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ABELIAN 3-FOLDS IN PRODUCTS OF PROJECTIVE SPACES

TaNG LizHONG*
Abstract

This paper deals with the existential problem of abelian 3-folds in products of projective
spaces—P; X P4 and Pp X P3. The answer to this problem is negative.
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60. Introduction

It is known that there exists no abelian 3-folds in P5. To prove the existence of abelian
varieties in projective spaces is a much harder problem. In this paper we shall investigate
the existence of abelian 3-folds in P, x P3 and P; X P,. Again this problem falls into two
parts. Here we shall show that there exists no abelian 3-folds in the two spaces in both
cases. This follows mostly from the self-intersection formula, but not entirely.

§1. Preliminaries

If Z =X xY is a product, we denote the canonical projections by p and ¢ respectively:
Z=XxY

P N ¢q
X Y

If L and p are line bundles on X and Y respectively, we set
Lou:=p"L®qgp.
In particular, if X = P, and Y = P,,, we set
Oz(a,b) :== Op,(a) ® Op, (b).

We denote the class of Oz(1,0) (resp. Oz(0,1)) in H?(Z,I) by hy (resp. ha), where I
denotes the ring of integral numbers.

Lemma 1.1. Let X be a non-simple abelian 3-fold. Then there is no rational curves on
X.

Proof. We want to deduce a contradiction by the assumption that there exists a rational
curve C on X. By the Poincaré’s complete reducibility theorem (Theorem 1[4]), there is an
abelian subvariety Z such that E'N Z is finite and E + Z = X, where E is an elliptic curve
on X. In other words X is isogenous to £ x Z. Let f : E x Z — X be the isogenous
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map. We use G to denote the kernal of f. Then F x Z/G = X. Thus C is a rational curve
on F x Z/G. We use p; and py to denote the first and the second projections of E x Z/G
respectively. Since FE/G is an elliptic curve, p1(C) is just a point of E/G. Therefore we may
regard C as a rational curve on Z/G. But Z/G is an abelian surface, and a abelian surface
does not contain curves with negative self-intersection. Thus we reach a contradiction.

Proposition 1.1. Let C be a curve. Then the products C x Ps does not contain an
abelian 3-fold.

Proof. First assume g(C) > 2. Then the assertion is obvious since the projection X — C
must be surjective and this would imply the existence of a non-constant 1-form on X.

Case 1. g(C) = 0.

Then C' = P, and

Op1 X P3 (X) = O(a, b)
for some a,b > 0. By the adjunction formula
wx = Ox(a — 2,b— 4)

Since X is abelian, wx = Ox. This implies

(ah1 + bhg)((a — 2)h1 + (b - 4)h2)hl =0, (’L =1, 2)
b(b—4) = 0, (i=1)
a(b—4) +bla—2)=0. (1 =2)

It follows that b = 4 and a = 2. On the other hand we get from
0—-0(-2,-4) >0 —=0x —0
an exact sequence
H'(O) = HY(Ox) — H*(O(-2,—4)).
By the Serre-duality theorem and the Kiinneth formula
h*(O(-2,—-4)) = h*(0) = 0.
Hence h'(Ox) = 0, which is a contradiction.

Case 2. g(C) = 1.
Here our argument is very similar. By ([2, p.292])

Pic(C x P3) = PicC x PicPs,
i.e., we can write
Ocxp,(X) =L®O(b)
for some b > 0 and L € PicC. Since
woxp, = 0c ® O(—4),
the adjuction formula gives

wx =L®0(b-4)|x.
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Let a =deg L. Then arguing as before we find
bb—4)=0, ab+alb—4)=0,
ie,b=4,a=0.
Since
H(L®O(4)) = H°(L) ® H°(0O(4)),

it follows that L = O¢ and X = C x S, where S is a quartic surface in Pj, i.e., S is a K3
surface. On the other hand, C is an abelian subvariety of the abelian variety X since C'is
an elliptic curve. So S = X/ is an abelian surface. Then we reach a contradiction that S
is both an abelian surface and a K3 surface.

Finally we recall the self-intersection formula from [1, p.103]. For any regular embedding
t: X — Z of codimension d with normal bundle Nx,z,

i*is]a] = ca(Nx/z) N o]
for all a € A, (X).
In particular, if X is a three-fold in a 5-manifold Z, then

[X]? = c2(Nx/z).[X].
§2. Existence of Abelian 3-Folds in P;

(see [2, Ex. 6.10, p.437])

In this section we shall prove

Proposition 2.1. There exists no abelian 3-folds in Ps.

Remark. Though the result is well known, we still prove it here in order to keep our
question as a whole.

Proof. We shall deduce a contradiction by the assumption that there is an abelian 3-fold
X in Ps.

Let h be the class of Op. (1) in H?(Ps,Z). The class of X is of the form [X] = ah? with
integers a > 0. From the normal bundle sequence

O—)TX —)Tp5|X — NX/p5 —0
and the fact that Tx is trivial, one finds
c(Nx/p,) = ¢(Tp,|x) = (1+ 6h + 158> + 20h* + 15h"* + 61°).[X]

CQ(Nx/ps) = 15ah4.
Since [X]? = a?h*, the self-intersection formula implies 15a = a?. So a = 15, i.e., the degree
of X in P5 is 15. Let L = Ox(1), and H be a hyperplane section of X. Then by the
Riemman-Roth theorem of abelian varieties,
_H* 15 5

M=% =% "%

which is a contradiction.

¢3. Existence of Abelian 3-Folds in P, x Ps

In this section, we shall prove the following result.
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Proposition 3.1. There exists no abelian 3-folds in Py X Pj.
Proof. Assume that X is an abelian 3-fold in P, x P3. We shall deduce a contradiction.
Let the class of X be

[X] = ah + Bh3 + vhihe

with non-negative integers «, 8 and ~y. As before we want to make use of the self-intersection
formula. From

¢(Nx/(pyxpy)) = c(Tp, X Tp,|x) = (1 + 3hy + 3h1)(1 + 4hs + 6h3 + 4h3).[X]
we get
c2(Nx/(Pyxpy)) = (67 +12B)h1h3 + (6a + 12 + 38)hih3.
Since
[X]? = 2Bvhih3 + (v + 2aB)hih3,

the self-intersection formula implies

3+ 66 =57, (3.1)
6a 4 38 + 127 = 72 + 20 (3.2)
By (3.1), we have
_ 68
Since a, 8,7 > 0, we have § > 3 or 5 = 0.
Case 1. 5 > 3.
By (3.2) and (3.3) we have
__3p 2 _
2(8-3)a= 7@ VP [B°+ 65— 63]. (3.4)

Since a, 8 and 8 — 3 are non-negative, we have 3% + 63 — 63 > 0. Thus 3 > 5.
Similarly, by (3.1) we have
== (3.5)
By (3.2) and (3.3) we have
20(B—3) =38 +12y— 72 = 2 412y — 42 = —— (42 _ 187+ 63).
7—6 v —6

With the same reason as before, we have 72 — 18y + 63 < 0. Thus 7 < v < 13. But v = 13
is impossible by (3.5). After trivial discussion, we have only one possibility for « = 3,5 =6
and v = 12.

Next we will deduce a contradiction for this one possibility. The projection onto the
second factor gives a surjective map ¢|x : X — P; of degree . On the other hand, the
projection onto the first factor gives a surjective map p|x : X — P», whose fibres are curves.
Then by the proposition (see [4, p.88]), we know that X is not a simple abelian varieties.
Thus by Lemma 1.1, X does not contain rational curves. It follows that ¢|x is finite. Hence
the Nakai-Moishezon criterion implies that

Ox(0,1) = (q|x)*Op,(1)
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is ample. By the Kodaira vanishing theorem
h'(0x(0,1)) = K*(Ox(0,1)) = B*(Ox(0,1)) = 0.

Therefore, the Riemman-Roth theorem gives
3 1
RO0x(0,1) = % =,
which leads to a contradiction. Thus Case 1 can not occure.

Case 2. a, (3 and ~ are all 0.

In this case the projection onto the second factor gives a map X — D C P,, where D
is a (possibly singular) curve. Let v : D — D be the normalization map. Let Dy be the
smooth part of D and let Xy be the open set of X which lies over Dg. Since v X id is an
isomorphism away from the singularities of D, we can consider X, to be a subset of D x Ps.
Let X be its Zariski-closure. Then we have a commutative diagram

X — D x P;
g v xid
X — D x P3

By constructions g is finite and birational. Since X is smooth, it follows from [5, Theorem
5, p.115] that g is an isomorphism. By Proposition 1.1 it leads to a contradiction. Therefore,
Case 2 can not occure either.

¢4. Existence of Abelian 3-Folds in P, x P,

Here we prove

Proposition 4.1. There exists no abelian 3-folds in Py x Py.

Proof. We will deduce a contradiction by the assumption that there is an abelian 3-fold
X in Py x Py.

Let the class of X be [X] = ahihs + Bh3. Then a, 3 > 0. As before we want to make use
of the self-intersection formula. From

c(Nx/(pxpy)) = c(Tp, x Tp,|x) = (14 2h1)(1 4 5ha + 103 + 10h3 + 5h3).[X],
we get
e2(Nx/(pixpy)) = (10h3 + 10h1hy).[X] = (10a 4 103)h1h3 + 108h3.
Since [X]? = 2a8h1h3 + $2h3, we find
10a + 108 = 208, 108 = (%

If 8 =0, then X can be embedded into P, , which is impossible by Proposition 2.1. Thus
a = B = 10. Now the second projection ¢ induces a surjective map

q:X — X CPy.
On the other hand, the projection onto the first factor gives a surjective map p|x : X — Py.
By proposition (see [4, p.88 ]), we know that X is not simple. Then Lemma 1.1 says that
X does not contain rational curves. Thus the projection ¢ is a finite map. By Proposition

1.2, X can not be a hyperplane. Hence X spans P,. Since G is finite, the line bundle
0Ox(0,1) = @Op,(1) is ample. By the Kodaira vanishing theorem and Riemman-Roth
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theorem, this shows
o 1 3 1.4 10
which is a contradiction.
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