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Abstract

This paper studies the Hausdorff dimensions, the Hausdorff measures of generalized Moran
fractals and the convergence of the Fourier series of functions defined on some generalized
Moran fractals. A general formula is given for the calculation of the Hausdorff dimensions of

generalized Moran fractals and it is proved that their Hausdorff measures are finite positive
numbers under some conditions. In addition, the authors define an orthonormal system Φ of
functions defined on generalized Moran s-sets (gMs) and discuss the convergence of the Fourier
series, with respect to Φ, of each function f(x) ∈ L1(gMs,Hs).
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§1. Introduction

Let F be a subset of the q-dimensional Euclidean space Rq and let s be a non-negative

number. For any δ > 0, define

Hs
δ (F ) = inf

{ ∞∑
i=1

|Ui|s : F ⊂
∞∪
i=1

Ui, 0 < |Ui| ≤ δ
}
,

where |U | denotes the diameter of the set U .

We write

Hs(F ) = lim
δ→0

Hs
δ (F )

and call Hs(F ) the s-dimensional Hausdorff measure of F .

For given F ⊂ Rq , there is a unique number, dimF , called the Hausdorff dimension of

F , such that

Ht(F ) = ∞ if 0 ≤ t < dimF,

Ht(F ) = 0 if dimF < t < ∞.

We know that it is often difficult to determine the Hausdorff dimension of a fractal and

harder still to find or even to estimate its Hausdorff measure. So far, we may only find

the Hausdorff dimensions of some specific fractals, such as self-similar fractals, classical
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Moran fractals, generalized Cantor fractals (see [1,2]). But the Hausdorff dimensions of the

generalized Moran fractals, which are recently discussed by Su Feng[3] and encompass a

very wide class of geometric objects such as self-similar fractals and classical Moran fractals,

and the information about their Hausdorff measures are still unsettled questions. In this

paper we give the general formula for the calculation of the Hausdorff dimensions of these

generalized Moran fractals and prove that their Hausdorff measures are positive numbers

under some conditions. In addition, we also discuss the convergence of the Fourier series of

functions defined on generalized Moran s-sets.

Let J be a nonempty compact subset of Rq, let n be a positive integer, n ≥ 2, and

let tki be fixed numbers between 0 and 1, k = 1, 2, . . . , n. We also assume that J is regu-

lar: J = cl(intJ). A generalized Moran fractal based on seed set J and similarity ratios

t11, t12, · · · , t1n, t21, t22, · · · , t2n, · · · , tk1, tk2, · · · , tkn, · · · is a set E which can be expressed

as

E =
∞∩
k=0

∪
σ∈Sk

J(σ),

where Sk = {1, 2, · · · , n}k and the sets J(σ) are given recursively by the conditions that

J = J(ϕ) and if J(σ), for σ ∈ Sk, has been determined, then the sets J(σ ∗ 1), J(σ ∗
2), · · · , J(σ ∗ n) on the (k + 1)-th level are nonoverlapping subsets of J(σ) such that for

each i, J(σ ∗ i) is geometrically similar to J(σ) via a similarity map with similarity ratios

tk+1,i. If σ = (σ(1), · · · , σ(k)), then by σ ∗ i, the concatenation of σ and i, we mean

σ ∗ i = (σ(1), · · · , σ(k), i).
So, if σ = (σ(1), · · · , σ(k)) ∈ Sk, then

|J(σ)| = |J |tk(σ) = |J |
k∏

i=1

ti,σ(i).

In section 2, we obtain the calculation formula of the Hausdorff dimension of E and prove

that the Haudorff measure is a positive number under some conditions. In section 3, we define

an orthonormal system Φ of functions on the generalized Moran s-sets (gMs) and discuss

the convergence of the Fourier series, with respect to Φ, of any function f ∈ L1(gMs,Hs).

§2. The Hausdorff Dimension and Measure of E

Let the similarity ratios {tki}, i = 1, · · · , n, k = 1, 2, · · · , satisfy
(A) c = inf

k,i
tki > 0;

(B) lim
k→∞

sup
σ∈Sk

|J(σ)| = 0.

For convenience, we assume that |J | = 1 and a set J(σ), used in the construction of

E, is a net set. If J(σ) is a net set on the k-th level, then we write Jk(σ). If σ =

(σ(1), σ(2), · · · , σ(k)) ∈ Sk, for every p, 1 ≤ p ≤ k, we denote by σ[p] the p-tuple formed by

the first p coordinates of σ, that is, σ[p] = (σ(1), σ(2), · · · , σ(p)) ∈ Sp.

For each m = 1, 2, · · · , let

fm(β) =
m∏

k=1

n∑
i=1

tβki.
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Since

f
′

m(β) =

m∑
k=1

[
n∑

i=1

tβki log tki

] ∏
1≤j ̸=k≤m

n∑
i=1

tβji < 0,

we have

Lemma 2.1. For given m, the function fm(β) is a strictly decreasing continous function

on [0,∞) and fm(0) = nm ≥ 2, lim
β→∞

fm(β) = 0.

Using Lemma 2.1, we immediately show that the equation
m∏

k=1

n∑
i=1

tβki = 1 (2.1)

has a unique solution, which we write as βm.

Lemma 2.2. Let {βm}m≥1 be solutions of equations (2.1). Then s = lim inf
m→∞

βm > 0.

Proof. Since βm > 0 , there exists the lower limit: lim inf
m→∞

βm = s.

For all k and i = 1, 2, · · · , n, if we let tki = c (= infk,i), then we can obtain a classical

Moran fractal E1 and dimE1 = s1, where s1 is the unique solution of ncs1 = 1, i.e., s1 =

− logn
log c > 0.

On the other hand, since
m∏

k=1

n∑
i=1

ts1ki ≥
m∏

k=1

n∑
i=1

cs1 = 1,

we obtain βm ≥ s1 > 0 by using Lemma 2.1. So s = lim inf
m→∞

βm ≥ s1 > 0.

We shall prove that the Hausdorff dimension of E is s = lim inf
m→∞

βm. For this, we introduce

again a lemma.

Lemma 2.3. For given δ > 0, let

F = {Jk(σ) : Jk(σ) is a net set, k ≥ k1, |Jk(σ)| ≤ δ} ,
F1 = {U : U is the union of some elements of F} ,

Ht,δ
F (E) = inf

{∑
i

|Vi|t : E ⊂ ∪iVi, 0 < |Vi| ≤ δ, Vi ∈ F

}
,

Ht,δ
F1

(E) = inf

{∑
i

|Ui|t : E ⊂ ∪iUi, 0 < |Ui| ≤ δ, Ui ∈ F1

}
.

Then Ht
δ(E) ≥ Ht,δ

F1
(E) ≥ bHt,δ

F (E), where b is a positive number, k1 is a fixed positive

integer, t ≥ 0 and E is the above-mentioned generalized Moran fractal.

The proof of Lemma 2.3 is contained in the process of proving Theorem 2.1 in [3].

Theorem 2.1. dimE = lim inf
m→∞

βm.

Proof. Let s = lim inf
m→∞

βm. Then exists a subsequence {βni}i≥1 of {βm}m≥1 such that

lim
i→∞

βni = s. That is, for any given ε > 0, there is a positive integer k1 such that βnk
≤ s+ε

as k ≥ k1. Using Lemma 2.1, we have
nk∏
j=1

n∑
i=1

ts+ε
ji ≤

nk∏
j=1

n∑
i=1

t
βnk
ji = 1. (2.2)

For any given δ > 0 and the above ε, if the net sets {Jk0(σ)}σ∈Sk0
on the k0-th level satisfy

|Jk0(σ)| ≤ δ, then {Jnk
(σ)}σ∈Snk

is a δ-cover of E (if k0 ≤ nk1 , we let nk = nk1 ; if k0 > nk1 ,
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there must be an nkj such that nkj ≥ k0, and then we let nk = nkj ), and∑
σ∈Snk

|Jnk
(σ)|s+ε =

nk∏
j=1

n∑
i=1

ts+ε
ji ≤ 1

by using (2.2) in the last step. So dimE ≤ s + ε. By the arbitrariness of ε, we have

dimE ≤ s.

For any given ε > 0, by the definition of the lower limit, there exists a positive integer k2

such that βk ≥ s− ε as k ≥ k2. So we have
k∏

j=1

n∑
i=1

ts−ε
ji ≥

k∏
j=1

n∑
i=1

tβk

ji = 1 (2.3)

by using Lemma 2.1.

Let F = {J(σ) : σ ∈ Sk, k ≥ k2, |J(σ)| ≤ δ} and let V = {Jki(σi)} ⊂ F be a δ-cover of

E. We shall prove that Hs−ε,δ
F (E) ≥ 1 .

By expanding each net set slightly and using the compactness of E, we may assume that

the collection V is a finite collection of closed sets and also the sets in V are pairwise disjoint

(we may remove those sets contained in any others by virtue of the net property).

We write V = {Jki(σi)}ji=1, where k1 < kj .

If Jkj (σj) ∈ V, then {Jkj (σj [kj − 1] ∗ i)}ni=1 ⊂ V (the reason is that V is a disjoint

δ-cover of E), where Jkj (σj [kj − 1] ∗ i), on the kj-th level, are nonoverlapping subsets of

Jkj−1(σj [kj − 1]).

We may assume k1 ≤ k2 ≤ · · · ≤ kj , and ki1−1 < ki1 = ki1+1 = · · · = kj(i1 < j). Then

j∑
i=i1

|Jki(σi)|s−ε =

j∑
i=i1

[tki−1(σi[ki − 1])]s−εts−ε
kj ,σ(ki)

.

If {Jkj−1(σi[kj − 1])}ji=i1
are pairwise disjoint only at i = i1, i2, · · · , j′, then

{Jki(σi)}i1−1
i=1 ∪ {Jkj−1(σi[kj − 1])}j

′

i=i1

are pairwise disjoint since {Jki(σi)}ji=1 are pairwise disjoint and

j∑
i=i1

tki(σi)
s−ε =

j′∑
i=i1

[tkj−1(σi[kj − 1])]s−ε
n∑

i=1

ts−ε
kj ,i

.

Now we estimate the size of
j∑

i=1

|Jki(σi)|s−ε.

(a) If
n∑

i=1

ts−ε
kj ,i

≥ 1, then

j∑
i=1

|Jki(σi)|s−ε =

i1−1∑
i=1

|Jki(σi)|s−ε +

j′∑
i=i1

[tkj−1(σi[kj − 1])]s−ε
n∑

i=1

ts−ε
kj ,i

≥
i1−1∑
i=1

|Jki(σi)|s−ε +

j′∑
i=i1

[tkj−1(σi[kj − 1])]s−ε.

The collection {Jki(σi)}ji=1 has been reduced to a lower level, that is, now it is highest level

is kj − 1. We may only consider the collection {Jki(σi)}i1−1
i=1 ∪ {Jkj−1(σi[kj − 1])}j

′

i=i1
in the

preceding steps.
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(b) If
n∑

i=1

ts−ε
kj ,i

< 1, we first consider {Jki(σi)}i1−1
i=1 ∪ {Jkj−1(σi[kj − 1])}j

′

i=i1
using the

preceding process and obtain

i1−1∑
i=1

|Jki(σi)|s−ε +

j′∑
i=i1

[tkj−1(σi[kj − 1])]s−ε

=

i2−1∑
i=1

|Jki(σi)|s−ε +

j′′∑
i=i2

[tkj−2(σi[kj − 2])]s−ε
n∑

i=1

ts−ε
kj−1,i,

where ki2−1 < ki2 = ki2+1 = · · · = kj − 1 and the selection of j′′ is similar to that of j′.

Thus
j∑

i=1

|Jki(σi)|s−ε =

i1−1∑
i=1

|Jki(σi)|s−ε +

j∑
i=i1

[tkj−1(σi[kj − 1])]s−ε
n∑

i=1

ts−ε
kj ,i

≥
i2−1∑
i=1

|Jki(σi)|s−ε +

j′′∑
i=i2

[tkj−2(σi[kj − 2])]s−ε
n∑

i=1

ts−ε
kj−1,i

n∑
i=1

ts−ε
kj ,i

.

If
n∑

i=1

ts−ε
kj−1,i ·

n∑
i=1

ts−ε
kj ,i

≥ 1, then we go on in the step of (a). If not, we go on in the step

of (b). By finite such steps, there must be a positive integer m such that k1 ≤ m ≤ kj and

j∑
i=1

|Jki(σi)|s−ε ≥
m∏
j=1

n∑
i=1

ts−ε
ji ≥ 1

by using (2.3) in the last inequality.

Thus, Hs−ε,δ
F (E) ≥ 1. By using Lemma 2.3 we immediately obtain Hs−ε

δ (E) ≥ b > 0 and

dimE ≥ s− ε, and so dimE ≥ s since ε is arbitrary. The proof is finished.

Theorem 2.2. Suppose that any two of the following three conditions are satisfied:

(a)
n∑

i=1

tski ≤ 1,

(b)
m∏
j=1

n∑
i=1

tsji ≥ α > 0 for m ≥ k1,

(c) |Jk(σ)|s = ⃝(n−k).

Then 0 < Hs(E) < ∞. Here k1 is a positive integer, s = lim inf
m→∞

βm.

Proof. (1) If (a) or (c) is satisfied, then Hs(E) < ∞.

For any δ > 0, let the net sets {Jk(σ)}, on k-th level, is a δ-cover of E. Since∑
σ∈Sk

|Jk(σ)|s =
k∏

j=1

n∑
i=1

tsji,

we have
∑

σ∈Sk

|Jk(σ)|s ≤ 1 when (a) is satisfied, or∑
σ∈Sk

|Jk(σ)|s ≤ nk sup |Jk(σ)|s = ⃝(1)

when (c) is satisfied. So Hs(E) < ∞.

(2) If (b) is satisfied, then Hs(E) > 0.

For any δ > 0, let F ′ = {J(σ) : σ ∈ Sk, k ≥ k1, |J(σ)| ≤ δ}. By using the similar

techniques in the proof of Theorem 2.1 and noting (b), we have Hs,δ
F ′ (E) ≥ α > 0. Using
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Lemma 2.3, we immediately obtain Hs
δ (E) ≥ bα > 0. So we have Hs(E) ≥ bα > 0.

From the above analysis, we know that it is enough to prove the result of the theorem

when (a) and (c) are satisfied, that is, it is enought to prove that Hs(E) > 0.

We will use the following lemma.

Lemma 2.4.[2] Given a closed bounded set F in Rq of finite Hs-measure , then Hs(F ) > 0

if and only if there exists an additive function ϕ(A) of half-open figures A such that

(a) For any figure A, ϕ(A) ≥ 0;

(b) If A ⊃ F , then ϕ(A) ≥ b > 0, where b is some fixed constant:

(c) There is a finite non-zero constant k such that if |A| = δ ,then ϕ(A) ≤ kδs.

Remark. A half-open figure is a set expressible as a finite union of half-open (e.g. open

on the right) q-dimensional intervals.

Now we need only to define a suitable function ϕ(A) of half-open figure A so that ϕ

satisfies the conditions of Lemma 2.4.

We first define a function f on the net {Jk(σ) : σ ∈ Sk, k ≥ 1} :

f(Jk(σ)) = ts1,σ(1) · t
s
2,σ(2) · · · · · t

s
k,σ(k),

where σ = (σ(1), σ(2), · · · , σ(k)) ∈ Sk.

Then for any half-open figure, we write

g(A) = lim sup
k→∞

∑
Jk⊂A

f(Jk(σ)).

Let Aξ = {(x1, x2, · · · , xq) : (x1 + h1, · · · , xq + hq) ∈ A, 0 ≤ hi ≤ ξ, 1 ≤ i ≤ q}. Then Aξ is

again half-open and ϕ(A) = lim
ξ→0+

g(Aξ) is an additive function of half-open figures (in fact,

it can be checked by the inductive method).

It is clear that ϕ(A) ≥ 0.

If A ⊃ E, then

ϕ(A) = lim
ξ→0+

lim sup
k→∞

∑
Jk(σ)⊂Aξ

f(Jk(σ)) = lim sup
k→∞

k∏
j=1

n∑
i=1

tsji

≥ lim sup
k→∞

inf{ts1,i1 · t
s
2,i2 · · · · · t

s
k,ik

} · nk = ⃝(1),

that is, (b) in Lemma 2.4 is satisfied.

Let |A| = δ. Since the net sets J1(σ(i)), J2(σ(i), σ(j)), · · · are similar to J but reduced in

the ratios t1,σ(i), t1,σ(i)t2,σ(j), · · · , etc., where σ(i) ∈ S1, (σ(i), σ(j)) ∈ S2, · · · . Then we may

let these ratios be arranged in decreasing order and denoted by d1 ≥ d2 ≥ d3 ≥ · · · .
Suppose that there is a positive integer k suck that dk ≥ δ ≥ dk+1.

Let C = {y : |y − a| ≤ 2δ, a ∈ A}. We consider all the net sets J(σ), in C, with

reduction ratios lying between dk+1 and cdk+1(c = inf tki). If some of these are contained

in others, we count only those with the largest reduction ratios. Let these net sets be

{Pi}(i = 1, 2, · · · , N). Then we have ϕ(A) ≤
N∑
i=1

f(Pi), using the definition of ϕ and the

condition (a).

For every Pi, f(Pi) ≤ dsk and the volume of Pi ≥ (dk+1c)
qVJ , where VJ denotes the
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volume of J . So

N ≤
2q [Γ(1/q)]q

qq (2δ)q

(dk+1c)qVJ
,

where Γ is the Γ-function.

Let

b =
22q[Γ(1/q)]q

qqVJcq
.

Then

ϕ(A) ≤ b
δqdsk
dqk+1

= b
δq−s

dq−s
k

dqk
dqk+1

δs ≤ b

cq
δs.

The proof is finished.

Remark. When the generalized Moran fractals degenerate into the self-similar fractals

or the Moran fractals with the similarity ratios tki = ti(i = 1, 2, · · · , n), their Hausdorff

dimension is s :
s∑

i=1

tsi = 1 by Theorem 2.1. Moreover, in this case, (a) and (b) of Theorem

2.2 are satisfied, so 0 < Hs(E) < ∞. These are consistent with the known results about the

Hausdorff dimension and measure of the self-similar or the Moran fractal.

§3. The Fourier Series of Functions Defined
on Some Generalized Moran Fractals

The study of the Fourier series of the functions defined on self-similar fractals or classical

Moran fractals has been done by the authors of [4] and [5]. We shall say that the study of

Fourier series of the functions defined on generalized Moran s-sets is also feasible. In this

section, let E ⊂ Rq be a generalized Moran s-set, that is, E is a generalized Moran fractal

which is Hs-measurable and 0 < Hs(E) < ∞ (e.g. the generalized Moran fractals satisfying

Theorem 2.2).

Definition 3.1. For each x ∈ E, let B(x) be a collection of bounded measurable sets

with positive measure containing x, such that there is at least a sequence {Uk} ⊂ B(x) with
|Uk| → 0. The whole collection B =

∪
x∈E

B(x) will be called a differentiation basis.

Definition 3.2. Let B be a differentiation basis on (E,Hs), such that for each measurable

set A and for almost every x ∈ E, if {Uk} is an arbitrary sequence of B(x) contracting to

x, then

lim
k→∞

Hs(A ∩ Uk)

Hs(Uk)
= X (x),

where X is the characteristic function. We call B a density basis.

Definition 3.3. Given a differentiation basis B on (E,Hs), we define the maximal

operator associated to the basis B by

Mf(x) = sup
U∈B(x)

1

Hs(U)

∫
U

|f(y)| dHs(y) for all x ∈ E

for every function f ∈ L1(E,Hs).
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Definition 3.4. Let B be a differentiation basis on (E,Hs) and let f ∈ Lp(E,Hs)

(1 ≤ p ≤ ∞). If

lim
k→∞

{ 1

Hs(Uk)

∫
Uk

f dHs : {Uk} ⊂ B(x), Uk → 0} = f(x)

for almost every x ∈ E, then we say that B differentiates
∫
f . We write D(

∫
f, x) = f(x).

If for each f ∈ Lp(E,Hs),B differentiates
∫
f , then we say that B differentiates Lp(E,Hs).

Lemma 3.1. Let E be a generalized Moran s-set, and let Ek(σ) = Jk(σ) ∩ E for each

σ ∈ Sk and k ≥ 1, where the meaning of Jk(σ) is the same as above. Then A = {Ek(σ) :

σ ∈ Sk, k ≥ 1} is a density basis on (E,Hs).

Proof. It is easy to check that A is a differentiation basis for (E,Hs) by Definition 3.1.

Following the method of the proof of Theorem 3.3 in [6], we may prove that A is a density

basis.

Lemma 3.2. A differentiates L∞(E,Hs).

Proof. Following the similar steps used in the proof Theorem 1.4 in [7] and using Lemma

3.1 and the fact that Lusin’s Theorem is still valid after the Hausdorff measure replaces the

Lebsgue measure, we can obtain the proof of this lemma.

Lemma 3.3. For every function f ∈ L1(E,Hs) and every number α > 0, we have

Hs({x ∈ E : Mf(x) > α}) ≤ C∥f∥1/α, where C > 0 is a constant independent of α and f .

The verification method is similar to Theorem 3.5 in [6].

Theorem 3.1. A differentiates L1(E,Hs), that is,

D
(∫

f, x
)
= lim

k→∞

{ 1

Hs(Uk)

∫
Uk

f dHs : {Uk} ⊂ A(x), Uk → x
}
= f(x)

for Hs-a.e.x ∈ E.

Proof. For each f ∈ L1(E,Hs), let

fk(x) =

{
f(x), if |f(x)| < k,

0, if |f(x)| ≥ k,

for any x ∈ E and let fk be a function such that f = fk + fk.

For Hs-a.e. x ∈ E, by Lemma 3.2, we have D(
∫
fk, x) = fk(x). So, for any ε > 0, we

have

Hs({x : |D(

∫
f, x)− f(x)| > ε})

= Hs({x : |D(

∫
fk, x)− fk(x)| > ε})

≤ Hs({x : D(

∫
fk, x) > ε/2}) +Hs({x : fk(x) > ε/2})

≤ Hs({x : Mfk(x) > ε/2}) +Hs({x : fk(x) > ε/2}),

where M is a maximal operator associated to the basis A. Since f ∈ L1(E,Hs) and Lemma

3.3 is true, we may obtain D(
∫
f, x) = f(x) for Hs-a.e. x ∈ E. So the proof is finished.

Now we begin to discuss the convergence of the Fourier series of the functions defined on

E.

We first define a function with support on the set E. It is g−1(x) = Hs(E) for all x ∈ E.
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Secondly, we define n−1 functions gh0 , 1 ≤ h ≤ n−1, with support on the set
h+1∪

σ(i)=1

Eσ(i) ⊂ E

(here Eσ(i) denotes J(σ(i)) ∩ E, σ(i) ∈ S1). They are

gh0 (x) =



C
− 1

2

h , if x ∈
h∪

σ(i)=1

Eσ(i),

−C
− 1

2

h Hs(Eh+1)
−1

h∑
σ(i)=1

Hs(Eσ(i)), if x ∈ Eh+1,

0, otherwise,

where

Ch =
[
1 +Hs(Eh+1)

−1
h∑

σ(i)=1

Hs(Eσ(i))
] h∑
σ(i)=1

Hs(Eσ(i))

= Hs(Eh+1)
−1

h∑
σ(i)=1

Hs(Eσ(i))
h+1∑

σ(i)=1

Hs(Eσ(i)).

Finally, for every σ ∈ Sk and k ≥ 1, we define n − 1 functions ghσ , 1 ≤ h ≤ n − 1, whose

support is
h+1∪
i=1

Eσi ⊂ Eσ (here Eσi denotes J(σi) ∩ E, i = 1, 2, · · · , n). They are defined as:

ghσ(x) =



C
− 1

2

σh Hs(Eσ)
−1/2, if x ∈

h∪
i=1

Eσi,

−C
−1/2
σh Hs(Eσ)

−1/2Hs(Eσ,h+1)
−1·

·
h∑

i=1

Hs(Eσi), if x ∈ Eσ,h+1,

0, otherwise ,

where

Cσh = Hs(Eσ)
−1

[
1 +Hs(Eσ,h+1)

−1
h∑

i=1

Hs(Eσi)
] h∑

i=1

Hs(Eσi)

= Hs(Eσ)
−1Hs(Eσ,h+1)

−1
h+1∑
i=1

Hs(Eσi)
h∑

i=1

Hs(Eσi).

Let the system Φ be

Φ = {g−1} ∪ {gh0 : 1 ≤ h ≤ n− 1} ∪ {ghσ : σ ∈ Sk, k ≥ 1, 1 ≤ h ≤ n− 1}.

It is easy to show that Φ ⊂ L∞(E,Hs) ⊂ Lp(E,Hs), for p ≥ 1.

By a method similar to that used in [5] we may show

Theorem 3.2. The system Φ is orthonormal in the Hilbert space L2(E,Hs).

For any f(x) ∈ L1(E,Hs), we define its Fourier series, with respect to Φ, as

f(x) ∼ a−1g−1(x) +
n−1∑
h=1

ah0g
h
0 (x) +

∞∑
k=1

∑
σ∈Sk

n−1∑
h=1

ahσg
h
σ(x)
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where

a−1 = (f, g−1) =

∫
E

f(y)g−1(y) dH
s(y),

ah0 = (f, gh0 ) =

∫
E

f(y)gh0 (y) dH
s(y),

ahσ = (f, ghσ) =

∫
E

f(y)ghσ(y) dH
s(y),

for 1 ≤ h ≤ n− 1, σ ∈ Sk and k ≥ 1, are the Fourier coefficients of f with the orthonormal

system Φ.

Following the techniques of the proof of Theorem 3.2 in [5] and using Theorem 3.1, we can

obtain the convergence theorems of the Fourier series, with respect to Φ, of every function

f ∈ L1(E,Hs) :

Theorem 3.3. For each function f ∈ L1(E,Hs), the partial sums of its Fourier series

with respect to Φ converge to f at Hs-a.e.x ∈ E.

Throrem 3.4. Let p, 1 ≤ p ≤ ∞. If {c−1, c
h
0 , c

h
σ} is a sequence of real numbers which

satisfies

|c−1|+
n−1∑
h=1

|ch0 |∥gh0 ∥p +
∞∑
k=1

∑
σ∈Sk

n−1∑
h=1

|chσ|∥ghσ∥p < ∞, (3.1)

then there is a unique function f ∈ Lp(E,Hs) such that {c−1, c
h
0 , c

h
σ} are their Fourier

coefficients and we have ∥Sm+1f − f∥p → 0. Moreover, if we have a function f ∈ Lp and

its Fourier coefficients {a−1, a
h
0 , a

h
σ} satisfy (3.1), then the Fourier series of f converges to

f in Lp-norm.

More details about the techniques of proving these theorems may be consulted in [5].
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