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Abstract

The author studies the stabilization for the unitary groups over polynomial rings and obtains
for them some results analogous to the results of linear groups and symplectic groups. It is
especially proved that K1U(A) = K1U(R) where A = R[X1,---,Xm], R is a ring of algebraic
integers in a quadratic field Q(+v/d).
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§1. Introduction

In this article we study the stabilization for the unitary groups over polynomial rings and
obtain for them some results analogous to the results of [6] on linear groups, and of [4] and
[3] on symplectic groups. The patching method used here is different from [6], [7] and [4].

We assume that an involution * is defined on a commutative ring R with 1. The involution
* also determines an involution on the ring M, R of all n by n matrices (a;;) by (a:;)* = (a};).

Set ¢, = <_OI I(,;) and

UsnR=1{0 € GLyp R : 0¢,0" = ¢, }
= {(: ?) € GLo, R; 6™ — By* = 1,af" = Ba*,v6" = 57*}.

If 0 € Us, R, then 0~ = ¢,,0% ¢ .

Denote by C the set of elements in R such that r* = r, and C,, the set of matrices in
M, R such that (a;;) = (a;;)*. In this paper we assume that the involution * defined on R
satisfies:

(A) for every maximal ideal M of R, the element u in S~'R/rad(S~!R) such that u = u*
has an inverse image in S™1C, where S = R\ M.

Examples (1) If 2 is invertible, any involution * on R satisfies (A), since the subfield
of F = S71R/rad(S™!'R) with charF # 2 generated by ff* (f € F) is equal to C = {h €
Fih=h*).

(2) If ST R/rad(S™!R) is a finite field, the involution * on R satisfies (A).
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(3) If R is a ring of algebraic integers in a quadratic field Q(v/d) where Q is the field of
rational numbers, d is an integer not divisible by the square of any prime, the involution
on R satisfies (A).

For a polynomial ring A = R[X7,---, X;], we define X} = X; for all X;.

Set ck=k+nif k<n,ck=k—nifk>n. For a € A, define

Iop +ab;j —a*Eyjsi, 1#j<norn+1<i#j;
pij(a) =< Ion +aFij+a*Eyjqi, i#o0j;i<nn+1<jorn+1<i,j<n
Ioy, + aF; 44, a=a*;
where E;; denotes the matrix with 1 at the position (4, j) and zeros elsewhere.

Denote by EUs, A the subgroup generated by p;;(a) (elementary matrices) and EUspq
the subgroup of EUs, A generated by p;;(a) € Ua,q where ¢ is an involutory ideal (¢ = ¢*)
of A. The normal subgroup of EUs, A generated by EUs,q is denoted by EUs,(A4,q). We
set Uspq = Uy AN GLopq = ker(Usy A — Uspy A/q).

For any n we have a canonical imbedding 1) : Us,, A — Us, 12 A defined by

04100420

ap az\ 9 0O 1 0 O
a= -
az Oy az 0 ag O

0 0 0 1
Clearly, there are similar imbeddings for EUs, A, EUs,q, and EUs,(A,q). Put U(A) =
hin Uan A, EU(A) = hin EUs, A. Then we have the following equations (see [2]):

EU(A) = [EU(A), EU(A)] = [U(A),U(A)], EU(A,q) = [EU(A), EU(q)] = [U(A), U(q)]-

Define K1U(A) = U(A)/EU(A) which is an abelian group. In this paper we use Umsg, A
to denote the set of first row (or column) of unitary matrices. For a v € A%", we denote
v*¢,, by U, and the ideal generated by the coordinates of v by o(v). Set

o B « is an upper triangular matrix with 1 on the
TUgn—{< ) Lo € C,, }

= o

diagonal

TLs, = { (: o > sy € Cp,a is a lower triangular matrix with 1 on the diagonal} .

D = {diag(dy, - ,dzn) : di = d3, for all i}.

Let W denote the subgroup consisting of the permutation matrices which are in EUs, A,
and TW = WD = DW. Let ¢ denote the matrix diag(X,--- , X, 1,---,1).

As usual, if S C A is a multiplicative subset consisting of the powers of a fixed element
s or being the complement of a maximal ideal M of A, we use Ag (resp. Aps) instead of
S~LA. If the element is not a zero divisor, we often identify the matrix 8 € M, (A) with
Bs. We put ¢pg : A — Ag for the canonical homomorphism. ¢g induces homomorphism
between the various groups Us, A and Us, Ag, EUs, A and EUs, Ag.

We call a ring R locally principal if for every maximal ideal M of R the localization Ry,
is a principal ideal ring (see [3]). For example, every Dedekind ring is locally principal. Note
that a locally principal ring has Krull dimension 1.

Our main results are:



No.2 You, H. STABILIZATION OF UNITARY GROUPS OVER POLYNOMIAL RINGS 179

Theorem 1.1. Let R be a Noetherian ring, A = R[X1,---,X;,]. Assume that the
involution defined on A satisfies (A). Then the canonical mapping Usp A/ EUzpn A — K U(A)
is an isomorphism for n > max(3,dimR + 2).

Corollary 1.1. With the conditions of Theorem 1.1, suppose that q is an involutory ideal
of R, B = q[X1,--+,X.]. Then the canonical mapping Us, B/EUs, (A, B) — K U(A, B)

is an isomorphism for n > max(3,dimR + 2).
The proof of Corollary 1.1 is just the same as Corollaries 7.9 and 2.13 in [7].

Theorem 1.2. Let R be a locally principal ring and A = R[Xy,--+ , X,,]. Assume that
the involution defined on A satisfies (A). Then Usy A = Usy R - EUs, A for all n > 3.
Corollary 1.2. With the conditions of Theorem 1.2, we have

UsnA/EUsp A = Uz R/EUsy, R

for all n > 3. So in limit we have K1U(A) = K1U(R).

Corollary 1.3. For a ring of algebraic integers in a quadratic field Q(\/&), we have
UsnAJEUspnA = Usy R/EUs R for all n > 3, and K 1U(A) = K1U(R).

§2. Elementary Unitary Matrices

Lemma 2.1. The following identities hold:

(1) pij(a+b) = pij(a)pi;(b);

(2) [pij(a), pir(b)] = pir(ab) when i,j,k,0t, 04,0k are all distinct;

(3) [pij(a); pjoi(b)] = pi,oi(ab + b*a*) when j # oi;

(4) [pij(a), pjoi(D)] = pioj(ab)pisi(c) when j # oi, where b € C and ¢ = aba* when
h,j<norn+1<i,j;c=—aba* when j<n<iori<n<j.

Lemma 2.2. Assume that n > 3, v,w € A" and w*v = 0. Then I, + vw* € E, A (see
[6]).

Lemma 2.3. Assume thatn > 3, v* = (0,v3) € Umap, A. Then Iz, + v —wv € EUs, A
where wv = ww = 0.

Proof. I, + vw — wv has the form

I —wyv3 0 . w1
( . I+ vgwf) (write w as (w2 ).

It is easy to show that the above matrix lies in EUs, A by Lemma 2.2.
Lemma 2.4. Assume that n >3, r € A, and g is an elementary matriz. Then
(1) gpij(Ar?)g=! € EUs,(Ar + Ar*) where j # oi;

(2) gpi.oi(r2Cr**)g™1 € EUsy(Ar + Ar*).

Proof. Except for the following two cases, the conclusion is easily derived from Lemma
2.1:

Case 1. p = p;;j(ar?), g = pji(b), where j # oi;
2
Case 2. p = p; 5i(r?er*’), g = poii(b).

We will consider Case 2 only, the other case is similar. Suppose 1 < i < n. Taking j # o1
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such that n + 1 < 7, we have
pai,i(b)pi,ai(TZCr*2)pai,i(_b)
=Pai,i(0)pij (—12¢1™) poii(=b) - [poi,i(0)Pisoj (1) poii(—b), oii(D)Poj i (rer™) poii(—b)]
:pij(*’I"QCT*)pgjvi(’l’QC*T*b)pUj,j(*TC*T*2I)T2C’I’*)'
[0i,05 (1) Poiaj (=br") pj.oj (1br™), paj j(rer™)] € EUsy(Ar + Ar®).

Remark 2.1. (1) In Lemma 2.4, if r € C, then gp;;(Ar?)g™1, gpi’m‘(TQCrﬁ)g_l lie in
EUs,, (Ar).

(2) If r € C, the condition n > 3 can be weakened to n > 2.

Proposition 2.1. If g is an involutory ideal of A and n > 3, then EUs, (A, q) is a normal
subgroup of Uz, A(see [9]).

Lemma 2.5.18! Assume that A is a commutative ring whose spectrum of mazimal ideal
is a Noetherian topological space of dimension < d (i.e. A Noetherian and dimA < d). Then

(a) if n > d+ 2, EUs, A acts transitively on the set of hyperbolic pair {v,w} (vw = 1,
vv = ww = 0), and hence the canonical homomorphism Usy,_o A — K U(A) is surjective;

(b) if n > d + 2, the canonical homomorphism Us, A/EUs, A — K U(A) is an isomor-
phism.

Lemma 2.6. Assume that A C B C R is a tower of rings and A is a retract in R. Then
Usn AN EUy, R = EUy, A and (Usy A - EUy, B) N EUs, R = EUS, B.

§3. Unitary Analogues of Quillen-Suslin Theorem

In this section, we want to prove

Theorem 3.1. Suppose that n, k are positive integers, n > 2, and B € My, 1 (R[X]). For
B there exists oo € EUs, (R[X]) such that af € May, 1 (R) if and only if there exists for any
M € max(R) a matriz v € EUsgy, (R [X]) such that ¥By € Moy i (Rar)-

To prove Theorem 3.1, we need the following lemmas.

Lemma 3.1. Assume that a € R, o, € Moy, 1 (R[X,Y, Z]), where ag = B, and o =
mod Z. Then there exists a natural number N such that a«(X,Y,a™Z) = (X,Y,a™Z) for
all m > N (see [6]).

Lemma 3.2. Assume that n > 3, a € C, f € R,[Z], v € EUspR,. Put o(Z) =
fypij(Zf)'y_l, when oj =i, f € C. Then there exists a natural number N and a matric
T € EUs,(R[Z], ZR[Z]) such that o(a™Z) = 71, for allm > N.

Proof. Suppose that v € EUs,, R, can be written as a product of k£ elementary ma-
trices. Let us consider U(a4ka) = ’ypij(a‘lka)v_l. By Proposition 2.1, U(a4ka) €
EUs,(Re|Z), ZR4[Z)). By Lemma 2.4, we have o(a'" Zf) € EUsy(aR4[Z)). So o(a®" Zf) €
EUs,(R4[Z], ZRo[Z]) N EUsp(aRy[Z]). Therefore U(a4k Zf) is a product of a finite num-
ber of elementary matrices which have the form p;;(ar;;) or p;j(aZfr;;). Writing r;; as
ri;/aP and f; = fj/aP (fi is the coefficient of the terms of f). Then we have a(a4k2pi) €
¢s(EUan(R[Z], ZR[Z]) where S = {a' : i > 1}, i.e., there exists 7 € EUs,(R[Z], ZR[Z])
such that 7, = o(a™Zf), where m > 4k2p = 22k+1p

Lemma 3.3. Suppose that a € C, n, k are natural numbers, n > 2, and § € Ma, ,(R[X]).
Assume that there exists o € EUay, (Ry[X]) such that af, € Map xRo. Then there exists a
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natural number m such that when b = ¢ mod a™ there exists v € EUs,(R[X], X R[X]) for
which v8(bX) = B(cX) (see [T, p.2677] or [6, p.227]).

Remark 3.1. In Lemmas 3.2 and 3.3, if a ¢ C but a € R, we can replace a by
aa* in o(a™Z) and b = ¢ mod a™ respectively, i.e., for Lemma 3.2, there exists 7 €
EUs,,(R[Z], ZR[Z]) such that o((aa*)™Z) = 7,, and for Lemma 3.3 when b = ¢ mod (aa*)™
there exists v € EUs, (R[X], X R[X]) for which v38(bX) = B(cX).

Lemma 3.4. Suppose that n, k are natural numbers, n > 2, € Ma, ,(R[X]), a1,a2 € C
or at least one of ay,as lies in C such that aiR + aaR = R. Assume that there exist
a; € EUsp(Ry,[X]) such that a;fq, € Mapk(Ra,). If now o = ayae € EUy,(R[X]), then
Oéﬁ S Mgn)k(R).

Proof. We prove that for a; € C, az € R. By Lemma 3.3 and Remark 3.1, we can find
a natural number m satisfying the requirement for a; and agaj. Since a1b + aqd = 1 for
some b,d € R, aib* +asd* = 1,80 a1 R+ (a1a3)R = R, a"R + (aga3)™ R = R. There exists
¢ € R such that ¢ =1 mod af* and ¢ = 0 mod (aza’)™. By construction, there exist ay
and ag € EUs,(R[X]) such that an 8(X) = B(cX) and az8(cX) = B(0) € M, 1 (R). Let
a = asay. We are done.

Corollary 3.1. Ifn > 2 and f € May, x(R[X]), the set I(B) = {a € C: there exists
a € EUsp,(Rq[X]) such that af, € Moy, xR} is an ideal of C.

The proof depends on Lemma 3.4 (see [7, p.2678]).

Proof of Theorem 3.1. Necessity of the condition is obvious. If the condition holds,
the set SN C is nonempty where S C R\M for a maximal ideal of R. In fact, if a € S, then
either aa™ or a + a* lies in S N C. By Corollary 3.1, I(3) is an ideal of C, but it cannot be
contained in any maximal ideal of R, and cannot be contained in any maximal ideal of C
too, so 1 € I(f) and hence there exists a € EUs, (R[X]) such that af € Ma, ,R.

Corollary 3.2. Assume that n > 2, f € Usn(R[X]). If for each M € max(R) we
have By € Uan(Rar) - EUsn (R [X]), then B € Uy R - EUsy (R[X]), and if we also have
B(0) € EUa, R, then 8 € EUs,(R[X]) (see 7, p.2676]).

Corollary 3.3. Assume that n > 2, v* € Uma,(R[X1, -, Xm]). Then there is 8 €
EUs, (R[X1,- -+, X,]) such that (Bv)t € Uma, R if and only if for each M € max(R) there
is By € BEUsy (Rp[X1, -+, X)) such that (Bav)t € Uman Ry

Proof. The proof follows by induction on m, also follows the same line of argument as
in Lemmas 3.5 and 3.6 in [3].

Corollary 3.4. Assume that n > 2, 8 € Usp(R[Xq, -+, X, (X1, , X)) where
(X1, ,Xm) denotes the ideal generated by X1, , X,,. Then 8 € EUsy,(R[ X1, -+, X))
if and only if the image of B in Usp(Rar[X1, -+, Xm]) lies in EUsy(Rpy[ X1, -+, X)) for
every mazimal ideal M of R.

Lemma 3.5. Suppose that a € C, b € R such that Ra+ Rb = R, and take oo € EUsp Rap.
Then there exist vy € EUsy Ry and ag € EUsp R, such that a = (aq)q - (a2)p.

Proof. By this condition, the lemma can be proved on the same line of argument as in
[3, Lemma 3.7].
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§¢4. Preliminary Results

Lemma 4.1. Let f € R[X, X ']. For p;;(f), we have
pij(f) ifl<i#j<n,
Spij(f)o =13 pij(Xf ifl<i<nn+1<j<2n,
pii(X71f) ifn+1<i<2n,1<j<n.
Lemma 4.2. Let o € EUs,(R[X]) N Us, (R[X], XR[X]). Then
sad™t, 6 ad € EUs, (R[X]).

Proof. We prove only the first conclusion, as the second is similar. Let

m

a= H Pik) k) (ar + X fr),
k=1

p
where ax € R and f, € R[X], and v, = [ pitr),jk)(ax). Then v, = Is,, and a can be
k=1
expressed in the form [T vrpic),j(r) (ka)yk_l.
k=1

It is sufficient to show the conclusion in the case when a = yp;;(X f)y~!. Let v = (51 )
2

w1y
w2
o = 6(Vpik),jk) (X f)y~1)6~ ! has the form

and w = denote the ith and ojth columns of the matrix « respectively. Thus

XUl le X’LUl X’U1 XUl XUl
o ()00 )= O )0 ) o s (31)0000)
Since p;.0i(b)(b € C) = pi0j(—b)[pij (1), pj.0;(b)], we can only consider this for p;;(X f)
where j # oi. If X = 0, by Lemma 2.3 ¢ lies in EUs,R. By Corollary 3.2, we can
restrict ourselves to the case of local ring R. If o(vg) = R or o(w2) = R, our assertion

follows from Lemma 2.3 by conjugating o by a series of elementary matrices p;;(r) for which
8pij(r)6~1 = pij(r) or p;j(Xr) to make Xv; or Xw; equal zero. If o(vg), o(ws2) # R, then

obviously there exists a column u = (31 > of the matrix whose column index differs from 1
2

and oj such that o(ugz) = R. By Lemma 2.1, we have

(e (o)) - (i) )

Since o(wy + uz) = R, the above two factors both lie in EUs, (R[X]).

Corollary 4.1. Ifn > 3, B € EUs,(R[X]), and 636! € EUs,(R[X]) (resp. 67136 €
Uan(R[X]), then §85~1 € EUs,(R[X]) (resp. §71B8 € Uan(R[X])).

Proof. It suffices to consider the matrix §36~!. Write 3 in the form 318y where 3, €

EUy, R is the free term of 3. By Lemma 4.2 6520~ ! € EUs,(R[X]), and the hypothesis

54671 € Uz, (R[X]) means that 31 has the form (CE)I oz?:21> . Now we have (see Lemma
1
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4.1)

wﬁ1:<? é%):m(% @%gwﬁeE%MMM)

From now on, we assume that R is a local ring (unless it is stated otherwise) with maximal
ideal M and residue field k, and ¢ denotes the map: R — k.

Lemma 4.3. If v € Uy, M, then there exist a € TUz, M and o € T Lo, M such that
avya' € D(M).

Proof. Write v in the form (311 312) , where 7;; are n by n matrices. By the hy-
21 V22

pothesis, vo2 = I,, mod M, v99 € GL, M. Since Y1745 € Cp, we have

L, —m2y I, 0\ _ . -
( O In ’y _,72721 721 In - dlag(uﬂ u )

where u € GL, M. Then the conclusion follows from Lemma 6.1 of [7].

Corollary 4.2. Uy, M C D(M) - EUs, (R, M).

Lemma 4.4. GL,R=U-TW -U - E,(R, M) where U denotes the subgroup of GL,R
consisting of upper triangular matrices with 1 on the diagonal, TW = WD, W is the
subgroup generated by permutation matrices, D = diag(dy,--- ,d,) (see Lemma 4.3 in [6]).

Lemma 4.5. Uy, R =TU, R-TW -TU3, R - EUs, (R, M).
a1 Qo

Proof. We will prove this by induction on n. Let n = 1, a = (a o
3 Q4

) € U3R. If

a3z € R*, then —alagl e C, —a§1a4 € C. We have

1 —aaz! e —aztas\ _ (0 —a3
1 1 Q3 0

and « € TUSR-TW - TUsR. If a3 ¢ R*, then ay € R* and

— *71
=) ) et )
1 oy oy a3 1

U1
V2
If o(ve) = R, it is easy to see that there is v € GL,, R such that yv, has only one nonzero
coordinate which maybe 1 on be 1st place. Since vjve € C, there exists 8 € C,, such that

w1
vy = Bvs. Set 0 = (In ;6> (7 7). Then ov has 1 on the (n + 1)th place and

Now suppose n > 1, a € Us,, R. Let v = ) denote the first column of the matrix «.

other coordinates are zero. Multiplying w; = + I5(,—1) from the left, we see that

-1
wiov has the form (1,0,---,0,---,0)%. If o(vg) € M, then o(v;) = R, and there exists
’y*_1 € GL, R such that ’y*_lvl has only one nonzero coordinate which is 1 on the 1st place.
2n . 2n
Set o = [[ pia(x) (’y ), where [ pi1(x) lies in EUs, (R, M). Then ov has the
i=n+1 Y i=n+1
form (1,0,---,0,0,---,0)t. We can write « as

-1 1

Iy a3 0y
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1
x 1 2n
or <7 7) 11 1p“(*) &1 1 @2 Ty, where Ty € TU,,R. By the hypothesis,
i1=n-+
Q3 Qg
we can write (Zl 32> € Us(n—1)R as ToOW'T3Ey where By € EUyq,—1)(R, M), Ts, T3 €
3 oy
0 1

TUQ(nfl)R, and W' = (1 0
Put Vi = U, R- EUs,(R[X]), Vo= {diag(X", .- Xk X~k ... X—kn))
Vs = TUpn(R[X,X7Y), Vi=EUs(R[X,X '|,M[X,X"'), V=KWKV

Lemma 4.6. (1) If @ € TUs,(R[X, X)), and o® € TUy,(k[X]), then there is 3 €
TUs,(R[X]) such that a® = B°.

(2) For every element o in TW (k[X]), there exists B € TW (R[X]) such that 8¢ = a.

Proof. (1) By the definition of TUs,(R[X, X !]), @ can be written as a product of
elementary matrices p;;(f) where 1 < ¢ # j <norl <i<nmn+1<j < 2n, and
f € R[X,X~!. The coefficients of the term of f containing X! must be in M. So for
pi;(f), we can choose fi which is the part of f not containing the terms which contain X !
so that pi;(f7) = pi;(f®). For piei(f), f € C, the coefficients of each term of f lie in
C. Thus we also can choose f; as above so that f; € C' and p“”(ff’) = pi,gi(f¢). The
corresponding product of p;;(f1), denoted by 3, satisfies 8¢ = a?.

(2) Since TW (K[X]) = D(K[X])W, W is generated by ( L ) and (1 ﬂ), and

) + Is;,—4. Then by Lemma 4.4 we can finish the proof.

+1 1 1
D C Usy,k, it is not difficult to come to the conclusion.

The following results are proved in just the same way as the corresponding assertions in
[7, p.2681].

Lemma 4.7. §Vé ' CcV, 5 Vs V.

Lemma 4.8. Forn >2 and a € R, p;;(aX)V CV, pjj(aX 1)V C V.

Proposition 4.1. EUs,,(R[X, X !]) C V.

Proposition 4.2. Ifa € EUs,(R[X, X )NV, (R[X, X 1], M[X, X 1), then o = 172
for certain elements v, € EUsy,(R[X], M[X]) and 2 € EUs, (R[X, X 1], M[X, X 1]).

Proof. By Proposition 4.1 and Lemma 4.5, o can be written in the form ajasazay
where o; € Vi. Since a@ = I, mod M[X,X '], we have (a?)™' = afal. If af =
diag(XF, ... XFe X~k ... X~kn) then X* ... X% are equal to the diagonal el-
ements of the matrix ozgoz?,f = (a?)"1. Certainly X** € k[X]. Hence k; = 0 and
ay = Ip,. We have of = (a?)~! € TUy,(k[X]). Since ag € TUs,(R[X,X']), there
exists ) € TUy, (R[X]) such that 3¢ = af by Lemma 4.6. The matrix v = (8] ‘a3)ay lies
in EUs, (R[X, X1, M[X, X~1]), and the matrix v; = a1 31 lies in EUs, (R[X], M[X]).

Put Gy = EUszn(R[X]) N U2n(R[X], M[X]),

Gy = EUs, (RIX ) NUpn(R[X Y, M[XY]), G =G1Go,

and let H denote the subset of EUs,(R[X,X1]) consisting of all elements h such that

hGh™! C G.
The proofs of the following assertions are the same as those of Lemmas 3.1 and 3.2,
Corollary 3.3, and Lemma 3.4 in [4].
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Lemma 4.9. Ifn >3, H D> 6,6 .

Lemma 4.10. If a € R, then p;;(aX), pi;(aX ') C H.

Lemma 4.11. H D EUs,(R[X, X71]).

Lemma 4.12. If n > 3, then EUs,(R[X, X, M[X,X']) C G.

Proposition 4.3. Suppose that R is an arbitrary commutative ring, the involution *
defined on R satisfies the condition (A), and n > 3. Let o € Uay,(R[X]), B € Uy (R[X1]).
IfaB~' € EUsy(R[X, X)), then a € Usp R - EUsy(R[X]).

Proof. Because of Theorem 3.1, we can assume that R is a local ring. The rings k[X] and
k[X~1] are Euclidean, and every elementary matrix in EUs, (k[X]) (resp. EUsa,(k[X1]))
has an inverse image in EUs, (R[X]) (resp. EUs,(R[X ~'])) by our hypothesis, i.e., for every
pij(f) in EUs, (k[X]), there is pij(f1) in EUs,(R[X]) such that p;;(f) = pi;(f). Hence
by multiplying o and 8 by matrices in EUs,(R[X]) and EUs, (R[X~1]) respectively, we
can assume that a? € Us,(k[X]) N D(k) and 8¢ € Us,(k[X ) N D(k). Since a1 €
EUs,, (R[X, X 1)), it follows that a?(5?)~! € EUs,(k[X,X 1)), and hence a®(B%)~! €
EUsy,k (see Lemma 2.6). Then we have a~! € EUs, (R[X, X 1| NUs,(M[X, X)), af~1
can be written in the form ajas where a; € G;. We have 041_104 = agf € Usn(R[X]) N
Uzn(R[X~Y]) = Uz, R, and the proof is completed.

Theorem 4.1. Suppose that n > 3, a € Us,(R[X]), and f is a monic polynomial. If
a € EUs,(R[X]¢), then o € EUsp(R[X]).

Proof. Let f = XP+a1; XP~ '+ +ay,andpit Y = X land g=14+a1Y +---+a,Y?.
Then o € EUyy(R[X];) C EUsy(R[X, X~V) = EUsn(R[Y,Y1],) = EUsn(R[Y]y,). Note
that Y € C. By Lemma 3.5, there exists a; € EUz,(R[Y]y) = EUs,(R[Y,Y!]) and
B € EUs,(R[Y],) such that @ = «;8. The matrix 3 = o] 'a lies in EUs,(R[Y],) N
EUsy(R[Y)y) C EUsy(R[Y]). By Proposition 4.3, 8 € Usy R - EUsy(R[Y]) N EUsp (R[Y],).
Using Lemma 2.6 (retraction R[Y], — R by ¥ — 0), we obtain § € EUs,(R[Y]). Then
a = a1 € EUy,(R[X,X™!). By Proposition 4.3, a € U, R - EUsy,(R[X]). Again by
Lemma 2.6, o € EUs, (R[X]).

§5. Unitary Symbols

Lemma 5.1.[% Lemma 21 1ot R be q local principal ideal ring. Let M = Rm be the
mazimal ideal of R with some choice of a generator w. Then

(1) NM* =0;

(2) for any element r € R\{0} there is a unique integer j > 0 and a unit v of R such
that r = wiu;

(3) if R is equipped with an involution x, 7* = wuy for some uy € R*, and ujuj = 1.

We denote by “” g the equivalent relation on UmsR generated by the following opera-
tors:

(S1) (a,b) <R (a,b+ac), ce C,

(52) (a,b) <>r (a+bc,b), c € C,

(S3) (1 + ac,b) +g (1 + ac,c*be),
for all (a,b) € UmoR. If w is a unit in R, we have

(S4) (a,b) <>r (ua,u='b).
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Note that if v € C, (S4) is a consequence of (S1) and (S2) (see [3, p.38]). We also give
another equivalent relation which occurs in linear case, but we will use it for studying Umy4R.

(S5) (1 + ac,b) <>r (14 ac, be).

The above equivalent relation occurs if one considers the rows of matrices from UsR C
UsR (or UsR C UgR) up to multiplication by elementary unitary matrices and

(u u*—l ) + I in (diag(u,u*il) . EU4R> NU>R.

We consider now the above equivalent relation for polynomial rings over local principal
ideal ring.

Lemma 5.2. Let R be a local principal ideal ring. Then for any (a,b) € Umz(R[X])
there is a pair (a/,b") € Uma(R[X]) with (a,b) <px) (¢/,b") and so that o’ is a monic
polynomial.

Proof. Let M = Rm be the maximal ideal of R and k¥ = R/M the residue field. We
write @ = ag+ a1 X + -+ +a, X™ and b= by + b1 X +--- + b X! with a;,b; € R. Since (a,b)
is unimodular, the pair (ag, by) is unimodular over R. So either ag or by has to be a unit in
R. We may use (S2) and (S4) to ensure that ag = 1.

If | > n, since agby € C, using (S1), we can replace b by b X +- -+ b/ X'. Then agb’; € C.
Again we can replace b by b, X2 +---+b/ X!, By (S3), b can be replaced by b+ - -+, X' ~2.
So we can assume that [ < n and by = 0.

We shall proceed by induction on the degree n of a. If n = 0, then there is nothing to be
done (use (S4)).

Ifn=1, wehave a =14 a1 X and b = b1 X. If by = 0, then clearly (a,b) is equivalent to
(1,0) and we are done. Otherwise, by Lemma 5.1 we may write a; = wfuy and by = 19us
with integers f,g > 0 and w1, us units in R. If either f or g is zero, we are finished by using
(S1)-(S3). Otherwise, using (S3) with ¢ = 7 we may assume that either ¢ =1 or g = 0, and
by = 7Fuy (k=0 or 1). If k = 0, we are done by (S2) with ¢ = uy'uynf € C. If k =1,
arb; = whuym*ul € C, either 7/~ ujul € C when 7 is not a zerodivisor, or there is a j > 0
such that 77 = 0. In the first case, uy 'u;7/ =1 € C, we can use (S2) to make a = 1. In the
second case, by (S3), we make b = 0 and hence (a,b) < rx] (1,0).

Now let n > 1. In addition, we may assume that a,, € M. By repeatedly using (S1) and
(S3) (cancelling the terms b; X and by X? repeatedly) we may arrange that all the b; are
multiples of a,,. Then all a;(¢ > 1) € M (since the reduction of the row (a,b) modulo M is
still unimodular). If all the b; now happen to be divisible by an even power of 7, we may
use (S3) to divide them through by it. After this, there are two possibilities for b:

(1) there is a unit amongst the b;,

(2) one of the b; is divisible exactly by 7, but there is no unit amongst the b;.

In case (1) we choose k such that & is the largest number so that by is a unit. Using (S1)
and (S3) with ¢ = X, we replace b by b’ = b + -+ + b, X" with b(,--- ,b], € M and either
b, =0 and b,_; = anby or b), = a,bi. In any case we may reduce the degree of a and keep
the property ap = 1. Thus, our proof in case (1) is completed by induction.

In case (2) we choose the largest k such that by, is divisible exactly by 7. Using (S1) and
(S3) with ¢ = X, we replace b by b’ = b, + -+ + b/, X™ with b),--- ,b/, € M? and either
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b, =0 and b),_; = ayby or b), = a,b,. We may assume a,by # 0, otherwise by (S3) with
¢ = 7 we may replace b by 0. So we divide the coefficients of b’ by w2. After this we see
that either b}, = 0 and a,, is a multiple of #b/,_; in R or a, is a multiple of #b), in R. In
any case we may reduce the degree of a and keep ag = 1 (referring the case of n = 1). This
finishes the induction step.

Lemma 5.3. Let R be a local principal ideal ring. Then (a,b) < gix) (1,0) for any
(a,b) € Uma(R[X]) with a monic polynomial a.

Proof. We proceed by induction on the degree n of the monic polynomial a.

If n = 0, then a = 1, and we are finished by using (S1). If n = 1, by repeatedly using
(S1) we may assume that b € R. Reduction modulo M shows that b has to be a unit of R.
So we use (S2) and (S4) to complete our proof.

Now suppose n > 1, a = ag+ - an1 X" ' +a, X" and b = by + - - - b1 X1 + b, X!
with a;,b; € R and a,, = 1. In the same way as the proof of Lemma 5.2, we may assume
that [ < n for the degree [ of b. Putting X = 0, we see that either ay or by has to be a unit
in R. By (S2) we may arrange that ag is a unit. Using (S4), we make ag = 1. Now a,, is a
unit of R.

Let k be the largest number so that by, is a unit in R. If k£ = 1, using (S1) we may replace
abya =ag+---+a, ;X" ! where ay = 1. Then by Lemma 5.2 we may replace a,,_; by
a unit in R and keep the degree n — 1 of a. So suppose that k < [, then b; € M for i > k.
By (a,b) <+g[x] (a,bX?) and (S1) we can arrange that either k = n—1or k = n — 2, and
b=by+ - +bp_oX"2+4+b, 1 X" ! The case k =n — 1 has been dealt with above, so let
k =n—2. Then b,_, € M. By (a,b) <>p[x] (a,bX?) and (S1), we replace b by by +- - - b}, X"
where b, = b,—2 — a,;'b,_1a,_1 is a unit. So using (S2) we may reduce the degree of a.
Then applying Lemma 5.2, we may make a,_1 invertible and ayp = 1, and hence finish the
induction step.

Proposition 5.1. Let R be a local principal ideal ring. Set A = R[X]. Then (a,b) <34
(1,0) for every (a,b) € UmoA.

Now consider (a1, az,as,as) € Umy(R[X]). The equivalent relations (S1)-(S3) only can
operate on the pair (a1,a3) and (az, a4); (S5) can operate on the pair (a1, az) and (as, a4).
We put other four equivalent relations additionally

(S6) (a1,a2,as3,a4) <>4 (a1,as + arc, a3 — asc*, ayq),

(7) ( ) < (

(S8) (a1,as,as,a4) <4 (a1,a2,a3 + azc,aq + aic

(S9) ( ) <a(
for all c € A.

Proposition 5.2. Let R be a local principal ideal ring and the involution x defined on
R satisfies the condition (A). Set A = R[X]. Then (a1, as2,a3,a4) >4 (1,0,0,0) for every
(a1,a9,as3,a4) € Um4A.

Proof. We only want to sketch the line of the proof. Since k[X] = R/M[X] is Euclidean,
we can find a g € EU4A such that (a1, a2,a3,a4)g = (1 + f1, f2, f3, fa) where f; € M[X],
and further the constants of f; may be zero. This procedure is equivalent to the operation

ai,asz,as,ay ay + asc, az,as,aq — azc’

)

9

)
)
")
)

ai,az,a3,a4) <4 (a1 + agc, az + azc™, az, aq),

on v = (a1, az,as,a4) by the equivalence relations (S1)-(S9). Then by (S6), (S8), we may
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assume that the lowest degrees of X in fo and f4 are higher than 1 + f;. Note that the
coefficients of X, X1, X2 in (1 + f1)*f3 lie in C, so we can use (S1)-(S4) to operate the
pair (1 + f1, f3). If (1 + f1, f3) is unimodular, by Proposition 5.1 we are done. Otherwise
we may get f3 = 0 after operation on the pair (1 + f1, f3) by (S1)-(S4) (check the proof of
Lemmas 5.2 and 5.3). Now v = (1 + f1, f2,0, f1). Using (S6) with ¢ = X2, I > 0, we may
replace v by (1 + f1, f4, X?' f4, f1). Using (S3) and (S7), we replace v by (1 + f1, f4, f1,0).
If the pair (14 f1, f4) is unimodular, we can finish the proof. Otherwise we may get fy = 0.
Thus v = (14 f1, f5,0,0) and (1 + fi, f3) is unimodular. Using (S5), (S6), (S7) and (S4),
we complete the proof.

In case R is a local principal ideal ring and if the number of variables is 1, the absolute
stable rank (see [5]) of A = R[X] is at most 2. This follows from the fact that the space of
maximal ideals of the ring A is the union of two Noetherian subsets of Krull dimension 1.

Note that <T 7 > € FUgA where T = (1 +at lzﬁ) @1 € SL3A and T@ffl € FULA

1+at  tbt* T - 1+at b
c 1+dt* )7~ =\ tret 1+4+1t*d
correspond to the operations (S5) and (S3) respectively). Referring the proof of Proposition

where T = ( lie in UsA (these two matrices

5.2 and the proof of Proposition 1 in [1], we know that EUs, A acts transitively on Uma, A
when n > 3.

For (a1, as,a3,a4) € UmgA and (a,b) € UmqA, we define n(ay, as, az,as) = ¥(g)EUsp A €
UsnAJEU3, A and n(a,b) = ¢(g)EUspA € UsnAJ/EU, A, where n > 3, g is any ma-
trix from UsA (resp. UszA) having (a1, a9, as,aq) (resp. (a,b)) as the first row and ¢ :
UsmA — UspA (n > m). Tt is clear that the construction gives a well defined map
n: UmyA — Usp AJEUS, A (resp. UmgA — Uy, A/EUs, A). Applying a result from [3,
p.45, p.47] and [8], we have

Lemma 5.4. Let A be ring and (a1, a2, a3, a4), (a}, ay, as,a}) € UmgA with (a1, az,as3,aq)
4 (d, dy,al,a)) (resp. for (a,b) and (a’,b")). Then n(ay,as,as,aq) = n(al, b, as, ay) and
n(a,b) =n(a’,b).

By Lemma 5.4 and Propositions 5.1 and 5.2, we have

Proposition 5.3. Let R be a local principal ideal ring and the involution x defined on
R satisfies the condition (A) and let n > 3. Then Us,(R[X]) = diag(u, u*_l) - EUsp (R[X])

where u s a unit in R.

§6. Proofs of Main Results

In this section we shall prove the main results mentioned in the introduction. The fol-
lowing Lemmas are important in our approach.

Lemma 6.1. Let R be any principal ideal ring, and S C A = R[X] be the multiplicative
set consisting of all monic polynomials. Then S™YA is also a principal ideal ring (see [3,
Proposition 5.1]).

In the following assertions, let oy € Us,R denote the matrix with the first column
(1’0,... 0,0, - ’Q)t.

Lemma 6.2. Let R be a local ring with maximal ideal M and residue field k. Suppose
o+ € Upy(R[XTY)) and 0+ = 09 mod (M[X*!]). If there exists a € EUs,(R[X, X))
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such that aoy = o_, then a € EUs,(R[X, X 1)) N Uz, (M[X, X ™1)), i.c., there is a v €
EUs,(R[X, X 7]) N Usp(M[X, X~1) such that yo = o_.

Proof. Let ¢ denote the canonical projection: R — k. Then 04¢in =0 and Ji = ag.
So a? =0? - (09)"' =1, a € EUs,(R[X, X 1] N Uz, (M[X, X1]).

Lemma 6.3. Suppose that R is an arbitary commutative ring, M € max(R) and n > 3.
Assume that o € Us,(R[X]) and there exists a € EUs,(R[X,X ™) such that acy €
Uzn(R[X™Y]). Then there exists 3 € EUs,(R[X]) such that Boy € Uy, R.

Proof. By Theorem 3.1 and Corollary 3.2, it suffices to consider the case when R is
a local ring. Since the rings k[X] and k[X '] are Euclidean, it follows that there exists
B+ € EUs,(R[X*']) such that 8,0, = 09 mod (M[X]), f_acy = 09 mod (M[X~]).
By Lemma 6.2 there exists v € EUs, (R[X, X 7)) N Uz, (M[X, X1]) such that v(Broy) =
B_acy. By Proposition 4.2 y~1 can be written in the form v, v_, where v4+ € EUs, (R[X*!]).

We now obtain ;' 8104 = v_B_ao . Hence vy ' B0t € Uzn(R[X])NUsp(RIX 1Y) = Uap, R.

Proposition 6.1. Suppose that oy € Usn(R[X]), 00 € UanR, f is a monic polynomial
in R[X] and o € EUy,(R[X]y) such that aoy = o¢. Then there exists T € EUs,(R[X])
satisfying To4 = 0g.

Proof. As in the proof of Theorem 4.1, put Y = X1 g(Y) = Ydeesf(y-1). By
Proposition 4.2, a~! can be written in the form «13, where oy € EUs,(R[Y]y), 8 €
EUs,(R[Y],). Then aj'oy = Bog € Usy(R[Y]y) N Uzn(R[Y],) = Usn(R[Y]). Applying
Lemma 6.3 to Sog, we can find v € EUs,(R[Y]) such that yBog € Uap R. Let ¢ denote the
canonical retraction R[Y], — R (Y — 0) and put as = ((v8)"1)%ya; ' € EUs, (R[X, X 71]).
It is easy to see that agoy = 0¢. If we apply Lemma 6.3 to o, we can find 51 € EUs, (R[X])
such that B0y € Uy, R. We now put 7 = (azf; )31, where ¢ : R[X,X '] = R is
retraction sending X into 1.

Theorem 6.1. Suppose that R is a Noetherian ring, A = R[X1, X2, -+, Xp], and
n > max(3,dimR + 2). Then the group EUs, A acts transitively on the set of Uma, A.

Proof. Let v € Umo, A and consider v as the first column of o € Us, A. Let S denote
the multiplicative system in A consisting of the polynomials which, for all sufficiently larger
¢, are monic in Y7 after change of variables X; = Y7, Xo =Y, —&-Yf, e X =Y —I—Yf"hl.
By Lemma 6.2 in [6], dimS~ !4 < dimR. Hence by Lemma 2.5, for o there exists a €
EUs,(S71A) such that ac = og, where 09 € Us,(S™tA), of which the first column is
(1,0,---,0,0,---,0)*. We can find f € S such that & € EU,,Ay. Making a change of
variables, we assume that f is monic in X;. Now, by Proposition 6.1 there exists v € EUs, A
such that vo = oy.

Proof of Theorem 1.1. By Theorem 6.1, the canonical homomorphism Us,_2A —
K, U(A) is surjective. Let us show that the canonical homomorphism Us,A/EUs, A —
K1U(A) is a monomorphism. Still let S denote the multiplicative system in A consisting
of the polynomials which, for sufficiently larger {, are monic in Y; under the change of
variables X; = Y1, Xo = Yo + Y, -+, Xpn = Vi + Y¢ ; then dimS—'A < dimR.
If « € Uy, AN EU(A), by Lemma 2.5 a € EU,,(S7tA). So there is f € S such that
o € EUy, Af. Hence by Theorem 4.1, o € EU>, A.
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Proof of Theorem 1.2. We have
UQn(R[XhXQa te 7Xm]) == UQnR . UQn(R[Xla X27 e 7Xm]7 (X17X27 ce aXm))

where (X1, X, -+, X,,) denotes the ideal generated by X1, X, -+, X,.
To prove our result, it suffices to show that Us,(R[X1, -, Xn], (X1, X2, , Xm)) C

v o > EUs,(R[X1,Xa, -+, X)) where u is a unit in R.

By Corollary 3.4 we are finished if we prove this in case R is a local principal ideal ring.
So we now assume that R is a local principal ideal ring. We shall prove by induction on

the number m > 0 of variables that for n > 3, Uy, (R[X1, X2, -, Xm]) = (u u*1> .

EUy,(R[X1, X5, -+, X)), where u is a unit in R.

For m = 0,1 we are done in Proposition 5.3. We proceed with the induction step.

For a ring B and an integer m > 0 we define the ring X™(B) inductively in the
following way X°(B) = B,XY(B) = B[Xy], -, X™*Y(B) = S-'X™(B)[Xmny1]. Here
Sm C X™(B) is the multiplicative set of polynomials which are monic in X,,,. Note that for
m > 1 X™(B) is a polynomial ring over a ring of fractions of X™~1(B). We further have
R[Xth, s ,Xm+1] C Xm+1(R).

Since R is a local principal ideal ring, S~'R[X] is still a principal ideal ring[®l. So for
m > 1 the ring XY™ (R) is a polynomial ring over principal ideal ring.

By Corollary 3.4, Theorem 4.1 and Proposition 5.3, we have U, (X" (R)) = Us, (S,
X™(R))EUs,(X™Y(R)). This implies that an element o € Us,(R[X1, Xa,- -+, X,,]) can
be written as o = apa; with ag € Uspn(S,,'X™(R)) and a1 € EU,(X™T(R)). Let
ag € Ugpn(S,,'X™(R)) be the element obtained by putting the variable X,, 1 in a; equal
to 0. After multiplying oy with an element from EUs, (S;,'X™(R)) we assume that ap =
1. After this we must have ag € Usp(R[X1, X2, -+, Xm]). By induction, it follows that
Uzn(R[X1, X2, , Xont1]) C U R - EUsy, (X™F(R)) for all m > 0.

Then we use Theorem 4.1 m times with the order of variables reversed to draw the
conclusion.
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