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ABELIAN 3-FOLDS IN PRODUCTS OF PROJECTIVE SPACES

Tang Lizhong*

Abstract

This paper deals with the existential problem of abelian 3-folds in products of projective
spaces–P1 × P4 and P2 × P3. The answer to this problem is negative.
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§0. Introduction

It is known that there exists no abelian 3-folds in P5. To prove the existence of abelian

varieties in projective spaces is a much harder problem. In this paper we shall investigate

the existence of abelian 3-folds in P2 × P3 and P1 × P4. Again this problem falls into two

parts. Here we shall show that there exists no abelian 3-folds in the two spaces in both

cases. This follows mostly from the self-intersection formula, but not entirely.

§1. Preliminaries

If Z = X × Y is a product, we denote the canonical projections by p and q respectively:

Z = X × Y
p ↙ ↘ q

X Y

If L and µ are line bundles on X and Y respectively, we set

L⊗ µ := p∗L⊗ q∗µ.

In particular, if X = Pk and Y = Pn, we set

OZ(a, b) := OPk
(a)⊗OPn(b).

We denote the class of OZ(1, 0) (resp. OZ(0, 1)) in H2(Z, I) by h1 (resp. h2), where I

denotes the ring of integral numbers.

Lemma 1.1. Let X be a non-simple abelian 3-fold. Then there is no rational curves on

X.

Proof. We want to deduce a contradiction by the assumption that there exists a rational

curve C on X. By the Poincaré’s complete reducibility theorem (Theorem 1[4]), there is an

abelian subvariety Z such that E ∩ Z is finite and E + Z = X, where E is an elliptic curve

on X. In other words X is isogenous to E × Z. Let f : E × Z −→ X be the isogenous
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map. We use G to denote the kernal of f . Then E × Z/G ∼= X. Thus C is a rational curve

on E × Z/G. We use p1 and p2 to denote the first and the second projections of E × Z/G

respectively. Since E/G is an elliptic curve, p1(C) is just a point of E/G. Therefore we may

regard C as a rational curve on Z/G. But Z/G is an abelian surface, and a abelian surface

does not contain curves with negative self-intersection. Thus we reach a contradiction.

Proposition 1.1. Let C be a curve. Then the products C × P3 does not contain an

abelian 3-fold.

Proof. First assume g(C) ≥ 2. Then the assertion is obvious since the projection X → C

must be surjective and this would imply the existence of a non-constant 1-form on X.

Case 1. g(C) = 0.

Then C = P1 and

OP1×P3(X) = O(a, b)

for some a, b > 0. By the adjunction formula

ωX = OX(a− 2, b− 4).

Since X is abelian, ωX = OX . This implies

(ah1 + bh2)((a− 2)h1 + (b− 4)h2)hi = 0, (i = 1, 2)

i.e.,

b(b− 4) = 0, (i = 1)

a(b− 4) + b(a− 2) = 0. (i = 2)

It follows that b = 4 and a = 2. On the other hand we get from

0 → O(−2,−4) → O → OX → 0

an exact sequence

H1(O) → H1(OX) → H2(O(−2,−4)).

By the Serre-duality theorem and the Künneth formula

h2(O(−2,−4)) = h1(O) = 0.

Hence h1(OX) = 0, which is a contradiction.

Case 2. g(C) = 1.

Here our argument is very similar. By ([2, p.292])

Pic(C × P3) = PicC × PicP3,

i.e., we can write

OC×P3(X) = L⊗O(b)

for some b > 0 and L ∈ PicC. Since

ωC×P3 = OC ⊗O(−4),

the adjuction formula gives

ωX = L⊗O(b− 4)|X .
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Let a =degL. Then arguing as before we find

b(b− 4) = o, ab+ a(b− 4) = 0,

i.e., b = 4, a = 0.

Since

H0(L⊗O(4)) = H0(L)⊗H0(O(4)),

it follows that L = OC and X = C × S, where S is a quartic surface in P3, i.e., S is a K3

surface. On the other hand, C is an abelian subvariety of the abelian variety X since C is

an elliptic curve. So S ∼= X/C is an abelian surface. Then we reach a contradiction that S

is both an abelian surface and a K3 surface.

Finally we recall the self-intersection formula from [1, p.103]. For any regular embedding

i : X → Z of codimension d with normal bundle NX/Z ,

i∗i∗[α] = cd(NX/Z) ∩ [α]

for all α ∈ A∗(X).

In particular, if X is a three-fold in a 5-manifold Z, then

[X]2 = c2(NX/Z).[X].

§2. Existence of Abelian 3-Folds in P5

(see [2, Ex. 6.10, p.437])

In this section we shall prove

Proposition 2.1. There exists no abelian 3-folds in P5.

Remark. Though the result is well known, we still prove it here in order to keep our

question as a whole.

Proof. We shall deduce a contradiction by the assumption that there is an abelian 3-fold

X in P5.

Let h be the class of OP5(1) in H2(P5,Z). The class of X is of the form [X] = ah2 with

integers a > 0. From the normal bundle sequence

o → TX → TP5 |X → NX/P5
→ 0

and the fact that TX is trivial, one finds

c(NX/P5
) = c(TP5 |X) = (1 + 6h+ 15h2 + 20h3 + 15h4 + 6h5).[X]

c2(NX/P5
) = 15ah4.

Since [X]2 = a2h4, the self-intersection formula implies 15a = a2. So a = 15, i.e., the degree

of X in P5 is 15. Let L = OX(1), and H be a hyperplane section of X. Then by the

Riemman-Roth theorem of abelian varieties,

h0(L) =
H3

6
=

15

6
=

5

2
,

which is a contradiction.

§3. Existence of Abelian 3-Folds in P2×P3

In this section, we shall prove the following result.
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Proposition 3.1. There exists no abelian 3-folds in P2 × P3.

Proof. Assume that X is an abelian 3-fold in P2 ×P3. We shall deduce a contradiction.

Let the class of X be

[X] = αh2
1 + βh2

2 + γh1h2

with non-negative integers α, β and γ. As before we want to make use of the self-intersection

formula. From

c(NX/(P2×P3)) = c(TP2 × TP3 |X) = (1 + 3h1 + 3h2
1)(1 + 4h2 + 6h2

2 + 4h3
2).[X]

we get

c2(NX/(P2×P3)) = (6γ + 12β)h1h
3
2 + (6α+ 12γ + 3β)h2

1h
2
2.

Since

[X]2 = 2βγh1h
3
2 + (γ2 + 2αβ)h2

1h
2
2,

the self-intersection formula implies

3γ + 6β = βγ, (3.1)

6α+ 3β + 12γ = γ2 + 2αβ. (3.2)

By (3.1), we have

γ =
6β

β − 3
. (3.3)

Since α, β, γ ≥ 0, we have β > 3 or β = 0.

Case 1. β > 3.

By (3.2) and (3.3) we have

2(β − 3)α =
3β

(β − 3)2
[β2 + 6β − 63]. (3.4)

Since α, β and β − 3 are non-negative, we have β2 + 6β − 63 ≥ 0. Thus β ≥ 5.

Similarly, by (3.1) we have

β =
3γ

γ − 6
. (3.5)

By (3.2) and (3.3) we have

2α(β − 3) = 3β + 12γ − γ2 =
9γ

γ − 6
+ 12γ − γ2 = − γ

γ − 6
(γ2 − 18γ + 63).

With the same reason as before, we have γ2 − 18γ + 63 ≤ 0. Thus 7 ≤ γ ≤ 13. But γ = 13

is impossible by (3.5). After trivial discussion, we have only one possibility for α = 3, β = 6

and γ = 12.

Next we will deduce a contradiction for this one possibility. The projection onto the

second factor gives a surjective map q|X : X → P3 of degree α. On the other hand, the

projection onto the first factor gives a surjective map p|X : X → P2, whose fibres are curves.

Then by the proposition (see [4, p.88]), we know that X is not a simple abelian varieties.

Thus by Lemma 1.1, X does not contain rational curves. It follows that q|X is finite. Hence

the Nakai-Moishezon criterion implies that

OX(0, 1) = (q|X)∗OP3(1)
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is ample. By the Kodaira vanishing theorem

h1(OX(0, 1)) = h2(OX(0, 1)) = h3(OX(0, 1)) = 0.

Therefore, the Riemman-Roth theorem gives

h0(OX(0, 1)) =
3

6
=

1

2
,

which leads to a contradiction. Thus Case 1 can not occure.

Case 2. α, β and γ are all 0.

In this case the projection onto the second factor gives a map X → D ⊂ P2, where D

is a (possibly singular) curve. Let v : D̃ → D be the normalization map. Let D0 be the

smooth part of D and let X0 be the open set of X which lies over D0. Since v × id is an

isomorphism away from the singularities of D, we can consider X0 to be a subset of D̃×P3.

Let X̃ be its Zariski-closure. Then we have a commutative diagram

X̃ −→ D̃ × P3

g ↓ ↓ v × id
X −→ D × P3

By constructions g is finite and birational. Since X is smooth, it follows from [5, Theorem

5, p.115] that g is an isomorphism. By Proposition 1.1 it leads to a contradiction. Therefore,

Case 2 can not occure either.

§4. Existence of Abelian 3-Folds in P1×P4

Here we prove

Proposition 4.1. There exists no abelian 3-folds in P1 × P4.

Proof. We will deduce a contradiction by the assumption that there is an abelian 3-fold

X in P1 × P4.

Let the class of X be [X] = αh1h2 + βh2
2. Then α, β ≥ 0. As before we want to make use

of the self-intersection formula. From

c(NX/(P1×P4)) = c(TP1 × TP4 |X) = (1 + 2h1)(1 + 5h2 + 10h2
2 + 10h3

2 + 5h4
2).[X],

we get

c2(NX/(P1×P4)) = (10h2
2 + 10h1h2).[X] = (10α+ 10β)h1h

3
2 + 10βh4

2.

Since [X]2 = 2αβh1h
3
2 + β2h4

2, we find

10α+ 10β = 2αβ, 10β = β2.

If β = 0, then X can be embedded into P4 , which is impossible by Proposition 2.1. Thus

α = β = 10. Now the second projection q induces a surjective map

q̄ : X → X ⊂ P4.

On the other hand, the projection onto the first factor gives a surjective map p|X : X → P1.

By proposition (see [4, p.88 ]), we know that X is not simple. Then Lemma 1.1 says that

X does not contain rational curves. Thus the projection q̄ is a finite map. By Proposition

1.2, X can not be a hyperplane. Hence X spans P4. Since q̄ is finite, the line bundle

OX(0, 1) = q̄∗OP4(1) is ample. By the Kodaira vanishing theorem and Riemman-Roth



244 CHIN. ANN. OF MATH. Vol.16 Ser.B

theorem, this shows

h0(OX(0, 1)) =
1

6
(OX(0, 1)3) =

1

6
h3
2.[X] =

10

6
,

which is a contradiction.
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