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Abstract

The aim of this paper is to study 6-canonical system of a nonsingular minimal 3-fold X. If
|2KX | is not composed of pencils, it is shown that Φ|6KX | is birational with possible exceptions

for:
(K3

X , χ(OX), pg(X)) = (2,−1, 0) or (2,−1, 1) or (4,−1, 0) or (4,−1, 1).
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§1. Introduction and Main Results

In this paper, all the arguments proceed on base fieldC. LetX be a nonsingular projective

3-fold on which KX is nef and big. Much progress has been achieved on pluricanonical map

for X. As far as I know, X. Benveniste proved in [2] that Φ|nKX | is birational for n ≥ 8,

and then K.Matsuki proved in [7] that Φ|7KX | is birational. Following their ideas in both

[2] and [7], we go on studing 6-canonical maps.

Main Results. Let X be a nonsingular projective 3-fold on which KX is nef and big.

Suppose that |2KX | is not composed of pencils, i.e., dimΦ|2KX |(X) ≥ 2. Then Φ|6KX | is

birational with the possible exceptions: pg ≤ 1 and (K3
X , χ(OX)) = (2,−1), or (4,−1).

§2. Review on Surface

The pluricanonical maps for surfaces of general type have been studied in detail by E.

Bombieri, Francia, Reider, G. Xiao, etc. We now list several results in the following which

will be used or contrasted in next sections. They are well-known to specialists in surface.

Lemma 2.1. Let S be a nonsingular projective surface of general type with the canonical

divisor KS. Then

(1) Φ|nKS | is birational for n ≥ 5;

(2) if furthermore S is minimal and (K2
S , pg) ̸= (1, 2), then Φ|4KS | is birational;

(3) if S is minimal and (K2
S , pg) ̸= (1, 2), (2, 3), then Φ|3KS | is birational;

(4) if S has no pencil of curves of genus 2, K2
S ≥ 10 or pg ≥ 1, then Φ|2KS | is birational

with the possible exception for pg = q = 1,K2
S = 3, 4.
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Lemma 2.2.[7,Theorem 5] Let S be a nonsingular projective surface, R ∈Pic S be a nef

and big divisor on S, and m a positive integer which satisfies the following condition (∗):
(∗) Given arbitrary two distinct points x1, x2 ∈ S, letting π : S

′′ −→ S be the blowing-up

at x1 and x2, L1 = π−1(x1), L2 = π−1(x2), the linear system |π∗(mR)− 2L1 − 2L2| is not

empty. Then Φ|KS+mR| is birational in the following two cases:

(1) R2 ≥ 2 and m ≥ 3;

(2) R2 ≥ 1 and m ≥ 4.

Remark 2.1. In Lemma 2.2, if condition (∗) is substituted by condition h0(S,OS(mR)) ≥
7, then Lemma 2.2 is also true (see [2], Proposition 3-0).

§3. Proof of Main Result

Let X be a nonsingular complete variety. D(X) =Div(X)⊗ZR. We denote the numerical

equivalence and linear equivalence by ≈ and ∼, respectively. N(X) = {1− cycles on X}/ ≈
⊗ZR. NE(X) is the closure of the effective cone generated by effective 1-cycles. Let

D ∈ D(X). Then D is called nef if D.C ≥ 0 for any element C ∈ NE(X). We say that D

is big if κ(D,X) = dimX(see [5]). For any D ∈Div X with h0(X,D) ̸= 0, Φ|D| denotes the

rational map with respect to the complete linear system |D|.
At first we introduce Kawamata’s theorems which will be used in our proofs.

Proposition 3.1.[6,Theorem 1.2] Let X be a nonsingular complete variety, D ∈ Div(X)⊗Q.

Assume the following two conditions:

(i) D is nef and big;

(ii) the fractional part of D has the support with only normal crossings.

Then

Hi(X,OX(pDq+KX)) = 0 for i > 0,

where pDq is the minimum integral divisor with pDq−D ≥ 0.

Proposition 3.2.[6,Theorem 2.6] Let X be a nonsingular complete variety with the canon-

ical divisor KX . Then the following conditions are equivalent to each other:

(1) there exists a positive integer n such that the base locus Bs|nKX | = ∅ and Φ|nKX | is

birational;

(2) KX is nef and big.

Let X be a nonsingular projective 3-fold. The Riemman-Roch tells that

χ(OX(D)) = D3/6−KX .D
2/4 +D.(K2

X + C2)/12 + χ(OX),

χ(OX) = −C2.KX/24.

Lemma 3.1. Let X be a nonsingular projective 3-fold on which KX is nef and big. Then

(i) KX .D
2 is even, especially K3

X is even;

(ii) p(n) = h0(X,OX(nKX)) = (2n− 1)[n(n− 1)K3
X/12− χ(OX)], for n ≥ 2;

(iii) K3
X ≤ −72χ(OX).

Proof. (i) χ(OX(D)) + χ(OX(−D)) = −KX .D
2/2 + 2χ((OX) ∈ Z. Then KX .D

2 ∈ 2Z.

(ii) If n ≥ 2, from Proposition 3.1, we get

hi(X,nKX) = 0 ∀i > 0.
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Let D = nKX . Using R-R, we obtain

p(n) = H0(X,OX(nKX)) = χ(nKX)

= n3K3
X/6− n2K3

X/4 + nK3
X/12 + nKX .C2/12 + χ(OX)

= (2n− 1)[n(n− 1)K3
X/12− χ(OX)].

(iii) From Miyaoka’s theorem,we know that 3C2−C2
1 is pseudo-effective. ThusKX .(3C2−

K2
X) ≥ 0, K3

X ≤ 3KX .C2 = −72χ(OX). In particular we have χ(OX) < 0. This completes

the proof of Lemma 3.1.

Now we assume that Φ|nKX | is generically finite (n ≥ 2). We have the following commu-

tative diagram:

HHHHHHHHHHHHj?

-

?

X ′

X

W ′
n

Wn

fn

hn

gn sn

Φ|nKX |
−−−−−−−−−−−−−−−−−−→

where fn is blowing-ups with nonsingular centers such that gn = Φ|nKX | ◦fn is a morphism,

gn = sn ◦ hn is the stein factorization. Let bn = deg(sn). Let Hn be a general hyper-

plane section of Wn in Pp(n)−1. Let Sn be the general member of |g∗n(Hn)|. Then Sn is a

nonsingular projective surface. Let Rn = f∗n(KX)|Sn . We have the following result.

Proposition 3.3. Let X be a nonsingular projective minimal 3-fold. Assume that Φ|nKX |

is generically finite. Then the generic degree bn satisfies the following inequality:

bn ≤ n2R2
n/[p(n)− 3].

Proof. We use the above diagram and set nKX ∼ Mn + Zn, where Zn is the fixed part

of |nKX |, and set f∗n(Mn) ∼ Sn + E′
n, K

′
X ∼ f∗n(KX) + En, where En is the ramification

divisor for fn, and E
′
n is an exceptional divisor for fn. Because f∗n(KX) is nef and big, Sn

is nef, Sn ̸≈ 0, we get

R2
n = (f∗n(KX)|Sn)

2 = f∗n(KX)2.Sn ≥ 1.

Multiplying nKX ∼Mn + Zn by KX .Mn, we have

nK2
X .Mn = KX .M

2
n +KX .Mn.Zn.

Since Mn.Zn ≥ 0 as a 1-cycle, we have KX .Mn.Zn ≥ 0, and then

KX .M
2
n ≤ nK2

X .Mn = nf∗n(KX)2.Sn = nR2
n.

We have

nf∗n(KX) ∼ Sn + f∗n(Zn) + E′
n,

considering the exact sequence

0 −→ H0(X ′, f∗n(Zn) + E′
n) −→ H0(X ′, nf∗n(KX))

r−→ H0(Sn,OSn(nRn)).
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Since f∗n(Zn)+E′
n is the fixed part of |nf∗n(KX)|, we have dimC(Im r) = p(n)− 1. Since we

suppose dimΦ|nKX |(X) = 3, we have dim gn(Sn) = 2. Let D = g∗n(Hn)|Sn . Then

D2 ≥ bn(Hn|gn(Sn))
2 ≥ bn(p(n)− 3).

On the other hand, we know Rn.D = f∗n(KX).S2
n and

KX .Mn
2 = f∗n(KX).f∗n(Mn)

2

= f∗n(KX).f∗n(Mn)(Sn + E′
n)

= f∗n(KX).f∗n(Mn).Sn

= f∗n(KX).S2
n + f∗n(KX).Sn.E

′
n

= Rn.D + f∗n(KX).Sn.E
′
n,

where f∗n(KX).Sn.E
′
n ≥ 0, because Sn.E

′
n ≥ 0 as a 1-cycle. Therefore we get

Rn.D ≤ KX .M
2
n ≤ nR2

n.

Noting that Rn.D ≥ 1, on surface Sn, we have (Rn.D)2 ≥ R2
n.D

2. Thus

D2 ≤ (Rn.D)2/R2
n ≤ n2R2

n

and then bn[p(n)− 3] ≤ D2 ≤ n2R2
n and

bn ≤ n2R2
n/[p(n)− 3].

The proof is completed.

Now we can give the proof of the main result.

Theorem 3.1. Let X be a nonsingular projective 3-fold on which KX is nef and big.

Suppose that |2KX | is not composed of pencils, i.e, dimΦ|2KX |(X) ≥ 2. Then Φ|6KX | is

birational with the possible exceptions: (K3
X , χ(OX)) = (2,−1) or (4,−1).

Proof. From Lemma 3.1, we know that p(2) = 3[K3
X/6 − χ(OX)]. If (K3

X , χ(OX)) ̸=
(2,-1),(4,-1), then p(2) ≥ 6.

If dimΦ|2KX |(X) ≥ 2, we consider the following commutative diagram:

HHHHHHHHHHHHj?

-

?

X ′

X

W ′
2

W2

f2

h2

g2 s2

Φ|2KX |
−−−−−−−−−−−−−−−−−→

where f2 is a succession of blowing-ups with nonsingular centers such that g2 = Φ|2KX | ◦ f2
is a morphism, g2 = s2 ◦ h2 is the stein factorization. Let H2 be a hyperplane section of

W2 = Φ|2KX |(X) in Pp(2)−1 and S2 be a general member of |g∗2(H2)|. Since we suppose

that dimW2 ≥ 2, i.e., |g∗2(H2)| is not composed of pencils, S2 is a nonsingular irreducible

projective surface. We set 2KX ∼ N2 + Z2 where Z2 is the fixed part of |2KX |, and set

f∗2 (N2) ∼ S2 + E′
2, KX′ ∼ f∗2 (KX) + E2,
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where E2 is the ramification divisor for f2. E
′
2 is an exceptional divisor for f2.

Assume that Φ|6KX | is not birational. Let

ψ = Φ|KX′+3f∗
2 (KX)+S2|.

We shall derive a contradiction. We have the relation

6KX′ ∼ {KX′ + 3f∗2 (KX) + S2}+ 5E2 + f∗2 (Z2) + E′
2.

Thus we infer that ψ is not birational.

Claim 3.1. ψ|S2 is not birational.

Proof. Fix an effective divisor D0 ∈ |4f∗2 (KX) + E2| and a section

t0 ∈ H0(X ′,OX′(4f∗2 (KX) + E2))

which determines D0. Then there exists a nonempty Zariski open subset U of X ′ such that

U ∩D0 = ϕ and for an arbitrary point x ∈ U there exists y ∈ U distinct from x such that

ψ(x) = ψ(y). We may assume that S2 ∩ U ̸= ϕ, since S2 is a general member.

Take s ∈ H0(X ′, g∗2(H2)) so that s determines S2. For any point x ∈ S2 ∩U , there exists

y ∈ U distinct from x such that ψ(x) = ψ(y). We shall show that y is in S2. Since

t0.s ∈ H0(X ′,OX′(KX′ + 3f∗2 (KX) + S2)),

there exists a ∈ C∗ such that t0(x).s(x) = at0(y).s(y). We have D0 ∩ U = ϕ, which implies

t0(y) ̸= 0, whereas s(x) = 0, therefore s(y) = 0, i.e., y ∈ S2∩U . Thus ψ|S2
is not birational.

We have an exact sequences

0 −→ OX′(KX′ + 3f∗2 (KX))

−→ OX′(KX′ + 3f∗2 (KX) + S2)

−→ OS2(KS2 + 3R2)

−→ 0,

where R2 = f∗2 (KX)|S2 . From Proposition 3.1, we get

H1(X ′,OX′(KX′ + 3f∗2 (KX))) = 0.

Thus the homomorphism

H0(X ′,KX′ + 3f∗2 (KX) + S2) −→ H0(S2,KS2 + 3R2) −→ 0

is surjective, i.e., ψ|S2 = Φ|KS2+3R2|.

Claim 3.2. Φ|KS2
+3R2| is birational.

Proof. In order to use Lemma 2.2, we must verify the condition (∗) and that R2
2 ≥ 2.

We consider the blowing-up of X ′ at arbitrary two points x1 and x2 of S2, denoted by

θ : X ′′ −→ X ′. Let

M1 = θ−1(x1), M2 = θ−1(x2),

S′′
2 be the proper transform of S2 and

π2 = θ|S′′
2
: S′′

2 −→ S2,

the restriction of θ to S′′
2 . Then π2 is the blowing-up of S2 at x1 and x2 with the exceptional

divisors

L1 = π−1
2 (x1) =M1 ∩ S′′

2 and L2 = π−1
2 (x2) =M2 ∩ S′

2.
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We have

h0(X ′′,OX′′(3θ∗f∗2 (KX))) = h0(X ′,OX′(3f∗2 (KX)))

= h0(X,OX(3KX))

= 5[K3
X/2− χ(OX)]

≥ 15,

where (K3
X , χ(OX)) ̸= (2,−1).(4,−1), and then

h0(X
′′
,OX′′(3θ∗f∗2 (KX)− 2M1 − 2M2)) ≥ 15− 4− 4 = 7,

H0(X ′′,OX′′(3θ∗f∗2 (KX)− 2M1− 2M2)) ̸= 0.

Since

OX′′(3θ∗f∗2 (KX)− 2M1 − 2M2)|S′′
2
= OS′′

2
(3π∗

2(R2)− 2L1 − 2L2),

we have the natural restriction homomorphism

H0(X ′′,OX′′(3θ∗f∗2 (KX)− 2M1 − 2M2))
δ−→H0(S′′

2 ,OS′′
2
(3π∗

2(R2)− 2L1 − 2L2)).

We claim that δ is not a zero homomorphism, otherwise we have

S′′
2 ⊂ Bs|3θ∗f∗2 (KX)− 2M1 − 2M2|,

and then h0(X ′′,OX′′(S′′
2 )) = 1. On the other hand,

h0(X ′′,OX′′(S′′
2 )) = h0(X ′′,OX′′(θ∗g∗2(H2)−M1 −M2))

≥ h0(W2, H2)− 1− 1 = p(2)− 1− 1

≥ 6− 2 = 4.

This is impossible. Thus δ is not a zero homomorphism. Then |3π∗(R2) − 2L1 − 2L2| is
nonempty and condition (∗) is satisfied.

In the next we shall show that R2
2 ≥ 2. On the contrary, assuming that R2

2 = 1, we shall

derive a contradiction.

Multiplying 2KX ∼ N2 + Z2 by KX .N2, we have

2K2
X .N2 = KX .N

2
2 +KX .N2.Z2.

Noting that K2
X .N2 = f∗2 (KX)2.S2 = R2

2 = 1, we have

KX .N
2
2 +KX .N2.Z2 = 2.

Since |S2| is not composed of pencils, f∗2 (KX) is nef and big and since S2 is nef, S2 ̸≈ 0,

we have

KX .N
2
2 = f∗2 (KX).f∗2 (N2)

2

= f∗2 (KX).f∗2 (N2).(S2 + E′
2)

= f∗2 (KX).f∗2 (N2).S2

= f∗2 (KX).S2
2 + f∗2 (KX).S2.E

′
2

≥ 1.

Because KX .N
2
2 is even by Lemma 3.1(i) and KX .N2.Z2 ≥ 0, we conclude that KX .N

2
2 =

2,KX .N2.Z2 = 0. Since

2 = KX .N
2
2 = f∗2 (KX).S2

2 + f∗2 (KX).S2.E
′
2,
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and f∗2 (KX).S2
2 ≥ 1 and since

f∗2 (KX).S2.E
′
2 ≥ 0,

we have the following two cases:

(I) f∗2 (KX).S2
2 = 1 and f∗2 (KX).S2.E

′
2 = 1;

(II) f∗2 (KX).S2
2 = 2 and f∗2 (KX).S2.E

′
2 = 0.

We consider an exact sequence

0 −→ H0(X ′,OX′(f∗2 (Z2) + E′
2))

−→ H0(X ′,OX′(2f∗2 (KX))
r−→ H0(S2,OS2(2R2)).

Since f∗2 (Z2) + E′
2 is the fixed part of |2f∗2 (KX)|, we have

dimC(Im r) = p(2)− 1 ≥ 5.

Case 1. dimg2(S2) = 1. Let

a2 = g2(S2).H2 ≥ p(2)− 2 ≥ 4, D2 = g∗2(H2)|S2 .

Then D ≈ a2F , where F is a general fiber of g2|S2
. Thus

R2.D = a2R2.F ≥ a2 ≥ 4.

On the other hand, R2.D = f∗2 (KX).S2
2 = 1 or 2 in (I) or (II). This is a contradiction.

Case 2. dimg2(S2) = 2. In this case, Φ|2KX | is generically finite. From Proposition 3.3,

we have

b2 ≤ 4R2
2

[p(2)− 3]
≤ 4

3
,

and then b2 = 1, that is to say, Φ|2KX | is birational and then Φ|6KX | is birational too. This

contradicts our assumption. Thus we have proved that R2
2 ≥ 2 and Claim 3.2 is proved.

Claim 3.1 and Claim 3.2 contradict each other. Thus Φ|6KX | is birational.

Theorem 3.2. Let X be a nonsingular projective 3-fold on which KX is nef and big.

Suppose that pg ≥ 2 and that |2KX | is not composed of pencils. Then Φ|6KX | is birational.

Proof. For the most part, the proof of Theorem 3.1 can be paralleled and we need to

show that R2
2 ≥ 2.

Let KX ∼M1 + Z1, where Z1 is the fixed part of |KX |, M1 is the moving part. Because

pg = h0(X,KX) ≥ 2, 2M1 is moving. Let 2KX ∼ M2 + Z2, where Z2 is the fixed part, M2

is the moving one. We can write M2 ∼ 2M1 +D, D is effective.

R2
2 = K2

X .M2 ≥ 2K2
X .M1 ≥ 2.

Thus we complete the proof.

Remark 3.1. K2
X .M1 ≥ 1 can be obtained after studying the canonical map of X.

From the proof of Theorem 3.1, we know that the key point is to show that R2
2 ≥ 2. We

keep the notations as in above and let 2KX ∼ M2 + Z2, where M2 is the moving part, Z2

is the fixed part of |2KX |. We can get the following corollary.

Corollary 3.1. Let X be a nonsingular projective 3-fold on which KX is nef and big.

Assume that |2KX | is not composed of pencils and Φ|6KX | is not birational, then K
2
X .M2 = 1.

I will thank both Professor Y. Kawamata and Professor K. Matsuki. I am grateful to

Professor He Fenglai, the dean of my department, who always gives me much encouragement.
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