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Abstract

This paper introduces the concept of local C-cosine family and inverstigate its basic proper-
ties. In particular, a characterization of the complete infinitesimal generator of a local C-cosine
family is obtained. As an application of this theory to the second order abstract Cauchy prob-

lems, a characterization of the local C-well-posedness of these problems is given in terms of the
local C-cosine family theory.

Keywords Local C-cosine family, Asymptotic C-cosine resolvent, Complete generator,

Second order Cauchy problem.

1991 MR Subject Classification 34G10, 47D05.

§1. Introduction

Tanaka[15] introduced the concept of exponentially bounded C-cosine family and gave a

characterization of its complete generator. Delaubenfels[6] gave a way to construct some

exponentially bounded C-cosine family by making use of operator functional calculus which

is different from Laplace transforms and applied the results obtained by him to improperly

posed second order abstract Cauchy problems. However, as it is seen from Examples 4.1 and

4.2 in this paper, there exist C-cosine families which are neither exponentially bounded nor

defined on (−∞,∞). In order to characterize them, in this paper we introduce the concept

of the local C-cosine family and attempt to give systematical study of the local C-cosine

family.

Arendt[1], Neubrander[12] pointed out that the characterization of exponentially bounded

n-times integrated semigroups unifies the classical characterization of C0-semigroups, cosine

families or exponential distribution semigroups. However, in contrast with this case, by the

analysis for Examples 4.1 and 4.2, the local C-cosine family theory does not be unified

by local C-semigroup and the local integrated semigroup theory in [17]. In particular, as

shown in Example 4.1, for the complete infinitesimal generator of a local C-cosine family,

its resolvent set or C-resolvent set can be empty. Therefore these cases can not be treated

in the classical method. Moreover, from applications to the second order abstract linear

Cauchy problems in Examples 4.1 and 4.2, we see that the local C-cosine family theory is

better than the local C-semigroup and the local integrated semigroup theory in [17].

In §2 we introduce the concept of the local C-cosine family on a Banach space and give

a few basic properties of the complete infinitesimal generator of a local C-cosine family.

Manuscript received February 26, 1993.
*Department of Mathematics, Sichuan University, Chengdu 610064, China.

**Project supported by the National Natural Science Foundation of China.



214 CHIN. ANN. OF MATH. Vol.16 Ser.B

Section 3 deals with a characterization of the complete infinitesimal generator in terms of

its asymptotic C-cosine resolvent. In §4 we apply the local C-cosine family theory to the

second order abstract linear Cauchy problems and give two typical examples.

§2. Definition and Properties of Local C-Cosine Family

Let X be a Banach space. We denote by B(X) the set of all bounded linear operators

on X to X. Let T ∈ (0,∞] and C ∈ B(X). Throughout this paper we assume that C is

injective and has dense range R(C).

Definition 2.1. A one-parameter family {C(T ); |t| < T} in B(X) is called a local C-

cosine family on X if it satisfies the following conditions:

(i) C(0) = C,

(ii) (C(t+ s) + C(t− s))C = 2C(t)C(s) for |t± s|, |s|, |t| < T .

(iii) C(t)x : (−T, T ) → X is continuous for every x ∈ X.

From the definition, we have

Proposition 2.1. If {C(t); |t| < T} is a local C-cosine family on X, then

(i) C(t) = C(−t), for |t| < T ;

(ii) for |t| < T,C(t) and C mutually commute.

For a local C-cosine family {C(t); |t| < T} on X, we define a linear operator G as follows:

Gx =
d2

dt2
(C(t)C−1x)|t=0 (2.1)

with D(G) = {x ∈ R(C);C−1x ∈ ∪
0<δ<T

C2(δ)}, where C2(δ) = {x ∈ X;C(t)x : (−δ, δ) → X

is twice continuously differentiable}.
Afterwards we denote dr

dtr C(t)x|t=s by C(r)(s)x, r = 0, 1, 2 · · · .
Lemma 2.1. Let {C(t) : |t| < T} be a local C-cosine family on X. For 0 < s, r < T, x ∈

X, let w = C−1
∫ s

0

∫ r

0
C(u)C(v)xdudv. Then for |t| < T − s− r,

d2

dt2
C(t)w =

C

4
(C(t+ r + s)x− C(t+ s− r)x− C(t+ r − s)x+ C(t− s− r)x).

Proof. For |t| < T − r − s, we have

C(t)w =
1

2

∫ r

0

∫ s

0

(C(t+ u) + C(t− u)C(v)x)dudv

=
1

2

∫ r

0

(∫ t+s

t

C(u)C(v)xdu+

∫ t

t−s

C(u)C(v)xdu

)
dv

=
1

2

∫ r

0

∫ t+s

t−s

C(u)C(v)xdudv.

Therefore.

d

dt
C(t)w =

1

2

∫ r

0

(C(t+ s)− C(t− s)C(v)xdv

=
C

4

∫ r

0

(C(t+ s+ v) + C(t+ s− v)

− C(t− s+ v)− C(t− s− v))xdv

=
C

4

(∫ t+s+r

t+s−r

C(v)xdv −
∫ t−s+r

t−s−r

C(v)xdv

)
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and

d2

dt2
C(t)w =

C

4
(C(t+ s+ r)x− C(t+ s− r)x− C(t+ s− r)x+ C(t− s− r)x).

Proposition 2.2. Linear operator G is closable with D(G) = X and for x ∈ D(G), |t| <
T,

d2

dt2
C(t)x = GC(t)x = C(t)Gx. (2.2)

Proof. Let x ∈ X and 0 < 2a < T. Suppose xa =
∫ a

0

∫ a

0
C(u)C(v)xdudv. Then by

Lemma 2.1, for t < T − 2a, we have

d2

dt2
C(t)C−1xa =

C

4
(C(t+ 2a)x+ C(t− 2a)x− 2C(t)x).

So, xa ∈ D(G). Since a−2xa → C2x, as a → 0+, we have D(G) ⊃ R(C2) = X. Thus, G

is densely defined. Now, we prove that G is closable. Let x ∈ D(G), |t| < T. Supposing

h < 2−1(T − t), by Definition 2.1, we have

1

4h2
(C(t+ 2h) + (C(t− 2h)− 2C(t))x =

1

2h2
C(t)(C(2h)− C)C−1x

=
1

2h2
(C(2h)− C)C−1C(t)x.

Letting h → 0, we obtain

d2

dt2
C(t)x = GC(t)x = C(t)Gx, for x ∈ D(G), |t| < T.

Since C(t) = C(−t) for |t| < T , we have C(1)(0)x = 0 for x ∈ D(G). Thus, for x ∈
D(G), |t| < T ,

C(t)x− Cx =

∫ t

0

∫ s

0

C(r)Gxdrds. (2.3)

Let xn ∈ D(G) and xn → 0, Gxn → y, as n → ∞. Substituting x by xn in (2.3) and letting

n → ∞, we get
∫ t

0

∫ s

0
C(r)ydrds = 0. Also since

Cy = lim
t→0

2

t2

∫ t

0

∫ s

0

C(r)ydrds = 0,

we get y = 0. Therefore, G is closable.

By Proposition 2.2, we can give the following definition.

Definition 2.2. Let {C(t); |t| < T} be a local C-cosine family. G is defined by (2.1).

Then G is called the complete infinitesimal generator of {C(t); |t| < T}.
Arguing as in the proof of [16, Theorem 2.1] we can prove

Proposition 2.3. Let {C(t); |t| < T} be a local C-cosine family on X. Assume that G

is its complete infinitesimal generator. Then CD(G) is a core of G, i.e., G|CD(G) = G.

Let linear operator Lτ (λ) be defined by

Lτ (λ)x =

∫ τ

0

e−λt

∫ t

0

C(s)xdsdt, for x ∈ X and 0 < τ < T, (2.4)

where {C(t); |t| < T} is a local C-cosine family on X.

Proposition 2.4. Let G be the complete infinitesimal generator of a local C-cosine family

{C(t); |t| < T}. Then

(i) C(t)x ∈ D(G) and C(t)Gx = GC(t)x for x ∈ D(G) and |t| < T ;
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(ii) Lτ (λ)x ∈ D(G) and (λ2−G)Lτ (λ)x = Cx−e−λτC(τ)x−λe−λτ
∫ τ

0
C(t)xdt for x ∈ X

and τ ∈ (0, T );

(iii) GLτ (λ)x = Lτ (λ)Gx for x ∈ D(G) and Lτ (λ)Lτ (µ)x = Lτ (µ)Lτ (λ)x for x ∈ X;

(iv) for x ∈ X,Lτ (λ)x is infinitely differentiable in λ, and there exists a constant Mτ > 0,

depending on τ , such that ∥∥∥ λn+2

(n+ 1)!
(
dn

dλn
)Lτ (λ)

∥∥∥ ≤ Mτ

for λ > 0 and n ∈ N0, where N0 denotes the set of nonnegative integers;

(v) for 0 < β < τ < T , there exists a constant Mτ,β > 0, depending on τ, β, such that∥∥∥λn+1

n!

dn

dλn
(λLτ (λ))

∥∥∥ ≤ Mτ,β , for
n+ 1

λ
∈ (0, β], n ∈ N0.

Proof. (i) can be easily deduced from (2.2). Now, we prove (ii). Let G be defined by

(2.1). For x ∈ D(G), |t0|, |t0 + t1| < T − τ , we have

C(t0 + t1)− C(t0)

t1
Lτ (λ)x

=
C

2t1

∫ τ

0

e−λt

∫ t

0

(C(t0 + t1 + s)x+ C(t0 + t1 − s)x− C(t0 + s)x− C(s− t0)x)dsdt

=
C

2t1

∫ τ

0

e−λt
(∫ t0+t+t1

t0+t

C(s)xds−
∫ t0+t1

t0

C(s)xds

+

∫ −t0

−t0−t1

C(s)xds−
∫ t−t0

t−t0−t1

C(s)xds
)
dt.

So

d

dt0
C(t0)Lτ (λ)x =

C

2

∫ τ

0

e−λt(C(t0 + t)x− C(t− t0)x)dt

and

d2

dt20
C(t0)Lτ (λ)x =

C

2

∫ τ

0

e−λt(
d

dt0
C(t0 + t)x− d

dt0
C(t− t0)x)dt.

Thus

C(2)(0)Lτ (λ)x

= C

∫ τ

0

e−λtC(1)(t)xdt

= C(−Cx+ e−λτC(τ)x+ λ

∫ τ

0

e−λtC(t)xdt)

= C(−Cx+ e−λτC(τ)x+ λe−λτ

∫ τ

0

C(t)xdt+ λ2

∫ τ

0

e−λt

∫ t

0

C(s)xdsdt).

Therefore Lτ (λ)x ∈ D(G) and

(λ2 −G)Lτ (λ)x = Cx− e−λτC(τ)x− λe−λτ

∫ τ

0

C(t)xdt, for x ∈ D(G).

This implies (ii) by Proposition 2.2 and the closedness of G. Also (iii) can be deduced from

(i) and (ii). In the following we prove (iv). Let M0
τ = max

[0,τ ]
∥C(t)∥ and Mτ = 2M0

τ . Since
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for n ∈ N0, x ∈ X, ∥∥∥ λn+2

(n+ 1)!

dn

dλn
((
1

λ
e−λτ )

∫ τ

0

C(t)xdt)
∥∥∥

≤
∥∥∥ λn+2

(n+ 1)!

n∑
i=0

Ci
n · i!λ−i−1τn−ie−λτ

∫ τ

0

C(t)xdt
∥∥∥

≤ M0
τ

[
1

(n+ 1)!

n∑
i=0

n!

(n− i)!
(λτ)n+1−ie−λτ

]
∥x∥

≤ M0
τ ∥x∥

and similarly ∥∥∥ λn+2

(n+ 1)!

dn

dλn

( 1

λ

∫ τ

0

e−λtC(t)xdt
)∥∥∥ ≤ M0

τ ∥x∥,

we have∥∥∥ λn+2

(n+ 1)!

dn

dλn
Lτ (λ)x

∥∥∥ =
∥∥∥ λn+2

(n+ 1)!

dn

dλn

(∫ τ

0

e−λt

∫ t

0

C(s)xdsdt
)∥∥∥

=
∥∥∥ λn+2

(n+ 1)!

dn

dλ

(
− 1

λ
e−λτ

∫ τ

0

C(t)xdt+
1

λ

∫ τ

0

e−λtC(t)xdt
)∥∥∥

≤ Mτ∥x∥.

Finally, we prove (v). For x ∈ X,n ∈ N0, we have∥∥∥λn+1

n!
(λLτ (λ)x)

(n)
∥∥∥

=
∥∥∥λn+1

n!
(λL(n)

τ (λ) + nL(n−1)
τ (λ))x

∥∥∥
=

∥∥∥(−1)n
λn+2

n!

∫ τ

0

e−λttn
∫ t

0

C(s)xdsdt

+ (−1)n−1 λn+1

(n− 1)!

∫ τ

0

e−λttn−1

∫ t

0

C(s)dxdt
∥∥∥

=
∥∥∥(−1)n−1λ

n+1

n!
e−λττn

∫ τ

0

C(s)xds+ (−1)n
λn+1

n!

∫ τ

0

e−λttnC(t)xdt
∥∥∥

≤ M0
τ

(λτ)n+1

n!
e−λτ∥x∥+M0

τ

λn+1

n!

∫ τ

0

e−λttndt∥x∥

≤
(
M0

τ

(λτ)n+1

n!
e−λτ +M0

τ

)
∥x∥.

Thus, since F (t) = 1
n! (tτ)

n+1e−tτ is decreasing on [n+1
τ ,∞), we get

∥λ
n+1

n!
(λLτ (λ)x)

(n)∥ ≤
(
M0

τ

(n+1
β τ)n+1

n!
e−(n+1)(τ/β) +M0

τ

)
∥x∥

for x ∈ X,n ∈ N0 and n+1
λ ∈ [0, β]. Write an = (n+1)n+1

n!

(
τ
β

)n+1
e−(n+1)τ/β . Then

lim
n→∞

an+1

an
= lim

n→∞

(
1 +

1

n

)n+1( τ

β

)
e−τ/β =

τ

β
e1−τ/β < 1, (2.5)

and so Nτ,β = sup{an;n ∈ N0} < ∞. Setting Mτ,β = M0
τ (1 +Nτ,β), we see that (v) holds.

The proof is complete.
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§3. Characterization of Local C-Cosine Family

The purpose of this section is to give a characterization of the complete infinitesimal

generator of a local C-cosine family. For this reason we first introduce the concept of

asymptotic C-cosine resolvent.

Definition 3.1. Let A be a closed linear operator in X, τ ∈ (0, T ) and β ∈ (0, τ). A

family {Lτ (λ) : λ > a} in B(X) is called an asymptotic C-cosine resolvent of A if it satisfies

the following conditions:

(a1) for x ∈ X,λ > a, Lτ (λ)x is an infinitely differentiable function of λ;

(a2) for x ∈ X and λ, µ > a,Lτ (µ)Lτ (λ)x = Lτ (λ)Lτ (µ)x;

(a3) Lτ (λ)x ∈ D(A) and (λ2 − A)Lτ (λ)x = Cx + Vτ (λ)x for x ∈ X and λ > a, where

Vτ (λ)x is infinitely differentiable for λ > a and there exists a constant Mτ,β > 0, depending

on τ, β, such that ∥∥∥ dn

dλn
Vτ (λ)x

∥∥∥ ≤ Mτ,βτ
ne−λτ∥x∥ (3.1)

for x ∈ X, λ > max{a, n
β } and n ∈ N0;

(a4) ALτ (λ)x = Lτ (λ)Ax for x ∈ D(A) and λ > a.

Theorem 3.1. A closed linear operator A in X is the complete infinitesimal generator

of a local C-cosine family {C(t) : |t| < T} if and only if it satisfies the following conditions:

(i) D(A) is dense in X;

(ii) for every τ ∈ (0, T ) there exists an asymptotic C-cosine resolvent {Lτ (λ);λ > a} and

a constant Mτ > 0, depending on τ , such that∥∥∥ λn+2

(n+ 1)!

dn

dλn
Lτ (λ)

∥∥∥ ≤ Mτ , for n ∈ N0,
n+ 1

λ
∈ (0, τ ] and λ > a; (3.2)

(iii) for τ ∈ (0, T ), β ∈ (0, τ), there exists a constant Mτ,β > 0, depending on τ, β, such

that ∥∥∥λn+1

n!

dn

dλn
(λLτ (λ))

∥∥∥ ≤ Mτ,β , for λ > max{a, n
β
} and n ∈ N0; (3.3)

(iv) CD(A) is a core A.

In order to prove the sufficiency of Theorem 3.1, we first prove some lemmas.

Lemma 3.1. Let A be a closed linear operator and satisfy the conditions (i) and (ii) in

Theorem 3.1 and τ ∈ (0, T ). Then

(b1) for x ∈ D(A), Cx ∈ D(A) and ACx = CAx; (3.4)

(b2) Lτ (λ)Cx = CLτ (λ)x for x ∈ X and λ > a; (3.5)

(b3) L
(n+1)
τ (λ)Cx = V

(n+1)
τ (λ)Lτ (λ)x − Vτ (λ)L

(n+1)
τ (λ)x − 2λ(n + 1)L

(n)
τ (λ)Lτ (λ)x −

n(n+ 1)L
(n−1)
τ (λ)Lτ (λ), for x ∈ X and n ≥ 1; (3.6)

(b4) for x ∈ X,n ∈ N0,

lim
λ→∞

(−1)n

(n+ 1)!
λn+2L(n)

τ (λ)x = Cx, (3.7)

where L
(n)
τ (λ)x = dn

dλnLτ (λ)x, V
(n)
τ (λ)x = dn

dλnVτ (λ)x.

Proof. First we prove (b1) and (b2). Let β ∈ (0, τ). By (a3) and (ii), for x ∈ D(A), λ >
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max{a, 1/β}, we have

∥λ2Lτ (λ)x− Cx∥ ≤ ∥Lτ (λ)Ax∥+ ∥Vτ (λ)x∥

=
Mτ

λ2
∥Ax∥+Mτ,βe

−λτ∥x∥.

Therefore, lim
λ→∞

λ2Lτ (λ)x = Cx for x ∈ D(A) and, since ∥λ2Lτ (λ)∥ ≤ Mτ for λ >

max{a, 1/τ} and D(A) = X, we obtain

lim
λ→∞

λ2Lτ (λ)x = Cx, for x ∈ X. (3.8)

Thus (a4) and (3.8) imply that (b1) holds, since A is closed. Moreover, we can obtain (b2)

from (a2) and (3.8). Now, we prove (b3). Let λ > a, from (λ2 − A)Lτ (λ)x = Cx + Vτ (λ)x

for x ∈ X, we have

(λ2 −A)L(n+1)
τ (λ)x+ 2(n+ 1)λL(n)

τ (λ)x+ n(n+ 1)L(n−1)
τ (λ)x = V (n+1)

τ (λ)x. (3.9)

Multiplying (3.9) by Lτ (λ) and then using (a3) and (b2), we get

L(n+1)
τ (λ)(Cx+ Vτ (λ)x) + 2(n+ 1)λL(n)

τ (λ)Lτ (λ)x+ n(n+ 1)L(n−1)
τ (λ)Lτ (λ)x

= V (n+1)
τ (λ)Lτ (λ)x.

Thus, (b3) holds. In the following we prove (3.7) by induction with respect to n. First,

(3.8) implies that (3.7) holds for n = 0. We now prove that (3.7) holds for n = 1. Suppose

β ∈ (0, τ), x ∈ D(A) and λ > max{a, 2/β}. Differentiating the following equality

(λ2 −A)Lτ (λ)x = Cx+ Vτ (λ)x

and then multiplying λ3Lτ (λ), we get

2(λ2Lτ (λ)
2x+ λ3L(1)

τ (λ)λ2Lτ (λ)x− λ3AL(1)
τ (λ)Lτ (λ)x = λ3V (1)

τ (λ)Lτ (λ)x.

Also by (b1) and (b2), we have

∥ − 1

2
λ3L(1)

τ (λ)Cx− C2x∥

= ∥ − 1

2
λ3L(1)

τ (λ)(Cx− λ2Lτ (λ)x)−
1

2
λ3L(1)

τ (λ)λ2Lτ (λ)x

− (λ2Lτ (λ))
2x+ (λ2Lτ (λ))

2x− C2x∥

≤ ∥λ
3

2
L(1)
τ (λ)∥ · ∥Cx− λ2Lτ (λ)x∥+

1

2
∥λ3L(1)

τ (λ)Lτ (λ)Ax∥

+
1

2
∥λ3V (1)

τ (λ)Lτ (λ)x∥+ ∥(λ2Lτ (λ))
2 − C2x∥.

So for x ∈ D(A), λ > max{a, 2/β}, by (3.8), the condition (ii) and (a3),

∥ − 1

2
λ3L(1)

τ (λ)Cx− C2x∥

≤ Mτ∥Cx− λ2Lτ (λ)x∥+
M2

τ

λ2
∥Ax∥+ λ

2
Mτ ·Mτ,βe

−λτ∥x∥

+ ∥(λ3Lτ (λ))
2 − C2x∥ → 0 as λ → ∞.

Thus, for x ∈ D(A),

lim
λ→∞

(
−1

2

)
λ3L(1)

τ (λ)Cx = C2x
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and so (3.7) holds for n = 1 since CD(A) = X and ∥ 1
2λ

3L
(1)
τ (λ)∥ ≤ Mτ . Now, supposing

(3.7) is true for n ≤ k, we prove that it is true for n = k + 1. Suppose x ∈ X, λ >

max{a, (k + 1)/β}, β ∈ (0, τ). It follows from (3.6) that

∆kx =
(−1)k+1

(k + 2)!
λk+3L(k+1)

τ (λ)Cx− C2x

=
(−1)k+1

(k + 2)!
λk+3(V (k+1)

τ (λ)x− L(k+1)
τ (λ)Vτ (λ)x)

− (−1)k+1

(k + 2)!
· 2(k + 1)λk+4L(k)

τ (λ)Lτ (λ)x

− (−1)k+1

(k + 2)!
k(k + 1)λk+3L(k−1)

τ (λ)Lτ (λ)x− C2x

=
(−1)k+1

(k + 2)!
λk+3(V (k+1)

τ (λ)x− L(k+1)
τ (λ)Vτ (λ)x)

+
2k + 2

k + 2

( (−1)k

(k + 1)!
λk+2L(k)

τ (λ)λ2Lτ (λ)x− C2x
)

+
k

k + 2

( (−1)k−1

k!
λk+1L(k−1)

τ (λ)λ2Lτ (λ)x− C2x
)
.

So, by (a3) and the condition (ii) we have

∥∆kx∥ ≤ Mτ,β

(k + 2)!
(λτ)k+3τ−2τ−λτ∥x∥+Mτ ·Mτ,βe

−λτ∥x∥

+
2k + 2

k + 2
∥ (−1)k

(k + 1)!
λk+2L(k)

τ (λ)(λ2Lτ (λ)x− Cx)∥

+
2k + 2

k + 2
∥ (−1)k

(k + 1)!
λk+2L(k)

τ (λ)Cx− C2x∥

+
k

k + 2
∥ (−1)k−1

k!
λk+1L(k−1)

τ (λ)(λ2Lτ (λ)x− Cx)∥

+
k

k + 1
∥ (−1)k−1

k!
λk+1L(k−1)

τ (λ)Cx− C2x∥.

Thus, the induction hypothesis and the condition (ii) yield

lim
λ→∞

(−1)k+1

(k + 2)!
λk+3L(k+1)

τ (λ)Cx = C2x for x ∈ X.

This implies that (3.7) is true for n = k + 1 and x ∈ X, since

R(C) = X and ∥ λk+3

(k + 2)!
L(k+1)
τ (λ)∥ ≤ Mτ .

Lemma 3.2. Suppose that the conditions (i) and (ii) of Theorem 3.1 hold. Then

lim
λ→∞

(−1)n

n!
λn+1 dn

dλn
(λLτ (λ))x = Cx for x ∈ X and n ∈ N0. (3.10)
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Proof. It follows from (3.7) that

lim
λ→∞

(−1)n

n!
λn+1 dn

dλn
(λLτ (λ))x

= lim
λ→∞

(−1)n

n!
λn+2L(n)

τ (λ)x+ lim
λ→∞

(−1)n

(n− 1)!
λn+1L(n−1)

τ (λ)x

= (n+ 1) lim
λ→∞

(−1)n

(n+ 1)!
λn+2L(n)

τ (λ)x− n lim
λ→∞

(−1)n−1

n!
λn+1L(n−1)

τ (λ)x

= (n+ 1)Cx− nCx

= Cx.

Fix τ ∈ (0, T ) arbitrarily. For n > |a|τ , we define families {Cn,τ (t) : |t| ≤ τ} and

{Sn,τ (t); |t| ≤ τ} in B(X) by

Cn,τ (t)x =


(−1)n

n! λn+1 dn

dλn (λLτ (λ))x|λ=n/t, 0 < t ≤ τ,
Cx, t = 0,
Cn,τ (−t)x, −τ ≤ t < 0

and

Sn,τ (t)x =


(−1)n

n! λn+1 dn

dλnLτ (λ)x|λ=n/t, 0 < t ≤ τ,
0, t = 0,
−Sn,τ (−t)x, −τ ≤ t < 0.

We suppose that all the following lemmas satisfy the conditions of Theorem 3.1.

Lemma 3.3. Cn,τ (t) and Sn,τ (t) are strongly continuous on [−τ, τ ].

Proof. Cn,τ (t) are strongly continuous on [−τ, τ ] by Lemma 3.2.For λ > max{a, (n +

1)/t}, ∥∥∥ λn+2

(n+ 1)!
L(n)
τ (λ)

∥∥∥ ≤ Mτ ,

it follows that ∥Sn,τ (t)∥ ≤ n+1
n |t|. Thus, we see that Sn,τ (t) is strongly continuous on [−τ, τ ].

We will prove that Cn,τ (t) uniformly converges to a strongly continuous bounded linear

operator family Cτ (t) on [−β, β](o < β < τ), and {Cτ (t) : |t| < β} is a C-cosine family on

X. By using this fact, we construct a C-cosine family {C(t) : |t| < T} with its complete

infinitesimal generator A. For this reason, we first found some lemmas.

Lemma 3.4. Suppose x ∈ D(A2) and β ∈ (0, τ). Then for 0 < t < β and n ≥ 2,

d

dt
Cn,τ (t)Cx =

2n+ 2

n
Sn,τ (t)ACx− n+ 1

n
Sn−1,τ

(n− 1

n
t
)
ACx+Mn,τ (t)x

and ∥Mn,τ (t)x∥ uniformly converges to 0 on (0, β] as n → ∞.

Proof. Let

Pn(t)x =
(−1)n−1

n!
(n/t)n+3(

1

t
)[V (n+1)

τ (n/t)Lτ (n/t)x− Vτ (n/t)L
(n+1)
τ (n/t)x],

Qn(t)x =
[ (−1)n

n!
(n/t)n+2L(n)

τ (n/t)
2n+ 2

t
+

(−1)n

(n+ 1)!
(n/t)n+1L(n−1)

τ (n/t)
n+ 1

t

]
Vτ (n/t)x,

Rn(t)x =
[ (−1)n

n!
(n/t)nL(n)

τ (n/t)
2n+ 2

t
+

(−1)n

(n− 1)!
(n/t)n−1L(n−1)

τ (n/t)
n+ 1

t

]
Lτ (n/t)A

2x,
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Using (a3) and (3.6), we get

d

dt
Cn,τ (t)Cx

=
(−1)n

n!
(n/t)n+2(− n

t2
)L(n+1)

τ (n/t)Cx+
(−1)n

n!
(n+ 2)(− n

t2
)L(n)

τ (n/t)Cx

+
(−1)n

(n− 1)!
(n/t)n+1(− n

t2
)L(n)

τ (n/t)Cx

+
(−1)n

(n− 1)!
(n/t)n(n+ 1)(− n

t2
)L(n−1)

τ (n/t)Cx

=
(−1)n−1

n!
(n/t)n+3(

1

t
)[V (n+1)

τ (n/t)Lτ (n/t)− Vτ (n/t)L
(n+1)
τ (n/t)x

− 2n(n+ 1)

t
L(n)
τ (n/t)Lτ (n/t)x− n(n+ 1)L(n−1)

τ (n/t)Lτ (n/t)Cx]

+
(−1)n

n!
(n/t)n+2n+ 2

t
L(n)
τ (n/t)Cx+

(−1)n−1

n!
(n/t)n+3L(n)

τ (n/t)Cx

+
(−1)n−1

n!
(n+ 1)(n/t)n+2L(n−1)

τ (n/t)Cx

= Pn(t)x+
(−1)n

n!
(n/t)n+2L(n)

τ (n/t)
[2n+ 2

t
(n/t)2Lτ (n/t)x− 2n+ 2

t
Cx

]
+

(−1)n

(n− 1)!
(n/t)n+1L(n−1)

τ (n/t)
[n+ 1

t
(n/t)2Lτ (n/t)x− n+ 1

t
Cx

]
= Pn(t)x+

(−1)n

n!
(n/t)n+2L(n)

τ (n/t)
2n+ 2

t
(Lτ (n/t)Ax+ Vτ (n/t)x)

+
(−1)n

(n− 1)!
(n/t)n+1L(n−1)

τ (n/t)
n+ 1

t
(Lτ (n/t)Ax+ Vτ (n/t)x)

= Pn(t)x+Qn(t) +
(−1)n

n!
(n/t)nL(n)

τ (n/t)
2n+ 2

t
(Lτ (n/t)A

2x+ACx+ Vτ (n/t)Ax)

+
(−1)n

(n− 1)!
(n/t)n−1L(n−1)

τ (n/t)
n+ 1

t
(Lτ (n/t)A

2x+ACx+ Vτ (n/t)Ax)

= Pn(t)x+Qn(t)x+Qn(t)Ax+Rn(t)x+
2n+ 2

n
Sn,τ (t)ACx

− n+ 1

n
Sn−1,τ (

n− 1

n
t)ACx.

Now, let Mn,τ (t) = Pn(t)x + Qn(t)(x + Ax) + Rn(t)x. Then, using (a3) and the condition

(ii) of Theorem 3.1, for 0 < t ≤ β, we have

∥Mn,τ (t)x∥ ≤ ∥Pn(t)x∥+ ∥Qn(t)(x+Ax)∥+ ∥Rn(t)x∥

≤ Mτ ·Mτ,β

n! · n
(
nτ

t
)n+2τ−1e−

nτ
t ∥x∥+Mτ ·Mτ,β

n+ 1

t
e−

nτ
t ∥x∥

+Mτ ·Mτ,β

(2(n+ 1)2

t
+

n(n+ 1)

t

)
e−

nτ
t ∥x+Ax∥

+M2
τ (t/n)

2
[
2(

n+ 1

n
)2t+

n+ 1

n
t
]
∥A2x∥.

Moreover (2.5) shows that the first three terms on the left of the above inequality uniformly

converges to 0 on (0, β) as n → ∞. Therefore, Mn,τ (t)x uniformly converges to 0 on (0, β]

as n → ∞.
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Using arguments similar to those in the proof of Lemma 3.4, we have

Lemma 3.5. Let x ∈ D(A), β ∈ (0, τ). For t ∈ (0, β], we have

d

dt
Sn,τ (t)Cx = Cn,τ (t)Cx+Nn,τ (t)x

and Nn,τ (t)x uniformly converges to 0 on (0, β] as n → ∞.

Lemma 3.6. Let x ∈ D(A), β ∈ (0, τ). Then Sn,τ (t)Cx − Sn−1,τ (
n−1
n )Cx uniformly

converges to 0 on (0, β] as n → ∞.

Proof. Let

F (t)Cx =
(−1)n−1

(n− 1)!
(n/t)n−1L(n−1)

τ (n/t)Cx.

Then

F ′(t)Cx =
(−1)n−1

(n− 1)!
(n/t)n−2

(
− (n− 1)n

t2

)
L(n−1)
τ (n/t)Cx

+
(−1)n−1

(n− 1)!
(n/t)n−1

(
− n

t2

)
L(n)
τ (n/t)Cx

= Sn,τ (t)Cx− n− 1

n
Sn−1,τ

(n− 1

n
t
)
Cx.

Also since F (t)Cx = t
nSn,τ (t)Cx, using Lemma 3.5, we get

F ′(t)Cx =
1

n
Sn,τ (t)Cx+

t

n
(Nn,τ (t)x+ Cn,τ (t)Cx).

Thus,

Sn,τ (t)Cx− Sn−1,τ

(n− 1

n
t
)
Cx =

t

n− 1
(Nn,τ (t)x+ Cn,τ (t)Cx).

From condition (iii), for any n ∈ N0, t ∈ (0, β], ∥Cn,τ (t)∥ ≤ Mτ,β ; the proof is complete.

From Lemmas 3.4–3.6 and the fact that ∥Sn,τ (t)∥ ≤ n+1
n |t| for t ∈ [−τ, τ ], we obtain

Lemma 3.7. Let x ∈ D(A2), β ∈ (0, τ). Then for 0 < t ≤ β and n ≥ 2,

d

dt
Cn,τ (t)Cx = Sn,τ (t)ACx+Mn,τ (t)x,

where Mn,τ (t)x uniformly converges to 0 on (0, β] as n → ∞.

In the following, we prove Theorem 3.1.

Proof of Theorem 3.1. The necessity follows from Propositions 2.3 and 2.4. Now, we

prove the sufficiency.

In the following we will use the fact that for t ∈ (0, β],

∥Cn,τ (t)∥ ≤ Mτ,β and ∥Sn,τ (t)∥ ≤ 2βMτ , (3.11)

where β ∈ (0, τ). The proof is divided into four steps.

Step 1. We prove that Cn,τ (t)x converges to a strongly continuous function on (−τ, τ)

as n → ∞. Let 0 < s < β < τ and take ε > 0 satisfying 0 < ε ≤ s ≤ τ − ε < τ and suppose

n,m > |a|τ and x ∈ D(A2). By Lemmas 3.5 and 3.7,

d

ds
Cn,τ (s)Cx = Sn,τ (s)ACx+Mn,τ (s)x (3.12)

and
d

ds
Sn,τ (s)Cx = Cn,τ (s)Cx+Nn,τ (s)x, (3.13)

where Mn,τ (s)x and Nn,τ (s)x uniformly converge to 0 on (0, β] as n → ∞.
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So,

d

ds
Cn,τ (s)Cm,τ (t− s)Cx

= (Sn,τ (s)AC +Mn,τ (s))Cm,τ (t− s)x− Cn,τ (s)(Sm,τ (t− s)ACx+Mm,τ (t− s)x).

Integrating this equality from ε to t− ε and then letting ε ↓ 0, we obtain

Cn,τ (t)C
2x− Cm,τ (t)C

2x

=

∫ t

0

Sn,τ (s)Cm,τ (t− s)ACxds−
∫ t

0

Cn,τ (s)Sm,τ (t− s)ACxds

+

∫ t

0

Mn,τ (s)Cm,τ (t− s)xds−
∫ t

0

Mm,τ (t− s)Cn,τ (s)xds

= −
∫ t

0

Sn,τ (s)dSm,τ (t− s)ACx−
∫ t

0

Sn,τ (s)Nm,τ (t− s)ACxds

−
∫ t

0

Cn,τ (s)Sm,τ (t− s)ACxds+

∫ t

0

Mn,τ (s)Cm,τ (t− s)xds

−
∫ t

0

Mm,τ (t− s)Cn,τ (s)xds

=

∫ t

0

Sm,τ (t− s)Nn,τ (s)ACxds−
∫ t

0

Sn,τ (s)Nm,τ (t− s)ACxds

+

∫ t

0

Mn,τ (s)Cm,τ (t− s)xds−
∫ t

0

Mm,τ (t− s)Cn,τ (s)xds.

Thus from (3.11), for x ∈ C2D(A2) and t ∈ (0, β], Cn,τ (t)x uniformly converges on (0, β] as

n → ∞. Also since C2D(A2) is dense in X, it follows that for x ∈ X, lim
n→∞

Cn,τ (t)x = Cτ (t)x

uniformly for t ∈ [0, β] and Cτ (t)x is continuous on [0, β]. By the arbitrariness of β, we see

that Cτ (t)x is continuous on (0, τ) for x ∈ X. Moreover, by the definition of Cn,τ (t) we

have Cτ (t)x = Cτ (−t)x for x ∈ X and t ∈ (−τ, 0).

Step 2. We prove that for |s|, |t+ s|, |t− s| < τ and x ∈ X,

[Cτ (t+ s) + Cτ (t− s)]Cx = 2Cτ (t)Cτ (s)x. (3.14)

Now, suppose β ∈ (0, τ), |t+ s|, |t− s|, |s|, |t| ≤ β and x ∈ D(A2). Let

F (r)x = [Cn,τ (t+ r)Cn,τ (s− r) + Cn,τ (t− r)Cn,τ (s− r)]Cx, for 0 ≤ r ≤ s.

Then, by (3.12) and (3.13), we get

d

dr
F (r)x = Pn(r)x+ [Sn,τ (t+ r)Cn,τ (s− r)− Cn,τ (t+ r)Sn,τ (s− r)]ACx

− [Cn,τ (s− r)Sn,τ (t− r) + Cn,τ (t− r)Sn,τ (s− r)]ACx, (3.15)

where

Pn(r)x = Mn,τ (t+ r)Cn,τ (s− r)x−Mn,τ (s− r)Cn,τ (t+ r)x

−Mn,τ (t− r)Cn,τ (s− r)x−Mn,τ (s− r)Cn,τ (t− r)x.

Let

Qn(r)x = Sn,τ (s− r)[Nn,τ (t+ r) +Nn,τ (r − t)]ACx,

Rn(r)x = Nn,τ (s− r)[Cn,τ (t+ r) + Cn,τ (r − t)]ACx.
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Integrating (3.15) from ε to s and then letting ε ↓ 0, we get

Cn,τ (t+ s)C2x+ Cn,τ (t− s)C2x− 2Cn,τ (s)Cn,τ (t)Cx

=

∫ s

0

Pn(r)xdr +

∫ s

0

Cn,τ (s− r)[Sn,τ (t+ r) + Sn,τ (r − t)]ACxdr

−
∫ s

0

Sn,τ (s− r)[Cn,τ (t+ r) + Cn,τ (r − t)]ACxdr

=

∫ s

0

Pn(r)xdr +

∫ s

0

Cn,τ (s− r)[Sn,τ (t+ r) + Sn,τ (r − t)]ACxdr

+

∫ s

0

Qn(r)xds− Sn,τ (s− r)[Sn,τ (r + t) + Sn,τ (r − t)]ACx|r=s
r=0

+

∫ s

0

Rn(r)xdr −
∫ s

0

Cn,τ (s− r)[Sn,τ (t+ r) + Sn,τ (r − t)]ACxdr

+

∫ s

0

Rn(r)xdr −
∫ s

0

Cn,τ (s− r)[Sn,τ (t+ r) + Sn,τ (r − t)]ACxdr

=

∫ s

0

[Pn(r)x+Qn(r)x+Rn(r)x]dr.

Thus, for x ∈ C2D(A2) and |s|, |t|, |t+ s|, |t− s| ≤ β, we have

[Cτ (t+ s) + Cτ (t− s)]Cx = 2Cτ (t)Cτ (s)x.

Since C2D(A2) is dense in X and β ∈ (0, τ) is arbitrary, we see that (3.14) holds.

Step 3. First we show that for x ∈ D(A) and |t| < τ ,

Cτ (t)x ∈ D(A), ACτ (t)x = Cτ (t)Ax. (3.16)

This can be deduced from (a4) and (3.4) and the fact that A is closed. Next we prove that

for x ∈ X, |t| < τ, ∫ t

0

∫ s

0

Cτ (r)xdrds ∈ D(A)

and

Cτ (t)x− Cx = A

∫ t

0

∫ s

0

Cτ (r)xdrds (3.17)

and

Sτ (t) =

∫ t

0

Cτ (s)xds, (3.18)

where Sτ (t)x = lim
n→∞

Sn,τ (t) for |t| < τ and x ∈ X.

Let β ∈ (0, τ) and |t| ≤ β and x ∈ D(A2). By Lemmas 3.5 and 3.7, we have Sτ (t)Cx =∫ t

0
Cτ (t)Cxdr and Cτ (t)Cx − C2x =

∫ t

0
Sτ (r)ACxdr for |t| < β and x ∈ CD(A2). By the

closedness of A, we have

Cτ (t)Cx− C2x = A

∫ t

0

∫ s

0

Cτ (t)Cxdrds

and

Sτ (t)Cx =

∫ t

0

Cτ (s)xds.

Thus by the arbitrariness of β ∈ (0, τ) and CD(A2) = X, we see that (3.17) and (3.18) hold.
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Step 4. We define a local C-cosine family and prove that A is its complete infinitesimal

generator.

Define C(t) on (−T, T ) by

C(t)x = Cτ (t)x for t ∈ (−τ, τ), τ ∈ (0, T ) and x ∈ X.

Then C(t) is well defined. In fact, let τ1, τ2 ∈ (0, T ), |t| ≤ min(τ1, τ2). For x ∈ D(A2), by

the results of Step 3, we have

Cτ1(t)x− Cτ2(t)x

=

∫ t

0

d

ds
[Cτ1(t− s)Cτ2(s)]xds

= −
∫ t

0

ASτ1(t− s)Cτ2(s)xds+

∫ t

0

Cτ1(t− s)ASτ2(s)xds

= −ASτ1(t− s)Sτ2(s)x|t0 −A

∫ t

0

Sτ2(s)Cτ1(t− s)xds

+A

∫ t

0

Cτ1(t− s)Sτ2(s)xds

= 0. (3.19)

Also since D(A) = X, (3.19) holds for x ∈ X. This means that C(t) is well-defined.

Moreover, from (3.10) and (3.14), {C(t); |t| < T} is a local C-cosine family.

Finally, let G be the operator defined by (2.1). Then we need to show A = G. Let

x = Cy, where y ∈ D(A). From (3.17), we have

C(t)C−1x− x =

∫ t

0

∫ s

0

C(r)Aydrds = A

∫ t

0

∫ s

0

C(r)ydrds, for |t| < τ.

So, C(t)C−1x is twice continuously differentiable on (−τ, τ). Thus, x ∈ D(G) and Gx =

CAy = ACy = Ax. Therefore, A|CD(A) = G|CD(A) ⊂ G and so A ⊂ G by the condition (iv).

Conversely, let x ∈ D(G). Then there exists a sequence {xn} in D(G) such that xn → x

and Cxn → Gx as n → ∞. Since xn ∈ D(G) ⊂ R(C), we have Lτ (λ)xn ∈ R(C) by (3.5)

and

GLτ (λ)xn = (C(t)C−1Lτ (λ)xn)
(2)|t=0

= 2 lim
h→0

C(h)C−1Lτ (λ)xn − Lτ (λ)xn

h2

= Lτ (λ) · 2 lim
h→0

h
C(h)C−1xn − xn

h2

= Lτ (λ)Gxn,

where we used the fact that Lτ (λ)C(t)x = C(t)Lτ (λ)x by (a2). In the above equality letting

n → ∞, we get Lτ (λ)x ∈ D(G) and

GLτ (λ)x = Lτ (λ)Gx for x ∈ D(G). (3.20)

Since Lτ (λ)x ∈ D(A) for x ∈ X by (a3) and A ⊂ G, it follows that ALτ (λ)x = GLτ (λ)x

for x ∈ X. By (3.19), we have λ2Lτ (λ)Gx = G(λ2Lτ (λ))x = A(λ2Lτ (λ)x) for x ∈ D(G).

Also since A is closed, (3.8) implies Cx ∈ D(A) and ACx = CGx = GCx. This means that

G|CD(G = A|CD(G ⊂ A and so G ⊂ A by Proposition 2.3. Therefore G = A.
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§4. The Abstract Cauchy Problem and Examples

Let A be a linear operator in a Banach space X. Now, we consider the abstract Cauchy

problem on (−T, T ),

(ACP,T)

{
ü(t) = Au(t), −T < t < T,
u(0) = x, u̇(0) = y,

where T ∈ (0,∞].

In order to clarify the relationship of Cauchy problem (ACP,T) and local C-cosine family,

we introduce the following concept.

Definition 4.1. Cauchy problem (ACP,T) is called C-well-posed if for every x, y ∈
CD(A) there exists a unique solution u(t, x, y) to (ACP,T) with initial value u(0) = x and

u̇(0) = y such that ∥u(t, x, y)∥ ≤ M(t)(∥C−1x∥ + ∥C−1y∥) for t ∈ (−T, T ), where M(t) is

bounded on every compact subinterval of (−T, T ).

Theorem 4.1. Let A be a linear operator on X. A is the complete infinitesimal generator

of a local C-cosine family {C(t) : −T < t < T} on X if and only if the following conditions

hold:

(i) A is closed and D(A) = X;

(ii) Cx ∈ D(A), ACx = CAx for x ∈ D(A);

(iii) CD(A) is a core of A;

(iv) (ACP, T) is C-well-posed.

Proof. Necessity. By Propositions 2.3 and 2.4, we get (i)-(iii). For x, y ∈ CD(A), letting

u(t) = C(t)C−1x+

∫ t

0

C(s)C−1yds, −T < t < T, (4.1)

we see that u(t) is a solution to (ACP, T) by (2.4). To verify the uniqueness, suppose

that u(t)(−T < t < T ) is a solution to (ACP,T) with u(0) = 0, u̇(0) = 0. It is clear that

v(t) =
∫ t

0
u(s)ds is a solution to (ACP,T) with v(0) = v̇(0) = 0 and v(t) ∈ D(A) by the

closedness of A and the continuity of Au(t). Define function

F (s) = C(t− s)v′(s) +A

∫ t−s

0

C(r)v(s)dr for 0 ≤ s ≤ t < T.

Since AC(t)x = C(t)Ax,A
∫ t

0
C(s)xds = d

dtC(t)x for x ∈ D(A) and t ∈ (−T, T ), we get

F ′(s) = C(t− s)Av(s)− d

ds
C(t− s)v′(s)− C(t− s)Av(s) +

∫ t−s

0

C(r)Av(s)ds

= 0 (0 ≤ s ≤ t).

So, F (t) ≡ Cv′(t) = Cu(t) ≡ F (0) = 0. Since C is injective, we see u(t) ≡ 0 on [0, T ]. The

same is true for t ∈ (−T, 0). Thus we prove the uniqueness of solution to (ACP,T). Also

from (4.1) we can conclude that (ACP,T) is C-well-posed.

Sufficiency. For x ∈ CD(A), let u(t, x)(|t| < T ) be a solution to (ACP,T) with initial

value u(0) = x, u̇(0) = 0. Write C(t)x = Cu(t, x). Clearly, Cu(t, x) and u(t, Cx) are both

the solutions to (ACP,T) with initial value u(0) = Cx and u̇(0) = 0. Thus the uniqueness

of solution implies that C(t)x = Cu(t, x) = u(t, Cx) and

CC(t)x = Cu(t, Cx) = C(t)Cx for x ∈ CD(A) and |t| < T. (4.2)
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For given x ∈ X, since D(A) = X, there exists xn ∈ D(A) such that xn → x as n →
∞. Thus, the C-well-posedness of (ACP,T) implies that C(t)xn = u(t, Cxn) converges

uniformaly on compact set of (−T, T ). Let C(t)x = lim
n→∞

C(t)xn for x ∈ X, where xn ∈
D(A) and xn → x as n → ∞. Then C(x) is a strongly continuous bounded linear operator

function for t ∈ (−T, T ). Also, from (4.2) and CD(A) = X, we have

C(t)Cx = CC(t)x for x ∈ X and |t| < T. (4.3)

Moreover, for |t|, |s|, |t + s|, |t − s| < T and x ∈ C2D(A), emulating the calculation in [7,

p.89], we have

u(t− s, x) + u(t+ s, x) = 2u(t, u(s, x))

where u(t, x)(|t| < T ) denotes the solution to (ACP,T) with initial value u(0) = s and

u̇(0) = 0. Thus,

C[(t+ s) + C(t− s)]Cx = 2C(t)C(s)x. (4.4)

Also since C(t) is bounded on (−T, T ) and C2D(A) = X, (4.4) holds for x ∈ X and

|t|, |s|, |t + s|, |t − s| < T . Thus, we obtain a local C-cosine family {C(t); |t| < T} on X.

Let G be the complete infinitesimal generator of {C(t); |t| < T}, where G is defined by

(2.1). We need to show A = G. Let x ∈ CD(A) and u(t, x)(|t| < T ) be the solution to

(ACP,T) with initial value u(0) = x and u̇(0) = 0. Then u(t, x) = C(t)C−1x(|t| < T ). So,
d2

dt2C(t)C−1x|t=0 = u(t, x)|t=0 = Au(0, x) = Ax. Thus, x ∈ D(G) and Ax = Gx. Therefore

A|CD(A) ⊂ G. By condition (ii) we have A ⊂ G. Now, we prove G ⊂ A. Let

Lτ (λ)x =

∫ τ

0

e−λt

∫ t

0

C(r)xdrdt, x ∈ X and τ ∈ (0, T ). (4.5)

We prove that for x ∈ X and τ ∈ (0, T ), Lτ (λ)x ∈ D(A) and

ALτ (λ)x = λ2Lτ (λ)x− Cx+ e−λτC(τ)x+ λe−λτ

∫ τ

0

C(t)xdt. (4.6)

In fact, for x ∈ CD(A), we have C(t)x ∈ CD(A) by (4.3) for t ∈ (0, τ). So AC(t)x =

GC(t)x = C(t)Gx for x ∈ CD(A). From the closedness of A we deduce that

ALτ (λ)x = Lτ (λ)Gx for x ∈ CD(A).

So, by Proposition 2.4 (i), (iii) and (4.5) we see that (4.6) holds for x ∈ CD(A). Thus from

CD(A) = X and the closedness of A, it follows that Lτ (λ)x ∈ D(A) and (4.6) holds for

x ∈ X. Letting x ∈ D(G), by Porposition 2.4 (ii), (iii) and (4.6), we have A(λ2Lτ (λ)x) =

λ2Lτ (λ)Gx. Also by Proposition 2.4 (i) and (3.8), we get Cx ∈ D(A) and ACx = GCx or

G|CD(G) ⊂ A. Observing that CD(G) is a core of G, we see A ⊃ G. Thus A = G.

Example 4.1. Let m be Lebesgue measure on C, the complex plane. On L2(C,m), let

(Af)(µ) = µf(µ) for f ∈ D(A) = {g ∈ L2(C,m);Ag ∈ L2(C,m)}. We now define a bounded

linear operator family {C(t)}t∈R by C(t) = 1
2 (e

tA + e−tA)e−|A|2 for t ∈ R. It is easy to see

that {C(t)} is a C-cosine family on L2(C, m) with C = C(0) = e−|A|2 . Since for |t| > 1,

∥C(t)∥ = sup{1
2
|eµt + e−µt|e−|µ|2 ;µ ∈ C} ≥ 1

2
(et

2

− 1),

{C(t)}t∈R is not exponentially bounded. Moreover, it is easy to show that G = A2 is the

complete infinitesimal generator of {C(t)}t∈R with ρC(G) = ρ(G) = ϕ, where ρC(G) = {λ ∈
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C; (λ−G) is injective, R(λ−G) ⊃ R(C) and (λ−G)−1C is a bounded linear operator} is

the C-resolvent set G and ρ(G) the resolvent set of G.

Set A =

(
0 I
G 0

)
. Then D(A) is dense in L2(C,m) ⊕ L2(C,m) since D(G) is dense

in L2(C,m). Moreover, it is easy to check that ρ(A) = ϕ from ρ(G) = ϕ. Therefore, by

Proposition 4.5 in [17], A does not generate a local integrated semigroup on L2(C,m) ⊕
L2(C,m).

In order to make arrangements for the following Example 4.2, we first establish a lemma.

Lemma 4.1. Let H be a Hilbert space with an orthonormal basis {en}∞n=1. Assume

that A ∈ B(H) satisfies A = {an}∞n=1 with an ̸= am as n ̸= m, i.e., Ax =
∞∑

n=1
anxnen for

x =
∞∑

n=1
xnen ∈ H. We have

(i) if C ∈ B(H) satisfies CA = AC, then (Cen, em) = 0 as n ̸= m, i.e., C = {cn}∞n=1;

(ii) if B =

(
B1 B2

B3 B4

)
∈ B(H ⊕ H) satisfies BA = AB, where A =

(
0 A
I 0

)
, then

B1 = B4 = {b1n}∞n=1, B3 = {b2n}∞n=1 and B2 = {anb2n}∞n=1.

Proof. (i) Let cnj = (Cen, ej), n, j = 1, 2, · · · . Then Cx =
∞∑

n,j=1

cjnxjen. Thus

CAx =
∞∑

n,j=i

cjn(Ax)jen =
∞∑

n,j=1

cjnajxjen

and

ACx = A
∞∑

n,j=1

cinxjen =
∞∑

n,j=1

cjnxjanen,

and so from AC = CA,
∞∑
j=1

cjnxjan =
∞∑
j=1

cjnajxj , n = 1, 2, · · · .

Setting x = (xj) = em,m = 1, 2, · · · , we obtain cmnam = cmnan, n,m = 1, 2, · · · . Therefore
cmn = 0 as n ̸= m since an ̸= am as n ̸= m. So (i) holds.

(ii) We have(
B1 B2

B3 B4

)(
0 A
I 0

)
=

(
B2 B1A
B4 B3A

)
,

(
0 A
I 0

)(
B1 B2

B3 B4

)
=

(
AB3 AB4

B1 B2

)
.

Thus from BA = AB, we obtain B1 = B4, B2 = AB3 = B3A. Therefore B3 = {b2n}∞n=1

by (i) and B2 = AB3 = {anb2n}∞n=1. Also since A2 =

(
A 0
0 A

)
and BA2 = A2B from

AB = BA we have B1A = AB1, and so B1 = B4 = {b1n}∞n=1 by (i). The proof is complete.

Example 4.2. Let H be the Hilbert space of all sequences x = {xn}∞n=1 of complex

numbers such that
∞∑

m=1
|xm|2 < ∞, with the norm ∥x∥ =

( ∞∑
m=1

∥xm∥2
)1/2

. Let T > 2 and

set

am =
m

T
+ i

{(em
m

)2 − (m
T

)2}1/2
for m ∈ N,

the set of all nature numbers. We define C(t) by

C(t)x =
{
|am|−1

(eamt + e−amt

2

)
xm

}∞

m=1
for x = {xm} ∈ H.
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Let C = C(0) = {|am|−1}∞m=1. It is clear that C ∈ B(H) is injective with R(C) = H.

Observing |am| = m−1em since Tem > m2 for T > 2 and m ∈ N , we have

m

2

(
em(

|t|
T −1) − e−m(

|t|
T +1)

)
≤ 1

|am|

∣∣∣eamt + e−amt

2

∣∣∣
≤ m

2

(
em(

|t|
T −1) + e−m(

|t|
T +1)

)
.

Therefore we see that

∥C(t)∥ = sup
{
|am|−1

∣∣∣eαmt + e−αmt

2

∣∣∣;m ∈ N
}
< ∞

if and only if |t| < T . Moreover, it is easy to show that {C(t); |t| < T} satisfies (ii) of

Definition 2.1, while (iii) of Definition 2.1 can be obtained by a calculation similar to that in

[17, p.76]. Hence {C(t); |t| < T} is a local C-cosine family. Clearly, it cannot be extended

to |t| ≥ T .

A simple calculation shows that G = {a2m}∞m=1 is the complete infinitesimal generator of

{C(t); |t| < T} with D(G) = {{a−2
m xm}; {xm} ∈ H}. For x ∈ CD(G) = {{a−3

m fm}; {fm} ∈
H} and y ∈ CD(G1/2) = {{a−2

m fm}; {fm} ∈ H}, the Cauchy problem{
d2u
dt2 = Gu, t ∈ (−T, T ),
u(0) = x, u̇(0) = y

(4.7)

has a unique solution

u(t) = C(t)C−1x+

∫ t

0

C(s)C−1yds

which satisfies

∥u(t)∥ ≤ M(t)(∥C−1x∥+ ∥C−1y∥),

where M(t) is a locally bounded positive function (0, T ) with M(t) → ∞ as t → T .

Let A =

(
0 I
G 0

)
and B =

(
B1 B2

B3 B4

)
∈ B(H ⊕ H) be injective. If A generates

a local B-semigroup T (t) on H ⊕ H ([17]), then BAu = ABu for u ∈ D(A). Obversing

G−1 = {a−2
m } ∈ B(H) (so ρ(G) ̸= ϕ), we have A−1 =

(
0 G−1

I 0

)
and BA−1 = A−1B.

Thus by Lemma 4.1, B1 = B4 = {b1m}, B3 = {b2m} and B2 = {a−2
m b2m}, so

B =

{(
b1m a−2

m b2m
b2m b1m

)}
.

Moreover, it is easy to check that

T (t) =

{(
b1m a−2

m b2m
b2m b1m

)( 1
2 (e

amt + e−amt) 1
2am

(eamt − e−amt)
am

2 (eamt − e−amt) 1
2 (e

amt + e−amt)

)}
.

Therefore T (t) is a strongly continuous B-semigroup on [0, T ] only if there exists M > 0

such that b1m = α1ma−2
m , b2m = α2ma−1

m with |αjm| ≤ M, j = 1, 2, and (α2
1m − α2

2m) ̸= 0

for m = 1, 2, · · · . By the local C-semigroup theory in [17] for

(x, y)T ∈ BD(A) =

{(
α1ma−2

m α2ma−3
m

α2ma−1
m α1ma−2

m

)(
a−2
m fm
gm

)
; (fm), (gm) ∈ H

}
=

{(
α1ma−4

m fm + α2ma−3
m gm

α2ma−3
m fm + α1ma−2

m gm

)
; (fm), (gm) ∈ H

}
,
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the Cauchy problem  d
dt

(
u1

u2

)
= A

(
u1

u2

)
, t ∈ (0, T ),

u1(0) = x, u2(0) = y
(4.8)

has a unique solution (
u1(t)
u2(t)

)
= T (t)B−1

(
x
y

)
which satisfies ∥∥∥(u1

u2

)∥∥∥ ≤ M(t)∥B−1

(
x
y

)
∥H⊕H

such that u1(t) is a solution of (4.7). We show that BD(A) ⊂ CD(G)⊕CD(G1/2). In fact,

for any (
α1ma−4

m fm + α2ma−3
m gm

α2ma−3
m fm + α1ma−2

m gm

)
∈ BD(A),

the equation {
a−3
m xm = α1ma−4

m fm + α2ma−3
m gm,

a−2
m ym = α2ma−3

m fm + α1ma−2
m gm

(4.9)

has a unique solution {xm} = {α1ma−1
m fm + α2mgm} ∈ H and {ym} = {α2ma−1

m fm +

α1mgm} ∈ H for {fm}, {gm} ∈ H, so BD(A) ⊆ CD(G)⊕ CD(G1/2). Conversely, for given

{{a−3
m xm}, {a−2

m ym}} ∈ CD(G)⊕ CD(G1/2), the equation (4.9) has a unique solution

{fm} = {(α2
1m − α2

2m)−1am(α1mxm − α2mym)}

and

{gm} = {(α2
1m − α2

2m)−1(α1mym − α2mxm)}.

Thus {fm}, {gm} ∈ H for any {xm}, {ym} ∈ H if and only if there exists N > 0 such that

|(α2
1m − α2

2m)−1amαjm| ≤ N . So

|am| ≤ min
{
N
∣∣α2m

α2m

α1m
− α1m

∣∣, N
∣∣α1m

α1m

α2m
− α2m

∣∣}.
Hence |α1mα−1

2m| → ∞ and |α2mα−1
1m| → ∞ since |αjm| ≤ M, j = 1, 2,m = 1, 2, · · · , a

contradiction. Therefore

BD(A) & CD(G)⊕ CD(G1/2).

From the above, the local C-cosine family theory cannot be unified by the local C-

semigroup and the local integrated semigroup theory in [17]. In particular, from application

to the second order Cauchy problems, we see that the local C-cosine family theory is better

than the local C-semigroup and the local integrated semigroup theory.
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