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SOME GEOMETRIC PROPERTIES OF
BROWNIAN MOTION ON SIERPINSKI GASKET**
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Abstract

Let {X(t),t > 0} be Brownian motion on Sierpinski gasket. The Hausdorff and packing
dimensions of the image of a compact set are studied. The uniform Hausdorff and packing
dimensions of the inverse image are also discussed.
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¢1. Introduction

In [2], Barlow and Perkins constructed a “Brownian motion” taking values in the Sier-
pinski gasket, a fractal subset of R?, and studied its properties. This is a point recurrent
symmetric diffusion process characterized by local isotropy and homogeneity properties. Re-
cently, Zhou Xianyin studied the Hausdorff measure of the level set of this process. The
object of this paper is to consider some other fractal properties.

The structure of this paper is as follows. In section 2, some definitions and lemmas are
recalled. In section 3, the Hausdorff and packing dimensions of the image of a compact set
are obtained. In section 4, we discuss the uniform Hausdorff and packing dimensions of the
inverse image.

We use ¢, ¢ to denote unimportant positive constants which may differ from line to line.

§2. Prelimlinaries

Let R? denote d-dimensional Euclidean space, N denote the set of positive integers and
Z, = NU{0}. Let E be a subset of RZ. For any o > 0, define

¢ —m(F) = liminf iamFE;)” : E E; iamFb; <
s —m(E) im in {izzl(dmm i) Ci:q ; and diam 1_6}

where diam denotes the diameter of a set. The Hausdorff dimension of F, dim F, is defined
as follows:

dim E = inf{a > 0:s* —m(F) =0} =sup{a > 0: s —m(E) = +o0}.
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The upper box-counting dimension of E' is defined by
log Ns(E
A(FE) = limsup log Ns(E)
5—0 —logé
where Nj(F') denotes the minimum number of closed balls of diameter ¢ needed to cover E.
The upper box-counting dimension will not be of interest to use here since it is not o-stable.
Much more relevant is the packing dimension of £ which may be defined by
[ee]
DimE — inf{sup AE):Ec | Ei},
i21 i=1
where the infimum is taken over all countable covers of E. It is well known that dim E <
DimF for any E C R%.
Set eg = (0,0), e1 = (%,?), ez = (1,0). For any n € N and s = (s1,52, " ,5n) €

{0,1,2}"™, we define oy = };_:1 27 ke, and

Fs ={as+re1 +12e0;0 <rq,re,r + 19 <277
Finally, we define
Gn={F.,s€{0,1,2}"}, G= ) U F.
neN s€{0,1,2}"
G is called the Sierpinski gasket.

For any s € {0,1,2}", let H, = G N F,, where H, is called an n-triangle. For any x € G,
let A, (x) denote the unique n-triangle containing x whose projection onto the z-axis is close
to zero. Let D,,(z) be the union of n-triangles each of which has at least one common vertex
point with A, (x), 9D, (x) be the vertices of n-triangles in D, (x) belongs to only one n-
triangle lying in D, (z), and define int(D,,(z)) = D,,()\0D,(x). The Hausdorff dimension
dy of G is equal to }ggg Let v = igig, do =1, d, = 2122%3, u be the unique measure on
(R?, B(R?)) supported on G such that u(A) = 37" for all A € G,,, n € N (see [2]).

In [2], Barlow and Perkins give a very good estimate for the transition density of {X (¢),¢ >
0}.

Lemma 2.1.2) There is a function p(t,z,y), (t,z,y) € (0,00) x G x G such that

(a) p(t,x,y) is the transition density of X with respect to u, i.e.,

Pif(x) = /Gf(y)p(t,x,y)u(dy) forallz € G,t > 0, f € Cp(G).

(b) p(t,z,y) = p(t,y,x) for allz € G x G, t > 0.
(¢) There are positive constants ci,ca,cs,cq such that

ds

_ds Lyl
ait” 2 exp{—ca(lz —ylt™") T} < p(t,z,y)
<egt™ % exp{—co(|z — y|t*”)ﬁ} for allt>0,(z,y) € G xG.
The next lemma is a version of Gasia lemma.

Lemma 2.2.12 Let F be a closed subset of R?, and let u be a measure on F such that
there exist constants C1(F), Co(F), dr so that if

B (z,r)=Fn{yeR: |z —y| <7},
then
C1(F)rir < w(BF (z,r)) < Co(F)r* for all z € F,r > 0. (2.1)
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Let P be an increasing function on [0,00) with P(0) = 0, and v : R — R™ be a
nonnegative symmetric convex function with liril Y(x) = 4o00. Let H be a compact set
Tr—r+00

in Fyand let f: H— R be a measurable function. Suppose that

/ / ( Pz — ;?) u(dz)u(dy) < oo.

Then there exists a constant Cr (depending only on C(F) and dp) such that

lz—yl
@ -swiss [ v |G| pla (2

for u x uw almost all (x,y) € H x H. If f is continuous, then (2.2) holds everywhere.

Remark 2.1. If F = G, then (2.1) holds with dp = dy = 255.

Lemma 2.3.1'% For any z € G, it is P* almost surely that if I is an element of G
(m=1,2,- ) then X~L(I) = {t € [0,00) : X(t) € I} meets c- m(I=dr+220=F)% of the
intevals (k275 , (k+1)27V],0< k<2%, ke Z,.

Remark 2.2. Just as the proof of Lemma 4.2 in [12], by using Markov property, Lemma

m

2.3 is correct if k changes from n2% to (n+1)2%, n=0,1,2,---.

§3. The Result for Image of a Compact Set

Theorem 3.1. For any compact subset E of [0,00), we have for any x € G

dim X (E) < min(df, lmE)

P%a.s. (3.1)

and

DimX (F) < min (df, ) P%a.s. (3.2)

Proof. For any 2 € G and ¢ > 0, we know from [2] that {X(¢),t > 0} is P* ass. v —¢
order Holder continuous. Then

dim X (E) < min<2, dimE) Pas.,

DimX(F) < min<2, DimE) P%a.s.
It is obviously that DimX (F) < ds. Therefore we have

dim X (F) < min(df, dimE) P*as.,

DimX (E) < min (df, DimE) PTas.

Now we prove the inverse inequality of (3.1).
Case 1. If @ < dy, for any A < y, it is necessary to prove that there exists a
positive measure o supported on E such that
//Eﬂx X(s)| Mo (dt)o(ds) < +oo.
Consider E*(| X (t) — X(s)|=*). If t > s, by strong Markov property, we have
Ew(lX(t) = X(s)| ™) = ETEXO(IX (¢ - 5) — X(0)|Y); (3.3)
if t < s, we have
E*(1X(1) = X(s)| ) = E*EXV(1X (s — 1) = X(0)| 7). (34)



194 CHIN. ANN. OF MATH. Vol.16 Ser.B

Combine (3.3) with (3.4). Then for any s,t € [0, +00),
E*(|X(t) — X(s)] ) < StelgE‘TﬂX(t — ) = X(0)]7).

By Lemma 2.1
IX(t —5) = X(0)|7*) = E*(|X(t) — =)
/ Iy~ 03|t s|™ % expl—ca(|z — yl|t — s|7¥) T Ju(dy)
S/G, mczﬂt—s\*%ﬁ exp[—c4|z — 2|77 U/ (dz), (3.5)

where G’ = (G — )|t — s|7” + x, v is a measure on G’ such that
W[(A—=z)- |t —s|7" +x] =u(A), for any A € G,,n € N.
By the definition of u (see [2]), we have
E(1X(t = 5) = X(0)]7%)

1
: /{ Al sl T 2)

z€G’,|z—z|<1} ‘t - S|V>\|Z

1 1
—|—/ |t — 5|7 2 exp{—ca|z — x| T W/ (d2)
{zeG,|z—z|>1} |t - s|u)\|z - :L'|>\
oo
= |t — s| 7%/ (d2)
;/{ZEG’,QW{H <|z—z|<5m |t - 3|V>\|Z - I|>\
o0
1
+ / |t — 5| 7%/ 2 exp|—cy|z — 2| 7]/ (d2)
nZO {2€G" 2n<|z—z|<2n+1} ‘t — 5|V/\|Z _ I|)‘

on 1 1 B
|w\z ) /2n+1<|z_$|§27)-|t—3\ ds/2

+c3

1 —n n n E eyt —
WX_%Q M2 < |z —a| <27 exp{—cy - 2T Y[t — 5|7/
1 - n+1\A 1 v\df —ds/2
_Cst@ )(27“*5” |t — 5|
n=0

I = %
+ 637# S Z 27N Lt — s|V) 4 |t — 5| T 2 exp{—cy - 277}
n=0

C\)|t — s|77.
Since @ > A, by Frostman’s lemma, there exists a positive measure ¢ supported on
FE such that
1
——o(dt)o(ds) < +oo.
| [ i=metanatas
Consequently

@ Y 1
/E/EE [|X(t) — X(s)|"o(dt)o(ds) §C()\)/E/E|t_s|w\a(dt)0(ds) < 4o00.

Case 2. If 92 > d, we porve that for any A < df, dim X(E) > A P a.s. But this
can be done just in the same way as case 1, thus we complete the proof of Theorem 3.1.
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Lemma 3.1. If E is a compact subset of G and u(E) > 0, then 0 < s% —m(E) < +oo.

Proof. By the definition of u, we easily know that there exists a constant ¢ > 0 such
that u(E) = cs% — m(E). Since E is a compact set, we have 0 < 5% — m(E) < +oo0.

Suppose that ¢ is a bounded Borel measure on G. For any y € G, we define

o) = T D)
m=o0 pi(int Dy (y))
Just as in [9, Chapter 8, Theorem 8.6], it is easy to prove that ¢’(y) exists finite u a.s.

Lemma 3.2. Suppose o Lu. Then o'(y) = 400 o a.s.

Proof. Fix € > 0. Since o_Lu, o is concentrated on an open set V with u(V) < e. For
n=1,2,3,---, define E, to be the set of all z € V" at which ¢’(z) < n. Let K be a compact
subset of E,. If we can show that o(K) = 0, the regularity of ¢ implies that o¢(E,,) = 0 for
every n, and this gives the desired result.

Each z € K lies in int(D,,, (x)) C V so that o(int(Dy,,(z))) < n - u(int(Dy,, ()).
Being compact, K is covered by finitely many of these int(Dy,, (z:)), 1 <i < L. If some
point of G lies in five elements of {intDy,, (x;),1 <i < L}, one of these lies in the union
of the other four and can be removed without changing the union. In this way we can
remove the superfluous int(D,y,, (7;)), 1 <i < L, so that no points lie in more than four of
{int(Dp,, (xi)),1 <i < L}. Then

L
o(K)<o (U(int(mei (Iz‘)))) <Y o(int(Dp,, (2:)))

i=1 i=1

L L
<n Y u(int(Dp, (2;))) < 4nu (U int( Dy, (xi))>
i=1 1=1
< 4nu(V) < 4ne.
Since € is arbitrary, o(K) = 0, and the proof is complete.
Theorem 3.2. For any x € G and E, a compact subset of [0,+00), if @ > dy¢, then
u(X(F)) >0 PTas.
Proof. Since dim E > vdy, by Frostman’s lemma, there exists a probability measure o
supported on E such that

/E /E Wa(ds)a(dt)<+oo. (3.6)

For any A € B(G), define ug(A) = o{t,t € E,X(t) € A}. It is clear that ug(4) is a
bounded Borel measure on G, P* a.s.
Let M = {y € G,ulz(y) = 4+00}. By Lemma 3.2, up << u if ug(M) =0, ie.,, X(t) ¢ M
for o a.s. t, or, in other words, for o a.s. t € E
1

e wlmt (D (X (B))) “F (P (XK (1)) < oo,

ie.,
I : / I (ds) < +
m — . ]
m—oo (int(D,, (X (1)) /& {X (s)€int(Dm (X (t)))}O\ES 00

Therefore, if we want to prove ugp << u P* a.s. by the dominated convergence theorem, it
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is necessary to prove

. 1 =
lim sup / / E" I x(5)-x(t)|<3-2-m}o(ds)o(dt) < +o0.
EJE

m— 00 4 ° S—m

Now, by Markov property,
PH{|X(s) = X(t)] <3-27"} < sup PY{|X|s —t| —y)[ <3-27"}
yeG

<cylt —s|mF {327

By (3.6),

. 1
hmsup 7m//Em[I{X(s)_X(t)‘<3.27m}]0'(d8)0'(dt)
m—00 43 EJE

< cg-3% / / 70(“)0(;#) < 400
EJE el

[t —s

Thus we have up << u P®a.s. Since ug(X(F)) > o(E) = 1, we have u(X(E)) >

0 P*a.s. Together with Lemma 3.1, we have

Corollary 3.1. For any x € G and E, a compact subset of [0,00), if @ > dyg, then

0<s% —m(X(E)) < +oo P%a.s.

§4. The Uniform Dimension Results of Inverse Image

Lemma 4.1. (1) lim sup Jy p(t, 2, y)dt =0

52Uz yeG

(2) forany 0 <e < 1— %, there exists a C(g) > 0 such that for any x,y € G, h > 0,

h £ 1_ds__
Jo ot z,y) — p(t, z,x)|dt < C(e)|x —y|> h'! e,
Proof. (1) It is easy to prove by using Lemma 2.1.
(2) When z = y, we have nothing to prove. When = # y, by Lemma 2.1,

h
0

h
<c / 175 (1= exp(—[lo — y|t™) 7]t
0

ds

e —ylr] 2=yl
_ =y~ — exp(—ct)] Y1
—c/+ l 1 [1—exp(—ctT7)] e dt

1
[e’e} tv

dy,—dy oo 1 [
=clz —y o TTId, [1 —exp(—c'tT7)]dt

hU

< st [T 1 e
<clz—ylvh "2 tlﬁ[lfexp(fctl v)]dt.
o ;

Since d,, —df = 0.73697- -+, 7% —1=0.75647--- and € < 1— %, we have

1 — exp(—c'tT7
lim exp(—c )

=0.
t—0 tdo—ds+1

Therefore
tee 1
|l en(=dt)]dt = C(e) < +oo.

Lemma 4.2. Let LY be the local time of {X(t),t > 0}. Then



No.2 Wu, J. & Xiao Y. M. GEOMETRIC PROPERTIES OF BROWNIAN MOTION 197

(1) for each x € G, the set of w such that Li, ., (w) = +oo has P*-probability 1;

(2) for each x and y, the set of w such that L"[’0 o] (w) = 400 has P*-probability 1.
Proof. (1) By the continuity of LT and the construction of G, it is enough to do the case
forz =02 €g-
Let
00,1 = 07
Bi1 = inf{t > 091, X (t) € 9Do(0)\{0}},

o1,1 = inf{t > 11, X (t) = 0},

ﬁl+1’1 = finf{t > 011, X(t) c BDO(O)\{O}},
o411 = inf{t > Bj411,X() =0}, 1=0,1,2,---.
Then 01411 (1 € Z4), Bia (I € N) are stopping times and finite P a.s.

Let A\ = L([)O’Uk’l) - L[OO,O'k:—l,l)7 k € N, and set Lj = 0. Thus

R T
By [2, Theorem 1.11] and strong Markov property, (0j+1,1 — 0141, Ai+1) are P’ independent
and identically distributed for [ =0,1,2,---

3
E°N = E°(Ly 4, 1)) = EX(Liy g, 1)) > 7> 0by [2].

Therefore P°{L{, , ) — 00, — 0o} = 1, this proves (1).
(2) Let T,, = int{t > 0, X (t) = y}. We have P*{T,, < co} = 1. But it is easy to prove

that

(Lﬁ)m) = o0} = Hi}{Lﬁ)m) = 00}

By strong Markov property,
PZ(L?(LOO) =00} = Py{L[yopo) = o0}

Theorem 4.1. For any x € G, P* as.
ds .
dim X Y(F)=1- 5 +ovdim F' for every compact subset F' C G.

Proof. Upper bound. For any 0 < a < %, n > dim F', choose p such that
p—1+a«a

—Y

There exists a cover {B(z;,¢;),7 > 1} of F, B(x;,e;) N F # () such that

pta—1

S < oo
%

For any i, choose n; € N such that
9 (ni+2) < o < 9= (nitl)
Then B(z;,¢;) intersects at most two elements of G,,,, denoted by I; 1, I; 2. Therefore
B(zi,ei) NF C Ly UIs.
Let
i = k275, (k+1)27 %],k =0,1,---,[2%],
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and
[k27"7i7 (k + 1)27%] N Xﬁl(Ii,l U Ii,2> 7& @}
By Lemma 2.3
#; < 62(1_%)%n§17v)df+2.
But

XYF)n[o,1] c [U XML, U Ii,z)} noyclJU T
i i Iey;
Straight calculus shows that

Z Z (diamI)? < +o0.

v Iey;
Consequently, we have P* a.s.

dim(X 1 (F)N[0,1]) <p=wn+1—-a.
Since n and « are arbitrary, we have P a.s.
dim(X~YF)N[0,1]) <1 - % + v dim F.
By Remark 2.2, we have P a.s.
dim(X Y F)N[kk+1]) <1 - % +ovdim F for any k € Z,.
The o-stability of Hausdorff dimension leads P* a.s.

dim(X~HF)) <1- % +vdim F.

Lower bound. Take z € GG and let k£ > 2 be a positive integer. For distinct ¢1,t9, -+ ,tx
and for 1,29, -,z € G, let p(x1, 22, -+ , Xk, t1,t2,- -+ ,tr) be the joint density of (X (¢1),
o, X(tr)) relative to u X u X <+ X u at (z1, T2, ,Tp).

If I C [0,00) is a closed interval, |I| < 1, define the function

q(xlaan'“ 7xk):/“'/p(x17x27'” axk7t17t27”' 7tk)dt1dtk
I I

:k'/ / p(tlvz7x1)p(t2_t17xlvm2)

1 <to<---<tg
t1--tp €1

cop(te — th—1, Tp—1, Tk)dts - - - diy.

Then by [12, Lemma 2.1] and the dominated convergence theorem, we have

k
E* L7 = aran, -+ ). (4.1)
i=1

For any x,y € G, we define the difference operator 0, ,_, (1 < j <k) as

9j,y7$q1<x’x’...7%):q1<x’...7y’...7$)—q1(x7...7x’...7x).
!
J
Then by (4.1)

k
B(LY - L5)F = By — 1) = [[ 0jy—oar (@, 2, ,2).
j=1
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Let 21,22, -+ ,xr be equal to z. Thus

QI(‘rax7" —C]I .]31,.’132, y L

— kl/ / p(t1, 2, 21)p(te — th—1, Th—1, Tk)

t1 <to<---<tg

ty-th€l
k1
) H p(t2j — toj—1, 251, 2j)P(t2j+1 — toj, Taj, Tojr1)dtrdts - - diy.
j=1

Since the difference operator is linear, we may express

k
H 9’,y—zQ1(xax7 e ax)
j=1

L
= k! H 02j+1,y—aOk,y—a / e / p(ty, 2z, 21)p(ty — th—1, Tp—1, Tk)
3=0 by <to<---<t
tyti€l
!
T (25 — taj—1, w91, 9)p(t2s 41 = taj, 9, w2541)
j=1
— p(tgj — tQj_]_, .ng_l, x)p(t2j+1 — tgj, x, $2j+1)]dt1dt2 s dtk. (42)

When we apply the operator 6 for the variables of the remaining indices, we obtain for (4.2)

a sum of 25! terms of the form

w\r

+ k'/ / p(t1, 2, y1)p(tk — th—1, Yk—1, Yi) H (t2j —toj—1,Y2i—1,y)P(t2j4+1
11 <to<--<tp =1
t1---tp €1
—t2j, Y, y2+1) — Pltay — t2j—1, Y21, 2)p(taj+1 — t2j, @, yoj1)|dtrdts - - - dty, (4.3)
where y2541, 7 = 0,1,--- 75 — 1, yi assume the values z and y. We estimate the typical

term in (4.3).

The absolute value is at most equal to

h
/p(fl,zwyl)ds/ P(s, yx—1,yx)ds
I 0

5=1 . sk
. H / / |p(say2j717y)p(t7y7y2j+l) —p(S,ygj,]_,$>p(t,$,y2j+1)‘d8dt,
=i Jo Jo (4.4)

where h = the length of I.
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We first estimate the double integrals in (4.4). By Lemma 4.1 and Lemma 2.1 we have

//\p(s,ygj-l,y)p(t,y,yzjﬂ)—p(s,yzj-l,x)p(t,w,yzj+1)|d8dt
0 0
S/ / P(8,y25—1,y)|[P(t, ¥, y241) — p(t, @, y2541)|dsdt

/ / (t, 2, y2541) (s, y25-1,y) — p(t, y2j—1,2)|dsdt

< O(e)h201- doy— |z —y

; .

So

k
H gj,y*IQI(xvxa e ,CC) = Ch(li%i%)kiz(li%

Choose k large enough so that

ds € ds
(-5 - 2(1-g)rex(
€ € € € 2
2Ty g gl 20

Thus

H 0;y—wqr(z, 2, 1) < - % —2)

For each J which is an closed interval of [0, 00), |J| < 1, set

K(J)= K(J,G.k, o // LIW} w(dz)u(dy).

Since

S)+5|$ i y|%k

— £
v,

EZ “’ — LY s
/ / B (LS = L) o dayu(ay) < elg|0-% -2,
Ix—yl

by Lemma 2.2

L% — LY| < ¢ - 8[K (J)]F |z — y| 5 £ s

By [12] Remark 2.1

EF[(LY)¥] < el J|'FF,

(4.5)

(4.6)

For any L € N, by (4.5), (4.6) and Borel-Cantelli Lemma, we can prove P? a.s. there exist

r. v. s1(w), s2(w) such that

K(J) < |J0% 2% vJe Dyn > si(w),
where D,, denotes the family of dyadic intervals in [0, L] with length 27™ an
LY < [J|07F 72 W € Dyon > sa(w).

By (4.5), we have

LY — LY < o J| 05 2|z —y

for all (x,y) € G X G, J € Dy, n > s1(w).




No.2 Wu, J. & Xiao Y. M. GEOMETRIC PROPERTIES OF BROWNIAN MOTION 201

For any x € G, let
xz1 =min{i € {0,1,2},z € F;},

Tm1 =min{i € {0,1,2},2 € Fyy 4y mifs
ag = 07
Am = Qg ,xo, T4,

Then a,, — z (m — 00). By the continuity of local time, we have

G+ > (Lm — L),
m=1
Thus if J € D,,, n > max{s1(w), s2(w)}, then

L5 < L5+ 3 [LGm = L | = clJ| 0% 72, (4.7)
m=1
In the following, noting Lemma 4.2 and the scaling property of {X (¢),t > 0}, just as in
[7], we can easily get the desired result.
Theorem 4.2. For any v € G, P* a.s.

ds :
Dim[ X H(F)] <1 - 3 +vdim F' for any compact set F C G.
Proof. It is necessary to prove that P* a.s.
ds
AX Y F)N[0,1])) <1 - 5 + vA(F),

where A is the upper box-counting dimension.

For any n € N, let M(2™", F) be the smallest number of closed balls of radius 27"
needed to cover F and {B(x;,27"),i=1,2,--- ,M(2™™, F)} be such a covering. Then each
B(z;,2™"™) intersects at most 7 elements in G,,, denoted by I; ;, j =1,2,---,7. Let

k27%, (k+1)27 V], k=0,1,-- V]

(2
b= 7
i and (k27 ¥, (k+1)2~ (U ”)7&@
i=1
By Lemma 2.3
Yoy < ¢ 20= ) p(l-r)ds+2,
Since
7 M2~ ",F)
X\(F) [UX (Uns)|noic U U
! =1 Iey;
we have

M2, X HF)N[0,1]) < M(27", F)c. 20~ %)% pA-v)ds+2
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and

1 M(2—". F 2(1—$)% (1—-v)ds+2
AXLF) N[0, 1]) < limsup 8 F)e2T” Fvn
n—o00 10g2'/

—1- % + vA(F).

Corollary 4.1. For any x € G, P® a.s.

ds
dim X '(y)=1- 5

ds
DimX (y) =1-— 5 for every y € G.

Proof. By Theorems 4.1 and 4.2, noting that Dim(F) > dim E, VE C R4, we can easily
obtain the result.
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