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Abstract

This paper deals with the solution concepts, scalarization and existence of solutions for
multiobjective generalized game. The scalarization method used in this paper can characterize
completely the solutions and be applied to prove the existence of solutions for quasi-convex
multiobjective generalized game. On the other hand, a new concept of security strategy is

introduced and its existence is proved. At last, some relations between these solutions are
established.
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§1. Introduction

A game with vector payoff is called a multiobjective game. Such games are generaliza-

tions of classical games and have attracted limited attention in the game theory literature.

Recently, certain results have been obtained. Shapley[5] defined the concept of equilibrium

of multiobjective game and presented its scalarization. Nieuwenhuis[4] and Tanaka[6] pro-

vided some possible generalizations of the notions of minmax, maxmin and saddle points

for vector-valued function. Ghose and Prasad[1] gave the concept of Pareto-optimal secu-

rity strategy and its scalarization. Nevertheless, all of these results are concerned with

multiobjective matrix game or convex multiobjective games in the sense of classical Pareto

efficiency.

In this paper, we will deal with multiobjective generalized game. A closed pointed convex

cone is used as domination structure, rather than the positive orthant of Euclidian space.

The cross constraints are admitted and given by set-valued mappings. Besides the solution

concepts defined by other authors, a new concept of security strategy is introduced. We

present a different scalarization and prove the existence of these solutions and some relations

between them.

In Section 2 we review some definitions and results in the multiobjective programming.

Sections 3,4,5 are devoted to the equilibrium, the Pareto-optimal absolute security strategy

and the Pareto-optimal weakly efficient security strategy respectively.
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§2. Preliminary

For later development we review multiobjective programming briefly.

Let ℜp be a p-dimensional Euclidian space, D ⊂ ℜp a closed pointed convex cone with

nonempty interior IntD,<,6 are cone-orders generated on ℜp by D, i.e., for y, y′ ∈ ℜp

y < y′ if y′ − y ∈ IntD, y 6 y′ if y′ − y ∈ D.

For Y ⊂ ℜp, y∗ ∈ Y is called a weakly efficient point of Y (w.r.t. D), if there is no y ∈ Y

such that y < y∗. The set of all weakly efficient points is denoted by WMin(Y ;D).

Let X ⊂ ℜn, f :X � ℜp be a set-valued mapping. The multiobjective programming, with

X, f,D as feasible set, objective function and domination structure respectively, is denoted

by

(VP):
WMin(f(x);D)

s.t. x ∈ X.

x∗ ∈ X is called a weakly efficient solution of (VP), if f(x∗) ∩WMin(f(X);D) ̸= ∅.
Lemma 2.1. If X is compact and f :X � ℜp is an upper semi-continuous set-valued

mapping with compact value, then the set of weakly efficient solutions is nonempty.

Proof. By the property of u.s.c set-valued mapping, f(X) is compact. So

WMin (f(X);D) ̸= ∅, and there is x∗ ∈ X such that f(x∗) ∩WMin(f(X);D) ̸= ∅. x∗ is a

weakly efficient solution of (VP).

In the remainder of this section we assume that f is point-valued.

For a ∈ ℜp, d ∈ IntD, define function φ(·; a, d):ℜp → ℜ by φ(y; a, d) = inf{t ∈ ℜ|y ∈
a+ td−D}. It is obvious that φ(·; a, d) is well defined and continous.

Lemma 2.2. For multiobjective programming (VP), suppose that there is a ∈ ℜp such

that f(X) ⊂ a + IntD. Then x∗ ∈ X is a weakly efficient solution of (VP) if and only

if there is d ∈ D̂ = {d ∈ IntD|∥d∥ = 1}, x∗ is an optimal solution of the following scalar

programming:

(SP):
Min h(x) , φ(f(x); a, d)

s.t. x ∈ X.

Proof. “⇒” Let d = (f(x∗) − a)/∥f(x∗)− a∥ ∈ D̂. Then h(x∗) = ∥f(x∗)− a∥. If x∗ is

not a solution of (SP), then there is x̄ ∈ X satisfying h(x̄) < h(x∗). Let t = 1
2 (h(x̄)+h(x∗)).

Then f(x̄) ∈ a+ td−D. Therefore f(x̄) 6 a+ td < a+ h(x∗)d = f(x∗), a contradiction.

“⇐” If x∗ is not a weakly efficient solution of (VP), then there is x̄ ∈ X satisfying

f(x̄) < f(x∗). It is easy to verify that h(x̄) < h(x∗) for any d ∈ D̂. Hence x∗ is not a

solution of (SP).

A vector-valued function f :ℜn → ℜp is called D−quasi-convex, if for any y ∈ ℜp the

level set Lf (y) = {x ∈ ℜp|f(x) 6 y} is a convex set.

Lemma 2.3. If f :ℜn → ℜp is D-quasi-convex, then the composite function h = φ(f ; a, d)

defined above is quasi-convex in usual sense.

Proof. It follows immediately from Lh(t) = {x ∈ ℜn|h(x) 6 t} = {x|f(x) ∈ a+td−D} =

Lf (a+ td).

In fact, the inverse proposition of Lemma 2.2 is true too.
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If D can be represented by D = {y ∈ ℜp|⟨ci, y⟩ > 0, i ∈ I}, where {ci|i ∈ I} ⊂ ℜp and I

is an index set, then φ(y; a, d) = sup{⟨ci, y − a⟩/⟨ci, d⟩|i ∈ I}. In particular, for D = ℜp
+ =

{y = (y1, · · · , yp)|yi > 0, i = 1, · · · , p}, φ(y; a, d) = Max{(yi − ai)/di|i = 1, · · · , p} where

a = (a1, · · · , ap), d = (d1, · · · , dp).
We need the following theorem proved by Berge [2].

Lemma 2.4. Suppose that X ⊂ ℜn, Y ⊂ ℜp, Y is compact, g:X ×Y → ℜ is continuous

and θ:X � Y is a continuous set-valued mapping with compact value. Define µ:X � Y

and G:X → ℜ as µ(x) = {y ∈ θ(x)|g(x, y) = Min
y′∈θ(x)

g(x, y′)}, G(x) = Min
y∈θ(x)

g(x, y). Then µ

and G are u.s.c and compact-valued. Furthermore, if G(x) is bounded, then G is continuous.

§3. The Equilibrium of Multiobjective Generalized Game

A multiobjective generalized game (MOGG) can be described as follows. There are n

players, N = {1, · · · , n} is the set of players. For i ∈ N , Xi ⊂ ℜn(i) and

fi = (fi1, · · · , fip(i)):X =
∏
i∈N

Xi → ℜp(i)

are the strategy set and vector payoff function of player i respectively. The domination

structure of player i is a cone Di ⊂ ℜp(i). For a generalized game, strategy xi ∈ Xi can

not be chosen independently and is restricted by the strategies taken by other players. Let

θi:X−i =
∏

j∈N\{i}
Xj � Xi be a set-valued mapping, player i can take a strategy xi ∈ θi(x−i)

when other players take strategies x−i = (x1, · · · , xi−1, xi+1, · · · , xn) ∈ X−i. Every player

want to minimize his vector payoff w.r.t his domination structure. MOGG, with N , {Xi},
{fi}, {Di}, {θi} as set of players, strategy sets, vector payoffs, domination structures and

constraints respectively, is denoted by Γ = {N,Xi, fi, Di, θi}.
When all p(i) = 1, Γ is an abstract economy (Debreu).

When all θi(x−i) ≡ Xi, Γ is a conventional multiobjective game (MOG), and denoted by

Γ = {N,Xi, fi, Di}.
In this paper we make following assumptions: For each i ∈ N

i) Xi is compact,

ii) fi is continuous,

iii) θi is a continuous set-valued mapping with compact-value,

iv) Di is a closed pointed convex cone with nonempty interior.

Definition 3.1. x∗ = (x∗
1, · · · , x∗

n) ∈ X is called an equilibrium of Γ, if for each i ∈ N ,

x∗
i ∈ θi(x

∗
−i) and fi(x

∗) ∈ WMin(fi(θi(x
∗
−i), x

∗
−i);Di).

Take a = (ai, · · · , an) ∈ ℜN ,
∏
i∈N

ℜp(i) such that fi(X) ⊂ ai + IntDi for each i ∈ N.

For any d = (d1, · · · , dn) ∈ D̂ ,
∏
i∈N

D̂i (D̂i = {di ∈ IntDi|∥di∥ = 1}), define a generalized

game with scalar payoff Γ(d) = {N,Xi, fi(·; di),ℜ+, θi}, where fi(·; di):X → ℜ is given by

fi(x; di) = φ(fi(x); ai, di).

The equilibrium of MOGG Γ can be scalarized as follows:

Theorem 3.1. x∗ = (x∗
1, · · · , x∗

n) is an equilibrium of Γ if and only if there is d ∈ D̂

such that x∗ is an equilibrium of Γ(d).

Proof. x∗ = (x∗
1, · · · , x∗

n) is an equilibrium of Γ
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⇔ fi(x
∗) ∈ WMin(fi(θi(x

∗
−i), x

∗
−i);Di) for i ∈ N

⇔ There is di ∈ D̂i such that x∗
i is an optimal solution of the following programming:

Min
xi∈θi(x∗

−i)
fi(xi, x

∗
−i; di) for i ∈ N (by Lemma 2.2).

⇔ x∗ is an equilibrium of Γ(d) for d = (d1, · · · , dn) ∈ D̂.

A theorem on the existence of equilibrium of Γ is in order.

Theorem 3.2. Γ has an equilibrium if for each i ∈ N , Xi is convex and fi is Di-quasi-

convex in xi, θi is convex-valued.

Proof. By Theorem 3.1, it is sufficient to prove the existence of equilibrium of Γ(d) for

a d ∈ D̂. Take any d = (d1, · · · , dn) ∈ D̂ and define set-valued mappings µi:X � Xi(i ∈
N) and µ:X � X by

µi(xi, x−i) = {x′
i ∈ θi(x−i)|fi(x′

i, x−i; di) = Min fi(θi(x−i), x−i; di)}, µ(x) =
∏
i∈N

µi(x).

It is easy to see that µ is a u.s.c set-valued mapping with convex compact value by

Lemma 2.3 and Lemma 2.4. From Kakutani fixed point theorem [2], there is x∗ ∈ X such

that x∗ ∈ µ(x∗). Hence x∗ is an equilibrium of Γ(d). In particular, when Di = ℜp(i)
+ and

di = (di1, · · · , dip(i)), ai = (ai1, · · · , aip(i)), the payoff function of player i in Γ(d) is

fi(x; di) = Max{d−1
ij (fij(x)− aij)|j = 1, · · · , p(i)}.

§4. Pareto-Optimal Absolute Security Strategy

In this section we are concerned with conventional multiobjective game, i.e., Di = ℜp(i)
+

and θi(x−i) ≡ Xi for each i ∈ N .

The following solution concept was introduced in [2].

Definition 4.1. For i ∈ N , define f̄i:Xi → ℜp(i) by f̄i = (f̄i1, · · · , f̄ip(i)), where f̄ij(xi) =

Max fij(xi, X−i). f̄i(xi) is called an absolute security payoff vector (ASPV) of xi for player

i, x∗
i is called a Pareto-optimal absolute security strategy (POASS) for player i, if f̄i(x

∗
i ) ∈

WMin(f̄i(Xi);Di).

If x∗ is a POASS, then there is not xi ∈ Xi whose ASPV is better than that of x∗ and

independent of the actions of other players.

POASS can be scalarized as follows. If a = (a1, · · · , an) ∈ ℜN such that fi(X) ⊂
ai + Intℜp(i)

+ , take d = (d1, · · · , dn) ∈ D̂ and define f̃i(·; di):Xi × (X−i)
p(i) → ℜ and

gi(·; di):Xi → ℜ by f̃i(xi, x̄−i; di) = Max{d−1
ij (fij(xi, x

j
−i)− aij)|j = 1, · · · , p(i)}

gi(xi; di) = Max f̃i(xi, (X−i)
p(i); di),

where x̄−i = (x1
−i, · · · , x

p(i)
−i ) ∈ (X−i)

p(i).

Definition 4.2. x∗
i ∈ Xi is called a Minimax strategy for player i w.r.t. di if gi(x

∗
i ; di) =

Min gi(Xi; di).

The name “Minimax strategy” comes from a two person zero-sum game with f̃i(·; di),
Xi, (X−i)

p(i) as payoff and strategy sets respectively.

Theorem 4.1. If x∗ is a Minimax strategy for player i w.r.t. di, then x∗ is a POASS.

Proof. Suppose to the contrary, then there is x′
i ∈ Xi such that f̄ij(x

′
i) < f̄ij(x

∗
i ) for

each j = 1, · · · , p(i).
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Observing that

gi(xi; di) = Max f̃i(xi, (X−i)
p(i); di) = Max

x̄−i

Max
j

{d−1
ij (fij(xi, x

j
−i)− aij)}

= Max
j

Max
x−i∈X−i

{d−1
ij (fij(xi, x−i)− aij)} = Max

j
{d−1

ij (f̄ij(xi)− aij)},

we have gi(x
′
i; di) < gi(x

∗
i ; di), contradicting the assumption that x∗

i is a Minimax strategy.

Theorem 4.2. If x∗
i is a POASS, then there is di ∈ Intℜp(i)

+ such that x∗
i is a Minimax

strategy w.r.t. di.

Proof. Let di = (f̄i(x
∗
i )−ai)/∥f̄i(x∗

i )−ai∥ ∈ Intℜp(i)
+ , h(xi) = Max{d−1

ij (f̄ij(xi)−aij)|j =
1, · · · , p(i)}. Then x∗

i is an optimal solution of the following programming: Min
xi∈Xi

h(xi) by

Lemma 2.2.

Since h(xi) = gi(xi; di) from the proof of Theorem 4.1 we have gi(x
∗
i ; di) = Min gi(Xi; di),

i.e, x∗
i is a Minimax strategy w.r.t. di.

Theorem 4.3. For each i ∈ N there is a POASS of player i.

Proof. It is immediate from Theorem 4.1, the continuity of f̃i(·; di), gi(·; di) and the

compactness of Xi.

By the way, we obtain a theorem on the structure of set of POASS under the convexity

condition.

Theorem 4.4. If Xi is convex and fi is quasi-convex in xi, then the set of POASS is

nonempty, closed and connected.

Proof. Since f̄ij(xi) = Max fij(xi, X−i) is quasi-convex, the conclusion follows from

Theorems 1.1 and 4.6 (ch.6) in [3].

§5. Pareto-Optimal Weakly Efficient Security Strategy

For a multiobjective game Γ = {N,Xi, fi, Di}, another concept about security strategy

can be introduced.

Definition 5.1. For MOG Γ, define set-valued mapping
o

fi:Xi � ℜp(i) as
o

fi(xi) = WMax(fi(xi, X−i);Di) , WMin(fi(xi, X−i);−Di),

x∗
i is called a Pareto-optimal weakly efficient security strategy (POWESS) of player i, if

o

fi(x
∗
i ) ∩ WMin(

o

fi(Xi);Di) ̸= ∅, y∗i ∈
o

fi(x
∗
i ) ∩ WMin(

o

fi(Xi);Di) is called a POWESS’s

payoff vector of player i for x∗
i .

In order to prove the existence of POWESS, the following lemma is needed.

Lemma 5.1. Suppose that f :X × Y → ℜp is continuous, Y is compact and D ⊂ ℜp is

a closed pointed convex cone with nonempty interior. Define µ:X � Y and F :X � ℜp by

µ(x) = {y ∈ Y |f(x, y) ∈ WMax(f(x, Y );D)}, F (x) = f(x, µ(x)).

Then µ and F are u.s.c set-valued mappings with compact value.

Proof. Let xk, x0 ∈ X, xk → x0, zk ∈ µ(xk), zk → z0. Then there are yk ∈ Y such

that zk = f(xk, yk) ∈ WMax(f(xk, Y );D). Without loss of generality, we can assume that

yk → y0 ∈ Y . So z0 = lim zk = lim f(xk, yk) = f(x0, y0).

If z0 ̸∈ µ(x0), then there is ȳ ∈ Y such that f(x0, y0) < f(x0, ȳ).

Since IntD is open and f is continuous, we have f(xk, yk) < f(xk, ȳ) for k sufficiently

large. It contradicts zk ∈ µ(xk).
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In particular, taking xk ≡ x, and zk ∈ µ(x), we see that µ(x) is closed. Hence µ is u.s.c

with compact value.

Now, it is obvious that F has the same properties.

Theorem 5.1. For each i ∈ N , there exists a POWESS of player i.

Proof. Since
o

fi:Xi � ℜp(i) is u.s.c with compact value by Lemma 5.2, the conclusion

follows from Lemma 2.4.

When Di = ℜp(i)
+ , for each i ∈ N , there are two different concepts of security strategy:

POASS and POWESS. The following relation between them holds.

Theorem 5.2. For MOG Γ = {N,Xi, fi,ℜp(i)
+ }, if x∗

i is a POWESS and x̂i is a POASS

of player i, y∗i ∈
o

fi(x
∗
i ) ∩WMin(

o

fi(Xi);ℜp(i)
+ ), ŷi = f̄i(x̂i). Then y∗i ̸> ŷi.

Proof. By the definition of POASS,
o
yi = f̄i(

o
xi) > yi for any yi ∈

o

fi(x̂i). If y
∗
i > ŷi, then

y∗i > ŷi > yi for any yi ∈
o

fi(x̂i). It contradicts the assumption that x∗
i is a POWESS.

Theorem 5.2 shows that the payoff of POWESS is not worse than that of POASS.

At last, we discuss the relationship between the POWESS’s payoff and the payoff of

equilibrium in a zero-sum MOG of two players.

Theorem 5.3. Let Γ = {{1, 2}, Xi, fi, Di} be a zero-sum MOG of two players, where

f2 = −f1 and D1 = D2. If (x∗
1, x

∗
2) is an equilibrium of Γ, then there are POWESS x̂1, x̂2

and POWESS’s payoffs ŷ1, ŷ2 of player 1 and 2 respectively such that

ŷ1 6 f1(x
∗
1, x

∗
2), ŷ2 6 f2(x

∗
1, x

∗
2).

Proof. From Theorem 4.3 in [6], since (x∗
1, x

∗
2) is a saddle point of f1,

f1(x
∗
1, x

∗
2) ∈ WMin

x1∈X1

(WMax
x2∈X2

(f1(x1, x2);D1);D1) +D1 = WMin
x1∈X1

(
o

f1(x1);D1) +D1.

So, there is x̂1 ∈ X1 and ŷ1 ∈
o

f1(x̂1) ∩WMin(
o

f1(X1);D1) such that ŷ1 6 f1(x
∗
1, x

∗
2).

On the other hand,

f1(x
∗
1, x

∗
2) ∈ WMax

x2∈X2

(WMin
x1∈X1

(f1(x1, x2);D1);D1)−D1

= −WMin
x2∈X2

(WMax
x1∈X1

(f2(x1, x2);D2);D2)−D2.

So, there is
o
x2 ∈ X2 and ŷ2 ∈

o

f2(x̂2) ∩WMin(
o

f2(X2);D2) such that ŷ2 6 f2(x
∗
1, x

∗
2).

Obviously, x̂1, x̂2 are POWESS.

Theorem 5.3 shows that, loosely speaking, the POWESS’s payoff is better than the payoff

of equilibrium.

For the classical game with scalar payoff, the POASS and the POWESS are coincident

and their payoff is equal to the payoff of equilibruim.
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