential

A1 = A+ αζ̄ , B1 = B − αζ ,

where α is given by the explicit expression (3.7), satisfies the U(N) condition A∗
1 = −B1

(i.e. α satisfies (3.12)), and thus defines a new harmonic map from R2 to U(N).

Proof. From (3.7), we see that αH = −HΛ−1, i.e.

αha = − 1

λ
1

ha, αhp = − 1

λ
2

hp, (a = 1, · · · , k; p = k + 1, · · · , N), (3.18)

hence

h∗
aα

∗ = − 1

λ̄
1

h∗
a, h∗

pα
∗ = − 1

λ̄
2

h∗
p. (3.19)

Consequently

h∗
a(α

∗ − α)hb =
(
− 1

λ̄
1

+
1

λ
1

)
h∗
ahb,

h∗
p(α

∗ − α)hq =
(
− 1

λ̄
2

+
1

λ
2

)
h∗
phq,

h∗
p(α

∗ − α)ha =
(
− 1

λ̄
2

+
1

λ
1

)
h∗
pha = 0,

h∗
a(α

∗ − α)hp =
(
− 1

λ̄
1

+
1

λ
2

)
h∗
ahp = 0,

(3.20)

where a, b = 1, · · · , k; p, q = k + 1, · · · , N . From the relation

2λ
1
λ̄
2
= λ

1
+ λ̄

2

for λ
1
, λ̄
2
, we obtain

− 1

λ̄
2

+
1

λ
2

= −
2λ
1
− 1

λ
1

+
2λ̄
1
− 1

λ̄
1

= − 1

λ̄
1

+
1

λ
1

. (3.21)
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Thus, from (3.20) we have

h∗
ρ(α

∗ − α)hσ = h∗
ρ

( 1

λ
1

− 1

λ̄
1

)
I hσ (ρ, σ = 1, · · · , N). (3.22)

It follows that

α∗ − α =
( 1

λ
1

− 1

λ̄
1

)
I, (3.23)

since hρ’s are linearly independent. By differentiating (3.23) with respect to ζ, we see that

the U(N) condition (3.12) follows immediately. From Theorem 3.1, we know that A1, B1

satisfies (2.9), (2.10). The proof is completed.

In the following we first show that the Darboux matrix S = I + λα can be expressed by

an Hermitian projection π to (N − k)-dimensional subspaces of CN .

In fact, from (3.23) we have

α∗ +
1

λ̄
1

I = α+
1

λ
1

I.

So the matrix α + 1
λ
1

I is Hermitian. Since α = −HΛ−1H−1, and the eigenvalues of α are

− 1
λ
1

and − 1
λ
2

, we have

α+
1

λ
1

I =
( 1

λ
1

− 1

λ
2

)
β

[
0 0
0 IN−k

]
β∗ =

( 1

λ
1

− 1

λ
2

)
π, (3.24)

where β ∈ U(N), IN−k is the (N−k)×(N−k) unit matrix and π is an Hermitian projection.

Thus

α = − 1

λ
1

I +
( 1

λ
1

− 1

λ
2

)
π = − 1

λ
2

π − 1

λ
1

π⊥, (3.25)

S = I + λα =
(
1− λ

λ
2

)
π +

(
1− λ

λ
1

)
π⊥. (3.26)

Moreover, by calculation we can prove that, for |2λ− 1| = 1,∣∣∣1− λ

λ
1

∣∣∣2 =
∣∣∣1− λ

λ
2

∣∣∣2. (3.27)

Hence

S∗S =
∣∣∣1− λ

λ
2

∣∣∣2π +
∣∣∣1− λ

λ
1

∣∣∣2π⊥ =
∣∣∣1− λ

λ
1

∣∣∣2I. (3.28)

Thus we have

Theorem 3.3. A new extended solution Φ1(λ) is obtained from the original extended

solution Φ(λ) by the transformation

Φ1(λ) = S
(
1− λ

λ
2

)−1

Φ(λ) (3.29)

and the corresponding new harmonic map is

Φ1(1) = S
(
1− 1

λ
2

)−1

Φ(1). (3.30)
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We turn to deduce the differential equations satisfied by π. From (3.25), we have

α = − 1

λ
1

+
( 1

λ
1

− 1

λ
2

)
π.

Substitute it into (3.4), we obtain

πζ̄ = −λ
1
πA+ λ

2
Aπ + (λ

1
− λ

2
)πAπ,

πζ = λ̄
1
Bπ − λ̄

2
πB + (λ̄

2
− λ̄

1
)πBπ.

(3.31)

Thus we have

Theorem 3.4. The projective operator

π =
(
α+

1

λ
1

)/( 1

λ
1

− 1

λ
2

)
(3.32)

is a solution to (3.31).

Remark 3.2. Equations in (3.31) are just the pair of equations (25) of Bäcklund transfor-

mations for harmonic maps in Uhlenbeck’s paper [4] with different notations. The differences

of the notations between [4] and the present paper are as follows: (i) The order of multipli-

cation of matrices in the present paper is different from that of [4]. (ii) Our A,B correspond

to 2Aζ̄ and 2Aζ in [4], respectively. (iii) Our λ corresponds to 1−λ
2 in [4].

Remark 3.3. From (3.30) and (3.26), it is seen that the Darboux transformation gives

new harmonic maps

Φ1(1)K = (π + γπ⊥)Φ(1) ·K. (3.33)

Here K is an arbitrary constant matrix in U(N) and

γ =
(
1− 1

λ
1

)/(
1− 1

λ
2

)
. (3.34)

From (3.27), we have |γ| = 1.

(3.33) is actually the formula for new solution of Theorem 6.3 in [4]. But in our case, π

can be constructed explicitly in terms of the extended solutions of the harmonic map Φ(1).

Remark 3.4. The system (3.31) is completely integrable. Hence each solution π of (3.31)

is completely determined by the initial data π(0, 0). From our construction, for any fixed λ
1
,

we can choose lα’s such that

α(0, 0) = − 1

λ
1

+
( 1

λ
1

− 1

λ
2

)
π(0, 0).

Thus our construction exhausts all solutions to the system (3.31).

§4. Soliton Solutions

In this section, we construct the single soliton solutions as applications of the Darboux

matrix method. For simplifying the calculation, we take N = 2 in the following. The results

for general N are similar.

The elements in SU(2) are matrices [
γ β
−β̄ γ̄

]
(4.1)
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with |β|2 + |γ|2 = 1. Take the seed solution in the following form

g0 =

[
eτζ̄−τ̄ζ 0

0 e−(τζ̄−τ̄ζ)

]
, (4.2)

where τ is a constant and

A =

[
τ 0
0 −τ

]
, B =

[
−τ̄ 0
0 τ̄

]
. (4.3)

Substituting (4.3) into the Lax pair (2.12) and integrating, we obtain

Φ0 =

[
exp(λτ ζ̄ − λ

2λ−1 τ̄ ζ) 0

0 exp(−λτ ζ̄ + λ
2λ−1 τ̄ ζ)

]
=

[
l(λ) 0
0 l−1(λ)

]
(4.4)

with

l(λ) = exp(λτ ζ̄ − λ

2λ− 1
τ̄ ζ). (4.5)

Let λ
1
, λ
2
be two distinct constants related by

2λ
1
λ̄
2
= λ

1
+ λ̄

2
. (4.6)

As in §3, we take

H =

[
l(λ

1
) −āl(λ

2
)

al−1(λ
1
) l−1(λ

2
)

]
. (4.7)

It is seen that

l−1(λ
1
) = l(λ

2
), l−1(λ

2
) = l(λ

1
) (4.8)

and

h∗
2h1 = 0. (4.9)

Moreover,

detH = |l(λ
1
)|2 + |a|2|l(λ

1
)|−2. (4.10)

From (3.7), we obtain

α =
−1

ep + |a|2e−p


ep

λ
1

+ |a|2 e
−p

λ
2

( 1

λ
1

− 1

λ
2

)
āeiq

( 1

λ
1

− 1

λ
2

)
ae−iq ep

λ
2

+ |a|2 e
−p

λ
1

 , (4.11)

where

p = (λ
1
− λ

2
)τ ζ̄ + (λ̄

1
− λ̄

2
)τ̄ ζ, (4.12)

iq = (λ
1
+ λ

2
)τ ζ̄ − (λ̄

1
+ λ̄

2
)τ̄ ζ. (4.13)

Note that p, q are real, and linear with respect to x and y. From (3.30), the corresponding
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new harmonic map is

Φ1(1) = (I + α)
(
1− 1

λ
2

)−1

Φ0(1) =
−1

ep + |a|2e−p

(
1− 1

λ
2

)−1

×

 ep
(

1
λ
1

− 1
)
+ |a|2e−p

(
1
λ
2

− 1
)
eτζ̄−τ̄ζ

(
1
λ
1

− 1
λ
2

)
āe−iqe−(τζ̄−τ̄ζ)(

1
λ
1

− 1
λ
2

)
ae−iqeτζ̄−τ̄ζ ep

(
1
λ
2

− 1
)
+ |a|2e−p

(
1
λ
1

− 1
)
e−(τζ̄−τ̄ζ)

 .
(4.14)

We write

Φ1(1) =

[
γ β
−β̄ γ̄

]
and

β = ρ1e
iθ1 , γ = ρ2e

iθ2 , (4.15)

then

ρ1 =
k|ā|

ep + |a|2e−p
=

k

2
sech(p− ln|a|)

(
k =

∣∣∣1− 1

λ
2

∣∣∣−1∣∣∣ 1
λ
1

− 1

λ
2

∣∣∣), (4.16)

ρ2 = (1− ρ21)
1
2 . (4.17)

We see that ρ1 → 0 and ρ2 → 1 when p → ±∞. Hence we call Φ1(1) a single soliton

solution.

Let γ = x1 + ix2, β = x3 + ix4, Φ
1(1) can be considered as a harmonic map from R2 to

S3.

We describe the geometric character of the harmonic map Φ1(1). Let l be a straight line

in R2, which is not parallel to the line p =const. It is easy to see that if (x, y) approaches

to infinity along the line l, then p approaches to ∞ and ρ1 → 0. Hence the image of l

approaches to the equator x3 = x4 = 0 of S3. Such kind of straight lines are called generic

lines. The straight lines p =const., are called special lines and their images do not approach

to the equator. Thus, for the single soliton solution Φ1(1), there is one family of special

lines p =const. whose images are some curves with ρ1 =const.

We define the kth Darboux transformation of the trivial solution (4.2) to be k-soliton

solution and describe their asymptotic behavior as we have done in [2]. Their explicit

expressions for the extended solutions can be obtained recursively, i.e.

Φk(λ) = (I + λαk−1) · · · (I + λα0)Φ0(λ)·

·
(
1− λ

λ
2

(0)

)−1(
1− λ

λ
2

(1)

)−1

· · ·
(
1− λ

λ
2

(k−1)

)−1

(4.18)

and the harmonic maps are

Φk(1) = (I + αk−1) · · · (I + α0)Φ0(1)·

·
(
1− 1

λ
2

(0)

)−1(
1− 1

λ
2

(1)

)−1

· · ·
(
1− 1

λ
2

(k−1)

)−1

. (4.19)

Here (λ
1

(i), λ
2

(i)) for i = 0, 1, · · · , k − 1 are the parameters which are used in the successive

Darboux transformations and satisfy the condition: all the |2λ
2

(i) − 1| (i = 0, 1, · · · , k − 1)

are distinct.



148 CHIN. ANN. OF MATH. Vol.16 Ser.B

Moreover, in (4.18) and (4.19), αi (i = 0, 1, · · · , k − 1) are constructed from Φi(λ) by

using Theorems 3.1-3.3. Define

pi = (λ
1

(i) − λ
2

(i))τ ζ̄ + (λ̄
1

(i) − λ̄
2

(i)
)τ̄ ζ.

A straight line l in R2 is called generic if it is not parallel to the lines pi =const. (i =

0, 1, · · · , k − 1), and the k families of lines pi =const. are called special lines. We have

Theorem 4.1. The k-soliton solution Φk(1) =
(

γ(k) β(k)

−β̄(k) γ̄(k)

)
∈ SU(2) which can be

considered as a harmonic map from R2 to S3 has the following properties:

(i) β(k) approaches to 0 when (x, y) approaches to infinity along a generic line l, i.e. the

image of the line l approaches to the equator x3 = x4 = 0 asymptotically.

(ii) There are k families of special lines pi = const. (i = 0, 1, · · · , k−1), and Φk(1) behaves

asymptotically as a single soliton when (x, y) approaches to infinity along each special line.

The proof is similar to the proof of the main theorem for the R1+1 case[2].

If we consider y as the time coordinate and y =const. are generic lines, Theorem 4.1

implies that when y → ±∞, a k-soliton is splitting up into k single solitons asymptotically,

and the interaction of solitons is elastic if we consider the magnitudes ρ1, ρ2 only.

§5. Transformation of Unitons

From now on, we write the parameter λ = 1−µ
2 , and the Lax pair (2.12) can be written

as

∂Ψ(µ)

∂ζ̄
=

1− µ

2
AΨ,

∂Ψ(µ)

∂ζ
=

1− µ−1

2
BΨ. (5.1)

Here

Ψ(µ) = Φ(
1− µ

2
). (5.2)

The parameter µ is used in [4] where it is denoted by λ.

The concept of uniton was introduced by Uhlenbeck in [4]. Let g be a harmonic map. If

there is an extended solution Ψ(µ) which satisfies the following conditions

(a) Ψ(µ) =
n∑

a=0
Taµ

a (a polynomial of µ),

(b) Ψ(1) = I,

(c) Ψ(−1) = g−1Q (Q ∈ U(N), a constant matrix),

(d)
(
Ψ(µ̄)

)∗
=

(
Ψ(µ−1)

)−1
(µ ̸= 0).

g is called a uniton, and Ψ(µ) is called extended solution of a uniton or simply extended

uniton.

From the above definition, we see that the soliton solutions which we obtained in the

above section are not unitons.

By using the parameter µ

λ
1
=

1− µ1

2
, λ

2
=

1− µ2

2
=

1− µ̄−1
1

2
. (5.3)

From (3.29), the Darboux transformation of an extended uniton is

Ψ1(µ) =
(
I +

1− µ

2
α
)(
1− 1− µ

1− µ2

)−1
Ψ(µ). (5.4)
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In general, it cannot be an extended uniton, since Ψ1(µ) is not a polynomial of µ. Uhlenbeck

introduced the singular Bäcklund transformation to obtain a uniton from a known uniton.

Here we introduce the singular Darboux transformation as the limit of a sequence of Darboux

transformations. We treat this problem as follows.

Let

L1 = [l1, l2, · · · , lk, 0, · · · , 0],
L2 = [0, · · · , 0, lk+1, · · · , lN ] (5.5)

be two constant matrices of rank k and N − k (0 < k < N) respectively. Here lα (α =

1, · · · , N) are N constant columns satisfying

l∗pla = 0 (p = k + 1, · · · , N ; a = 1, 2, · · · , k). (5.6)

We take µ1 = ϵ, µ2 = ϵ̄−1 (ϵ ̸= 0) and apply Darboux transformation to the extended

uniton Ψ(µ). Let

Hϵ =
[
h
1
, · · · , h

N

]
=

[
Ψ(ϵ)l1, · · · ,Ψ(ϵ)lk,Ψ(ϵ̄−1)lk+1, · · · ,Ψ(ϵ̄−1)lN

]
. (5.7)

From the condition (d), we have

h∗
pha =

(
Ψ(ϵ̄−1)lp

)∗
Ψ(ϵ)la

= l∗pΨ
∗(ϵ̄−1)Ψ(ϵ)la

= l∗pla = 0. (5.8)

We take ϵ such that detΨ(ϵ) ̸= 0, detΨ(ϵ̄−1) ̸= 0, hence

detHϵ ̸= 0. (5.9)

Let

αϵ = −HϵΛ
−1
ϵ H−1

ϵ ,

πϵ =
1

2(1− ϵϵ̄)

[
(1− ϵ)(1− ϵ̄)αϵ + 2(1− ϵ̄)I

]
. (5.10)

The new extended solutions of the harmonic maps obtained by Darboux transformation are

Ψ(1)
ϵ (µ) = (πϵ + µπ⊥

ϵ )
(
1− 1− µ

1− ϵ̄−1

)−1
Ψ(µ). (5.11)

In order to elucidate the limiting process of ϵ → 0, we need the following lemma.

Lemma. Let L1 (resp. L2) be the subspace of CN spanned by l1, l2, · · · , lk (resp. lk+1,

· · · , lN ). Then αϵ depends only on L1 and L2, and is independent of the choice of the basis

of L1 and L2.

Proof. We note at first that L2 = L⊥
1 is determined by L1. The change of basis of L1

and L2 means that we use

L̃1 = L1

[
K1 0
0 0

]
, L̃2 = L2

[
0 0
0 K2

]
(5.12)

to replace L1 and L2. Here K1 (resp. K2) is a regular square matrix of order k (resp. N−k).

We write Hϵ and H−1
ϵ by

Hϵ =

[
A11 A12

A21 A22

]
, H−1

ϵ =

[
B11 B12

B21 B22

]
(5.13)
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respectively, here the blocks ofH andH−1 are k×k, k×(N−k), (N−k)×k, (N−k)×(N−k)

matrices.

The matrices H̃ϵ, H̃−1
ϵ which are constructed by using the column vectors of L̃1 and L̃2

are:

H̃ϵ =

[
A11K1 A12K2

A21K1 A22K2

]
(5.14)

and

H̃−1
ϵ =

[
K−1

1 B11 K−1
1 B12

K−1
2 B21 K−1

2 B22

]
. (5.15)

By calculation, it is easily seen that

α̃ϵ = −H̃ϵΛ
−1
ϵ H̃−1

ϵ = −HϵΛ
−1
ϵ H−1

ϵ = αϵ. (5.16)

The lemma is proved.

We choose a special base of L1 such that

L1 = L
(0)
1 + L

(1)
1 + · · ·+ L

(n)
1 (5.17)

with

L
(0)
1 = [ l̃1, · · · , l̃a0 , 0, · · · , 0, 0, · · · , 0, · · · , 0, · · · , 0; 0, · · · , 0 ],

L
(1)
1 = [ 0, · · · , 0, l̃a0+1, · · · , l̃a1 , 0, · · · , 0, · · · , 0, · · · , 0; 0, · · · , 0 ],

· · · · · ·

L
(n)
1 = [ 0, · · · , 0, 0, · · · , 0, 0, · · · , 0, · · · , l̃an−1+1, · · · , l̃an ; 0, · · · , 0 ];

(5.18)

TiL
(j)
1 = 0 (j > i),

rank{TjL
(j)
1 } = rank{L(j)

1 } = aj − aj−1,

(k = an ≥ an−1 ≥ · · · a0 ≥ 0, a−1 = 0). (5.19)

Define

L̃1 = L
(0)
1 + L

(1)
1 ϵ−1 + · · ·+ L

(n)
1 ϵ−n (ϵ ̸= 0). (5.20)

Then

Ψ(ϵ)L̃1 = T0L
(0)
1 + T1L

(1)
1 + · · ·+ TnL

(n)
1 + ϵF1, (5.21)

where F1 is a polynomial of ϵ. Similarly, we choose a special base of L2 and define

L̃2 = L
(n)
2 ϵ̄n + L

(n−1)
2 ϵ̄n−1 + · · ·+ L

(0)
2 . (5.22)

Here L
(i)
2 satisfy

TjL
(i)
2 = 0 (j > i),

rank{TjL
(j)
2 } = rank{L(j)

2 }.
(5.23)

Then

Ψ(ϵ̄)L̃2 = T0L
(0)
2 + T1L

(1)
2 + · · ·+ TnL

(n)
2 + ϵ̄F2, (5.24)

where F2 is a polynomial of ϵ̄. Moreover, we take

H̃ϵ = Ψ(ϵ)L̃1 +Ψ(ϵ̄−1)L̃2. (5.25)
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From the lemma, we have

αϵ = −H̃ϵΛ
−1
ϵ H̃−1

ϵ

= − 2

1− ϵ̄−1
πϵ −

2

1− ϵ
π⊥
ϵ . (5.26)

Here

Λ−1
ϵ =


2

1− ϵ
Ik 0

0
2

1− ϵ̄−1
IN−k

 (5.27)

and πϵ is a projection on (N − k)-dimensional subspaces of CN .

Let ϵ → 0. We have

lim
ϵ→0

Hϵ =

n∑
a=0

TaL
(a)
1 +

n∑
a=0

TaL
(a)
2 = H. (5.28)

Evidently, H is a regular matrix. Let

lim
ϵ→0

αϵ = −H

[
2Ik 0
0 0

]
H−1 = α, (5.29)

lim
ϵ→0

π⊥
ϵ = H

[
Ik 0
0 0

]
H−1 = π⊥, (5.30)

lim
ϵ→0

πϵ = H

[
0 0
0 IN−k

]
H−1 = π. (5.31)

Using (3.29), we have

Theorem 5.1. From an extended uniton Φ(µ), we can construct the extended uniton

Φ1(µ) =
(
I +

1− µ

2
α
)
Φ(µ). (5.32)

Here

α = −H

[
2Ik 0
0 0

]
H−1 (5.33)

and H is defined by (5.28).

Remark 5.1. Since

I +
1− µ

2
α = π + π⊥ + (µ− 1)π⊥

= π + µπ⊥, (5.34)

(5.32) can be written in

Φ1(µ) = (π + µπ⊥)Φ(µ). (5.35)

This is just the main formula in Theorem 12.1 of [4]. In our case, the projection π has

explicit expression (5.31). We will discuss the properties and concrete applications of the

singular Darboux transformation in a forthcoming paper.
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