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ON THE BOUNDED AND UNBOUNDED
SOLUTIONS OF ONE DIMENSIONAL
NONLINEAR REACTION-DIFFUSION PROBLEM

GE WEIGAO* R. O. WEBER**
Abstract

The existence of bounded and unbounded solutions to nonlinear reaction-diffusion problem
us = A®(u) + F(u,z,t) with initial or initial-boundary conditions is discussed when u =
u(z,t),x € R. Simple criteria are given.
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§1. Introduction

A lot of chemical reactions taken place in a nonlinear medium result in nonlinear reaction-
diffusion equations. Some of their solutions become unbounded in a finite or infinite period
while some remain bounded for ever! %!, As a special case, the Cauchy problem

ut — Au’ﬂl _"_ u'n?
u(z,0) = o(x),

where ¢(z) > 0 is bounded, was studied in detail in [4]. It is well known that when

(1.1)

1 < n < m+ 2, all solutions of Equation (1.1) blow up, i.e., they become unbounded
in a finite period provided that ¢ € C°(R,[0,00)) and ¢ # 0. But the situation changes
completely when a boundary condition is added to Equation (1.1). It will become even more
complicated when 4™ and u™ in Equation (1.1) are replaced by two generalized functions.
Our purpose in this paper is to study the boundedness and unboundedness of solutions for
generalized reaction-diffusion equations.

§2. Bounded Solutions

We consider the initial-boundary problem
uy = A®(u) + F(u,z,t),
u(z,0) = p(z), z € (—a,a), (2.1)
u(ta,t) = hi(t), t € (0,00),
where a > 0 and
1) ® € CY(RT,R"), indecreasing and ®(0) = 0;
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2) F: R™ X R x Rt — R locally Lipschitzian continuous in w and F(0,z,t) = 0;

3) ¢ € C%[~a,a], RT);

4) hy(t) € Lipc(R™), bounded.

Denote by Q and Qr the sets (—a,a) and (—a,a) x (0,T) respectively.

Definition 2.1. A function u € C°([0,T],L*(Q)) N L=(Qr) is a solution to Equation
(2.1) on [0,T) if it satisfies

[ w0 = [[ i+ 0wa0)+ [ 1900 (6)0r(a.5) = 09—, 9)ds

/st<0>+//tF¢

for all t € (0,T] and ¥ € C*(Qr, R) such that » > 0 and 1 = 0 when (z,t) € {—a,a} x
[0,T]. A solution on [0,00) means a solution on each [0,T] for any T > 0. A superso-
lution (subsolution) is defined by (2.2) with equality replaced by > (<) and with hy(t) >
B (t) (ha(t) < (1),
Lemma 2.1.[1 Theorem 121 ot 4 be o supersolution and w a subsolution of (2.1) when

F(t,z,u) = F(u) with initial data 4o and ug respectively. If uy < Gg, then
u < 1.
Obviously Lemma 2.1 ensures the uniqueness of solution to Equation (2.1). Denote by ®~1

the inverse function of ® : R — R*.
Theorem 2.1. Suppose hy(t) =0,F(u) >0 foru >0, lim ®(u) = oo and
U— 00
2 2
P _ s ™ gim £ g T

w50 D (u) a?’ i d(u) 4a?

Then

A¢p(u) + F(u) =0,
(u) + F(u) 2.2)

u(+a) =0
has a unique nontrivial solution (x) which satisfies u(x) > 0 for |z| < a and if F(u) satisfies
F(®(sv)) < sF (O (v)) (2.3)

for any s > 1 and v > 0, then every solution of (2.1) is bounded and approaches u(x) as
t — oo provided p(z) # 0.
Proof. Let v = ®(u). Then (2.2) is equivalent to

Av+ F(®1(v)) =0,
(@7 (v)) (2.4)
v(£a) = 0.
For Av + F(®~1(v)) = 0, its trajectories are determined by
%@2 +/ F(®!(s))ds = C. (2.5)
0

Extend the domains for F' and ® as ®(—u) = —®(u) and F(—u) = —F(u) for u < 0 al-
though we have interest only in the case w > 0. Then curve (2.5) is simply closed with
period, say, 4T. By use of the method of qualitative analysis in ordinary differential equa-
tions we can easily prove that T'> a as C' — oo and T' < a as C' — 0. Therefore there exists
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at least one Cy > 0 such that, T = a. Then the equation
d*v _1
p) +F(@® (v))=0
has a solution v(z) such that v'(0) = 0 and

v(0)
/0 F(®71(s))ds = Co.

Hence v(£T) = v(%a). Obviously @(x) = ®~(v(x)) is a solution to Equation (2.2). The
uniqueness is ensured by Lemma 2.1.

For the boundedness of solutions of Equation (2.1), it suffices to prove that |ul|p=~ is
bounded since the solution exists. It follows from the condition

F(u) w2
I <
AT P 1
that we can choose My large enough such that for a constant e € (a,7/2v/3)
Fu) 7
D(u) ~ 4e?
holds for u > My. Let My = max F(u). Then F(u) < My + %@(u). Set
0<u< Mo
~ 4M, e?
M => sec - [ —— + max{®(u), ||<,0||Lw}]
and
—~ rr  4Me?
iz, b) = o (M ™ _ )
u(x,t) cos o =
Then
Mr® 7z
iy — AdP(u) = —AdP(u) = 12 85
w2 1~ mx  4Mie?
= @[Mcos?e — ] + M > F(u)
and
—~ 4M, e?
u(x,0) = CD_l(Mcos g - W;e )

— 4JV[1€2
> ¢! (M ma
- o8 2e w2 )
= & (max{®(Mo), [¢]l=})

> [lellzee,

i.e., @(t,z) is a supersolution of (2.1). Since u = 0 is a subsolution, Lemma 2.1 implies the
conclusion.

In order to prove the remaining part of the theorem we need the following lemma.

Lemma 2.2. Suppose that ui(z) and ua(x), with ui(0) = u4(0) = 0, are in their own
support two arbitrary solutions to the stationary equation

d*>®(u)
dx?

where ® and F satisfy the requirements of Theorem 2.1 and for some ¢ > 0

+ F(u) =0, (2.6)

suppu; C (—a,a) C (—a —€,a + €) C suppus.
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If
u(x), € suppu
= = <
o(z) {07 e ey 19(0) = (e lel <
then the solution u(x,t) to Equation (2.1) with ho(t) = 0 satisfies

ug(x,t) >0 [<0] for (x,t) € [—a,a] x (0,00).

Proof. Since %ir% u(z,0) = uy(x) for x € suppuy, it is obvious that
—

ou(x,0)  d*(®(u(z,0)) B
5 = e + F(u(x,0)) =0
for x € [—a,a]\O{suppus}. It follows from w;(x) satisfying (2.6) that ®(uy(z)) satisfies
(2.5) with C = Cy > 0. Let d®(uq(z))/dx = wi(x). Then
_ d®(ui(z)) e —
mﬁlli‘rg%c*] dx N wﬁlbl‘rg[lc*] wl(x) N 200 [ 200]

since u1(b) = uy(c) = 0. But

lm  22@)
z—b—[ct] dx

Therefore d®(u¢x))/dt has discontinuous points at x = b, c with right limits greater than
left ones. In solving Equation (2.1), both d?®(u(b))/dx? and d?®(uy(c))/dz? serve as +oc.
Then the inequality

ou(z,0)  0?®(u(x,0))

ot Ox?
implies that there exists ¢ > 0 such that u(x, At) > u(z,0) for (z,At) € [—a,a] x (0,9).
Consider u(z, At) and u(c,0) as two initial functions. By applying Lemma 2.1, we have
u(z,t + At) > u(x,t) and hence u(z,t) > 0.
The proof for the conclusion about us(x) is the same as above.

+ F(u(x,0)) >0

We now continue to prove Theorem 2.1.

Suppose that uy(z) and us(x) satisfy the requirements of Lemma 2.2 and u;(x) < us(x)
for |z| < a. Denote by u;(x,t) the solutions of (2.1) with p(z) = u;(x),i = 1,2. As uy(z,1) is
monotone and bounded, there is u;(x) > 0 (> 0,2z € (—a, a)) such that tllglo up(x,t) = w(z).
But u;(x) must satisfy v’ = 0 and therefore (2.2) holds. This means w;(z) = @(x). Similarly
tlggo ug(x,t) = u(x).

If () > 0, |z| < ais an arbitrary continuous function with ¢(z) # 0, then the conditions

2 2
lim F(u)/®(u) = a > I? and  lim F(u)/®(u) = 8 < I?
ensure that there exist uj(x) and us(x) such that uy(z) < p(z) < ug(x). Then uy(x,t) <
us(x,t) < wug(x) and

lim u(z,t) = a(z), |z|<a. (2.7)

t—o0

The proof is now completed.
Before giving another theorem we consider at first a special equation when F(u,z,t) =
D (u), ie.,
AD(u) + ®(u) =0. (2.8)
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Lemma 2.3. Suppose that ®(u) satisfies the requirements given above. If u(zx) is a
solution of Equation (2.8) together with the initial conditions

uw(0) =up >0, u'(0)=0, (2.9)
then u(t) satisfies u(£m/2) =0 and
zu'(z) <0, a.e., for 0<|z| < g (2.10)

Proof. Let v = ®(u). Then v(z) = ®(u(x)) is the solution of initial problem
v +0v =0,
(2.11)

Solve (2.11) and we have
v(z) = P (up) cosz. (2.12)

Then u(z) = &~ (v(x)) = (P (ug) cos x).

The fact that @ is an increasing function implies ® > 0, meas{u|®’(v) = 0} = 0 and
hence

d(Up) sinx

—O/(D(ug) cos )’
The truth of Lemma 2.3 is now obvious.

Theorem 2.2. Suppose F(u,z,t) < A®(u), A >0 a constant. If u < m/2v/A, then the
solution u(z,t) to the initial-boundary problem (1.2) with hy(t) = 0 is bounded and tends to

™

u'(x) = 5

a.e., for|z| < (2.13)

the trivial solution u = 0.

Proof. Without loss of generality we suppose that A = 1.

Let ug(z) be the solution to Equation (2.8) with the initial conditions u(0) = ¢, v’ (0) = 0.
Clearly B = {u.(z)|c > 0} is a strip in the z,u-plane: (—7/2,7/2) x Rt. For any a €
(0,7/2), M > 0 there exists a ¢ > 0 such that u.(z) > M, |z| <a.Fix M = max |o(x)] and

||

let @p(z) = uc(x), |z| < a. Denote by a(x,t) the solution of the initial-boundary problem
(1.1) with u(z,0) = tg(x), he(t) = 0. Then according to the comparison theorem we have
u(z,t) < a(x,t) in their common existence interval ¢ € (0,7).

To prove Theorem 2.2 it suffices to prove that @(z,t) exists for ¢ < T, where T is any
positive constant, and lim a(x,t) = 0.

t—o00
Since () is a solution to Equation (2.8) and

tli_r}réﬁ(x,t) =dg(z) >0, |z|<a,

we have %u(x,O) =0, |z| < a. At the same time, it follows from 4(—a) = a(a) > M > 0
that

lim Aa(a,t) = lim Atu(—a,t) = —o0.
t—0 t—0
Then
ou(x,t
mM <0, z€[—a,al,
t—0 ot

i.e., u(x,t) does not increase as t increases from ¢ = 0 to ¢ = §, where § > 0 is small enough.
Then based on the comparison theorem it is easy to prove that @;(z,t) < 0. This, together
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with the fact @(x,t) > 0 which follows from 4y(z) > 0, implies that a(z,t) exists for ever
and tll)rgo (z,t) = u(x), |z| < a. Obviously @(z) must satisfy Equation (2.8). But when
a < 7/2, Lemma 2.1 implies that Equation (2.8) with the boundary condition u(+a) = 0 has
only the trivial solution u(x) = 0. Therefore @(z) = 0 and hence tlggo u(z,t) =0, |z| <a,
since 0 < u(z,t) < t(z,t).

§¢3. Unbounded Solutions

Consider the Cauchy problem
{ ur = AD(u) + F(u,z,t), 3.1)
u(z,0) = ¢(z),
where p € C°(R, R*), ¢ > 0, suppy bounded and ®(0) = F(0,x,t) = 0.

Theorem 3.1. Suppose that F € C°(R*,R),®Y/™ ¢ CY(R*,R),[®Y/™(u)]!, > 1 for
some m > 1. If there are two constants A > 0 and n € (1,m) such that F(u,z,t) >
AD™™ (), then the solution u(x,t) to (3.1) will be unbounded in a finite period provided
that ¢ # 0.

Such a solution is called a blow-up solution of (3.1).

Proof. It follows from the condition [®'/™(u)]’, > 1 that &/ (u) and hence ®(u) are
strictly increasing on (0,00). Then @1 exists. Without loss of generality we suppose A = 1
and 0 € int{suppy}.

Take in account the problem

(2, 0) = 6(a). .
where m >n > 1,¢ € C°(R, RT) and ¢ > 0[# 0] with the support bounded.
Let y = x/y/m. Then Equation (3.2) is equivalent to
0 ov n
ve= g, g (3.3)
v(y,0) = o(vmy).
It is well known (see [4]) that the first equation in (3.3) has self similarity solutions

— 1 m—n
o00) = g (W@ -0

where (f(z))+ means max{ f(z),0} and 6(r) > 0 is the compactly and connectedly supported

d [ m_1d0 m—n df 1 n
dr(e dr>+2(n1)rd7’_n19+9 =0

dh(0)
Cdt
Besides, 6 has the property that €'(r) > 0, where 7,6 > 0. Then @(.,t) is compactly
supported for any ¢ € [0, T) and so is the self similarity solutions of (3.2)
(T_Q%H(Iw\(T — )R )
It is easy to see that v(x,0) > 0 for € R and Au™ + u™ > 0 since v(x,t) is a solution of
vy = Av™ + 0™ on R X [0,t).

{vt = Av™ + 0",

(Umfl

solution to

(3.4)
=0, 0(+0c) = 0, 6(0) > 0.

v(x,t) =
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Let v™ = ®(u). Then
1

-1
w(z,t) = —(T — T

0" (Ja| (T — )= ) (3.5)

is the solution of
ou 1
A AD(u) + ™ (w))],
ot = @may), NP ) (36)
u(z,0) = w(zx,0).
For a given ¢ in [0,7] denote by X* the set {(z,t)|w(z,t) > 0} and X = {X*|t € [0,T]}.
Obviously wy(z,t) > 0 for (z,t) € X.
Choose T > 0 so large that w(x,0) < ¢(z), (x,0) € X°. Let u(z,t) be the solution of
Equation (3.1). Then there exists § > 0 such that

w(z,t) <u(z,t), for (x,t) € {X'|t € (0,5} (3.7

Suppose that u(x,t) does not blow up before ¢t = T'. It suffices to prove that Equation (3.7)
holds for all t € (0,T). Otherwise we suppose that there exists a point (xo, t), to < T, such
that

w(zo,to) = u(wo, to), w(x,t) <u(w,t)for (x,t)€ X', te(0,t).

Then
%(;t()) = A(I)(U) + F(U,iUmto) > A@(u) + (I)n/m(u)
1
> G, (A2 + 2 (w)]
_ ulan,to)
ot

since wy > 0. Here u stands for wu(xg,top). Thus there is § > 0 such that u(zo,t) <
w(zg,t) for te€ (to —J,tp), a contradiction.
So (3.7) holds for ¢t € (0,T) and this means that u(z,t) must blow up in (0,7).
Consider the problem

(3.8)

uy = Au" +u", m>1,
u(=£a,t) =0, te RT.

Lemma 3.1.14P1266 For any a > 7/2, (3.8) has a solution u(x,t) which blows up in a
finite period and satisfies uy(x,t) >0 when u(x,t) > 0.

Theorem 3.2. Suppose there are constants m > 1 and A > 0 such that ®'/™ ¢
CY(R*,R),[®Y™(w)], > 1 and F(u,z,t) > A®(v). If a > m/2V/A, then the solution
u(z,t) to the initial-boundary problem (2.1) with hy(t) = 0 will blow up in a finite period
provided ¢(x) # 0.

Proof. Without loss of generality we assume A = 1.

Suppose that the theorem is false. Then for some a > 7/2 there is p(x) > 0 continuous
and ¢(x) # 0 such that for any T' > 0 the solution u(z,t) to (2.1) remains bounded when
t € (0,T].

Assume that ¢(z) > 0 for some zy € (—a,a). Then for the given ¢(x) there exist T > 0
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large enough and v > 0 small enough such that

1
2] m—1
_ 2 —
¢(x):[<ml>’r} T 1o (B
2(m + 1) m/mi#»l

satisfies supp¢ C (—a,a) and ¢(z) < p(z), |x| < a. Consider
uy = AD(u),
u(z,0) = ¢(z), (3.9)
u(+a,t) = 0.

Its solution is
1

2] m—-1
o wmm
my(T + t) =+t
+

_ m—+1 m+1
tgtlzmin{(a x()) - (m) —T}.
mry mry

} (T +t)"mit

when

Clearly t; > 0 when -~ is small enough.
Since v(z,t) is the solution of diffusion problem (3.9), it approaches a constant d > 0 for
x € (—a,a) as t — oo and then there is 77 > t; such that

d
v(x,t) > 5> 0, lz| <a, t >T1. (3.10)
It is not difficult to prove that
(,)%v(a,t) < —-b<0, %v(—aﬂf) >b>0, fort>1T. (3.11)

By applying the comparison theorem, it follows that
d
u(z,t) > 5> 0 for x| <a,t>T
and hence

0 0
%u(a,t) < —b, %u(fa,t) >b, for t>1;. (3.12)

Let w(z,t) = ®Y/™(u(x,t)). Then w(x,t)) is the solution of the initial-boundary problem
we =[OV [Aw™ + F(O7H (w™), 2, 1)],
w(z,0) = &Y™ (p(x)), (3.13)
w(xa,t) = 0.
Furthermore, let w(x,t) = w(x,t + T1). Then w(z,t) satisfies the first equation of (3.13)
and the initial condition @ (x,0) = ®/™ (u(x, Ty)).
For the solution y(t) of the equation

1
y'— ——ymty=0, y>0,
m—1

with y(£a) = 0, it follows from

i 1 im,
Wy (+a,0) = - xl—lgclaq) m (w)u'(x, T1) = Foo
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that we can choose T' > T} > 0 large enough such that

1
—ym () < w(z,0), 7] <a
Tm—1
We now prove that for o(x,t) = (T — t)_ﬁyi(x) it holds that
o(x,t) < w(x,t), |z| < a,t e (0,T). (3.14)

If inequality (3.14) is not true, then there exist tg € (0,7) and z¢ € (—a, a) such that
O(x,t) < w(x,t), (z,t) € (—a,a) x (0,t9) (3.15)

and ¥(xg, tg) = W(xo,to). This implies
00(wo,t0)  Ow(wo, o)

5 Af}(.ﬁo,to) < A’lf)(mo,to).

ox ox
At the same time we have at (zg, to)
a@(l'o, to) 1 1
= =1y (x9) > 0,
o meona-m
ie.,
Af)m(x(), to) + 1~)m($0, to) > 0.
Therefore
0v(xg,t . ~
% = A’l}m(l‘o, to) + Um(aio, to)
< [@Y™ ()], [AT™ (20, to) + T (w0, to)]
< (@Y™ (u)]}, [AB™ (0, to) + @™ (w0, t0)]
< [q)l/m(u)};[Awm(xo’ tO) + F(w(‘rOa tO)a o, tO)]
- 811}(.730, to)
B o

that is to say, there is ¢ € (0,%y) such that
6(-'1;0, t_) > 1:[}('7;07 E)a

a contradiction to (3.15). Then the fact that v(x,t) blows up at ¢ = T implies that w(x,t)
must blow up before t = T. Obviously w(x,t) blows up before t = T + T. It follows from

w™ = ®(u) that u(z,t) blows up before t = Ty + T. The proof is now completed.
Example. Consider
up = A(u® +u?) + (3u® + 2u® + |z|u), |z] < a,
u(ta,t) =0, t>0, (3.16)
u(,0) = p(2), 2] <0,
where p € C°([—a,a], RT), p(x) # 0.
Here ®(z) = u?® + u?. Therefore
3u? + 2u

ﬂw:@ﬂmnziﬁiﬁg.

It is easy to show that lim f(u) =1 and f(u) decreases on RT . Therefore f(u) > 1. It

u—r 00
follows from

F(u,2,t) = 3u® + 2u* + |z|u > 20(u)
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that the solution to (3.16) will blow up in a finite period provided a > 7/2v/2.
Remark. The comparison theorem can only be applied for two solutions in a common
existence interval in ¢. Consider
ug = Au™ + f(u) in S =R" x RT,
u(z,0) = up(x), € RV,
where ug > 0 continuous with bounded support, f(0) =0, f € C*(R*,RT).
By comparing (3.17) to the special case f(z) = 0, paper [2] gave a conclusion that if
f(s) > 0 when s > 0, then for any * € RY there exists T(x) > 0 such that u(z,t) >
0 foranyt>T.
But it is false. For example, when f(u) = u™ and

(3.17)

[Qm } " cos% (m — 1) x |CE| < mn
uo(x) = (m* —1)T 2m 7 B mrrlz;r (3.18)
0, || > :
m—1

Equation (3.17) has the solution

1

[ 2m }"‘—1 cos AT (m—l) 2] < mm
—_— m [ — )z, |z|< ,
u(z,t) = (m? = 1)(T —1) 2m mm;l (3.19)
0 .
, o] > T

Obviously u(z,t) remains 0 when |z| > mn/(m —1). That is because u(z,t) will blow up
at t = T. After then there is no reason to compare it with other solutions.
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