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THE GAUSS MAP OF SUBMANIFOLDS

IN SPACES OF CONSTANT CURVATURE
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Abstract

This paper studies the Gauss map of submanifolds in space forms defined by Willmore and

Saleemi. By using Morse functions, it is proved that the degree of Gauss map is the Euler
number of the submanifold. The tight immersions are also studied.
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§1. Preliminaries

Let N(ε) be the space form of constant curvature ε with dimension n. If ε > 0, N(ε) is

isometric to a sphere Sn(1/ε) of radius 1/
√
ε in Euclidean space Rn+1. If ε < 0, then N(ε)

is isometric to a hyperbolic space Hn(1/ε) imbedded as a hypersurface in Lorentz space

Rn+1
−1 with inner product ⟨ , ⟩−1 (see [5], p.101). In what follows we identify space N(ε)

with Sn(1/ε) or Hn(1/ε) according to ε > 0 or ε < 0. We also call −q the antipodal point

of q ∈ Hn(1/ε). Note that −q /∈ Hn(1/ε). Denote ⟨ , ⟩ >sgnε by ⟨ , ⟩ε and Rn+1
sgnε by Rn+1

ε ,

where ⟨ , ⟩+1 is the Euclidean inner product on Rn+1
+1 = Rn+1.

Lemma 1.1. Let p, q be two points of N(ε) ⊂ Rn+1
ε which are not antipodal points. Then

the parallel displacement of Xp ∈ TpN(ε) along the geodesic γ from p to q is given by

Xp −
ε⟨Xp, q⟩ε
1 + ε⟨p, q⟩ε

(p+ q).

Proof. Set

a =
q − ε⟨p, q⟩εp√

1
ε − ε⟨p, q⟩2ε

, b =
−p+ ε⟨p, q⟩εq√

1
ε − ε⟨p, q⟩2ε

.

The vectors a and b are parallel to the 2-plane of Rn+1
ε determined by o, p and q and the

parallel displacement of a along γ to the point q is b. It is easy to verify that the vector

Xp − ⟨Xp, a⟩εa is tangent to N(ε) at every point of γ and normal to γ, hence parallel along

γ. Then the parallel displacement of Xp along γ to q is

Xp − ⟨Xp, a⟩εa+ ⟨Xp, a⟩εb.
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Let q ∈ N(ε). We define coordinates on N(ε) − {−q} by stereographic projection φ :

Sn(1/ε)− {−q} −→ Rn, or φ : Hn(1/ε) −→ Dn, where

Dn =
{
x ∈ Rn|⟨x, x⟩ < 1

|ε|

}
.

We can assume q =
(
o, 1√

|ε|

)
in some Euclidean (or Lorentz) coordinates of Rn+1

ε . Then the

metric of N(ε) is

ds2 = dφ−1 · dφ−1 =
4
∑

(dyi)2

(1 + ε|y|2)2
.

Lemma 1.2. Let Yp be a tangent vector at x = φ(p) ∈ Rn(Dn). Then parallel displace-

ment of Yp along the geodesic from x to o = φ(q) is

1

1 + ε|x|2
Yp.

Proof. Let ωi = 2dyi

1+ε|y|2 , ei = 1
2 (1 + ε|y|2) ∂

∂yi , i = 1, 2, · · · , n. Then {ei} is an

orthogonal frame field and parellel along any geodesic which is through the point o = φ(q).

§2. Volume of Gauss Map gq

Let f : M −→ N(ε) be an immersion of a compact manifold M in the space form N(ε),

dimM = m. Denote by B(M) the unit normal bundle of M and Sn−1
q the unit sphere in

TqN(ε), q ∈ N(ε). We assume that M is oriented for convenience.

Definition 2.1. Let q be a point of N(ε) and −q /∈ f(M). The Gauss map of B(M)

based at point q is a map gq : B(M) −→ Sn−1
q , for any (p, v) ∈ B(M), gq(p, v) is the

parallel displacement of v along the shortest geodesic joining f(p) to q (see [9]).

Unless otherwise stated, we agree on the following arranges of the indices:

1 ≤ A,B, · · · ≤ n; 1 ≤ i, j, · · · ≤ m; m+ 1 ≤ α, β, · · · ≤ n.

Let e1, · · · , em, em+1, · · · , en be local field of orthogonal frames on N(ε) such that, restricted

to M , e1, · · · , em are tangent to M and the orientations determined by e1, · · · , em and

e1, · · · , en, f are consistent with those of M and Rn+1
ε respectively. Associated with frames

there are 1-forms ωi, ωB
A such that

df =
∑
i

ωiei,

dei =
∑
j

ωj
i ej +

∑
α

ωα
i eα − εωif,

deα =
∑
i

ωi
αei +

∑
β

ωβ
αeβ .

Let dv = dV ∧ dσ be the volume element of B(M), where dV and dσ are the volume

elements of M and fibres of B(M) respectively. Let ωα
i =

∑
Aα

ijω
j , Aα

ij = Aα
ji. Then

Π =
∑

Aα
ijω

iωj ⊗ eα is the second fundamental form of f .

Let dµ be the volume element of unit sphere Sn−1
q . Now we compute g∗qdµ. Fixed an

element (p, v) ∈ B(M), v =
∑

vαeα,
∑

vα
2

= 1, we choose local field of orthogonal frames

e′1, · · · , e′n such that e′i = ei, e
′
n = v at (p, v). The parallel displacement of them to q form
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an oriented orthogonal basis of TqN(ε); the image of e′A are also denoted by gq(e
′
A). Then

we have g∗qdµ = ω̄1 ∧ · · · ∧ ω̄n−1, where ω̄A = ⟨dgq(p, v), gq(e′A)⟩ε. Since the restriction of gq

in a fibre of B(M) is an isometry, dσ = ω̄m+1 ∧ · · · ∧ ω̄n−1. As ⟨gq(eα), gq(ei)⟩ = 0,

ω̄i =
∑
α

vα
[
ωi
α − d

(
ε⟨eα, q⟩ε

1 + ε⟨f, q⟩ε

)
⟨q, ei⟩ε

− ε⟨eα, q⟩ε
1 + ε⟨f(p), q⟩ε

⟨df, ei⟩ε

− ε⟨ei, q⟩ε
1 + ε⟨f(p), q⟩ε

⟨deα, f(p) + q⟩ε

+ 2d

(
ε⟨eα, q⟩ε

1 + ε⟨f, q⟩ε

)
⟨ei, q⟩ε

+
ε2⟨eα, q⟩ε⟨ei, q⟩ε
(1 + ε⟨f(p), q⟩ε)2

⟨df, q⟩ε
]

=
∑
α

vα
[
ωi
α − ε⟨eα, q⟩εωi

1 + ε⟨f(p), q⟩ε

]
.

Thus we have proved the following proposition.

Proposition 2.1. g∗qdµ = (−1)m det

(∑
α

vα
(
Aα

ij + δij
ε⟨eα, q⟩ε

1 + ε⟨f(p), q⟩ε

))
dv.

Similar to the case of immersed manifolds in Euclidean space, we call G(p, v, q) defined

by g∗qdµ = G(p, v, q)dv the Lipschitz-Killing curvature.

Corollary 2.1. The point (p, v) of B(M) is a critical point of Gauss map gq if and only

if the Lipschitz-Killing curvature is zero at (p, v).

Define function hv : M −→ R by

hv(p) =
⟨f(p), v⟩ε

1 + ε⟨f(p), q⟩ε
, p ∈ M, v ∈ Sn−1

q .

Lemma 2.1. If v is not in the image of the set of critical points of Gauss map gq, hv is

a Morse function on M .

Proof.

dhv =
1

1 + ε⟨f, q⟩ε

∑
i

ωi⟨v, ei −
ε⟨ei, q⟩ε

1 + ε⟨f, q⟩ε
(f + q)⟩ε

=
1

1 + ε⟨f, q⟩ε

∑
i

ωi⟨ei, v −
ε⟨v, f⟩ε

1 + ε⟨f, q⟩ε
(f + q)⟩ε.

Hence p is a critical point of hv if and only if the parallel displacement of v to f(p) is normal

to the tangent space TpM .

In what follows we assume that p is a critical point of hv. Then we can write

v − ε⟨f, v⟩ε
1 + ε⟨f(p), q⟩ε

(f(p) + q) =
∑

vαeα,∑
(vα)2 = 1.



174 CHIN. ANN. OF MATH. Vol.16 Ser.B

From

(d2hv)p =
1

1 + ε⟨f(p), q⟩ε

[
⟨d(

∑
ωiei), v⟩ε −

ε⟨f(p), v⟩ε
1 + ε⟨f(p), q⟩ε

⟨d(
∑

ωiei), q⟩ε
]

=

∑
ωiωα

i

1 + ε⟨f(p), q⟩ε
⟨eα,

∑
vαeα⟩ε −

ε
∑

ωiωi⟨f, v⟩ε
(1 + ε < ⟨f(p), q⟩ε)2

,

and

⟨
∑

vαeα, q⟩ε = −⟨f(p), v⟩ε,

we know that the Hessian determinant of d2hv at p is[
−1

(1 + ε⟨f(p), q⟩ε

]m
G(p,

∑
vαeα, q).

By Sard theorem, hv is Morse function for almost every point of Sn−1
q .

We call

τ(M,f, q) =
1

c(n− 1)

∫
B(M)

|G(p, v, q)|dv

the total absolute curvature of f . Let τ(M,f) be the total absolute curvature of M in

Rn(Dn) with flat metric defined by Chern and Lashof. By Lemma 1.2 we have (see also [7])

Lemma 2.2. Let f : M −→ N(ε) be an immersion, the image of q ∈ N(ε) under the

stereographic projection be the origin of Rn(Dn). Then we have τ(M,f, q) = τ(M,f).

Theorem 2.1. The degree of Gauss map is the Euler-Poincaré number χ(M).

Proof. Let hv be a Morse functions defined above and p1, · · · , pr, · · · , pk be its critical

points, where the indices of p1, · · · , pr are odd and the indices of pr+1, · · · , pk are even.

Then

χ(M) = k − 2r

is independent of v. Denote by vj the parallel displacement of v to pj , j = 1, · · · , k. From

g∗qdµ = G(p, v, q)dv, we know that the Gauss map preserves the orientation in a neighbor-

hood of (pj , vj) in B(M) if and only if G(pj , vj , q) > 0. Hence we have proved that there is

a neighborhood of v in Sn−1
q in which the degree of gq is χ(M) ([4], §13,14).

From this theorem we have

τ(M,f, q) =
2

c(n− 1)

∫
G>0

G(p, v, q)dv − χ(M)

= χ(M)− 2

c(n− 1)

∫
G<0

G(p, v, q)dv.

Since every Morse function hv has at least two critical points with index 0 or m, we have

τ(M,f, q) ≥ 4− χ(M) for M being even dimensional.

Theorem 2.2. If f : M −→ N(ε) is an embedding of a compact even dimensional

manifold, q ∈ N(ε), then τ(M,f, q) = 4−χ(M) if and only if for every point (p, v) of B(M)

such that G(p, v, q) > 0, f(M) lies in one side of the hypersurface of N(ε) defined by the

hyperplane of Rn+1
ε :

⟨v′, x⟩ε
1 + ε⟨x, q⟩ε

=
⟨v′, f(p)⟩ε

1 + ε⟨f(p), q⟩ε
, x ∈ Rn+1

ε ,

where v′ = gq(p, v).
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Proof. This is a generalization of Theorem 3 of [3,I]. As

τ(M,f, q) = 4− χ(M) if and only if
1

c(n− 1)

∫
G>0

G(p, v, q)dv = 2,

the number of critical points of even index of any Morse function hv′ is exactly two. If

this is the case, f(M) lies between the two hypersurfaces of N(ε) determined by hv′ at the

maximum and minimum. Note that the point −q is on these hyperplanes.

§3. Tight Immersion

In this section we discuss the conditions for τ(M,f, q) to be minimum and independent

of q. The proof of the following theorem is a combination of Lemma 2.2 of this paper and

the Chern-Lashof Theorem[3].

Theorem 3.1. Let f : M −→ N(ε) be an immersion of a compact manifold M . If there

are m + 4 points qi of N(ε) which do not lie is any (m + 2)-plane of Rn+1
ε , τ(M,f, qi) =

2, i = 1, 2, · · · ,m + 4, then f is an embedding and f(M) is a geodesic sphere of N(ε).

Furthermore we have τ(M,f, q) = 2 for every point q ∈ N(ε),−q /∈ f(M).

Denote

γ(M) = min
{∑

i

ci(h)|h is a Morse function on M
}
,

where ci(h) is the number of critical points of h with index i.

Definition 3.1 An immersion f : M −→ N(ε) of a compact manifold M is called tight

if τ(M,f, q) = γ(M) for every q ∈ N(ε),−q /∈ f(M).

Let P be a subspace of constant curvature of N(ε) of dimension n − 1, the sign of the

sectional curvature of P be the same as that of N(ε). We know that P can be viewed as the

intersection of N(ε) with some affine plane of Rn+1
ε which is through the antipodal points

of N(ε). Let H be a closed half-space of N(ε) defined by P .

Theorem 3.2. Let M be a compact manifold such that

γ(M) =
∑

bk(M,Z2),

where bk(M,Z2) is the k-th Betti number of M in field Z2. The immersion f is tight if and

only if for every closed halfspace H, the induced homomorphism

H∗(f
−1H) −→ H∗(M)

in Cech homology with Z2 coefficients is injective.

Proof. Kuiper[6] proved this theorem for Euclidean cases. The general case follows from

Lemma 2.2 and the construction of the stereographic projection of N(ε).

By this theorem and the results of [2], [6] about the tightness and the tautness of immer-

sion f : M −→ Sn, we have (see [2], p. 114-115)

Proposition 3.1. The immersion f : M −→ Sn(1/ε) is tight (in the sense here) if and

only if f is a tight map of M in Euclidean space Rn+1 ⊃ Sn(1/ε).

Hence we have many examples of tight immersions of Sn(1/ε). In particular, if f : Sm −→
Sn(1/ε) is tigh, then f(Sm) is a metric sphere in Sn(1/ε).

Proposition 3.2. Let M be a compact manifold with γ(M) =
∑

bk(M,Z2). An immer-

sion f : M −→ Hn(1/ε) is tight if the immersion f : M −→ N(1/ε) ⊂ Rn+1
−1 of M in Rn+1

−1

with the natural Euclidean metric is tight.
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By Theorem 3.1, we know that the conditions of this proposition are also necessary for

M = Sm and n > m + 1. But they are not necessary for n = m + 1. For example, let

M be a metric circle in H2(−1), by a slight deformation of M such that the conditions of

Theorem 3.2 still hold, one can get a curve M ′ in H2(−1) which is not a metric circle. M ′

is a tight submanifold of H2(−1) but not tight in R3
−1. If we regard H2(−1) as a subspace

of Hn(−1) naturally (n > 2), M ′ is not a tight submanifold of Hn(−1) by Theorem 3.1.
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