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ON THE BOUNDED AND UNBOUNDED

SOLUTIONS OF ONE DIMENSIONAL

NONLINEAR REACTION-DIFFUSION PROBLEM
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Abstract

The existence of bounded and unbounded solutions to nonlinear reaction-diffusion problem
ut = ∆Φ(u) + F (u, x, t) with initial or initial-boundary conditions is discussed when u =
u(x, t), x ∈ R. Simple criteria are given.

Keywords Reaction-Diffusion equation, Bounded solution, Cauchy problem.

1991 MR Subject Classification 35K57.

§1. Introduction

A lot of chemical reactions taken place in a nonlinear medium result in nonlinear reaction-

diffusion equations. Some of their solutions become unbounded in a finite or infinite period

while some remain bounded for ever[1−5]. As a special case, the Cauchy problem{
ut = ∆um + un,

u(x, 0) = φ(x),
(1.1)

where φ(x) ≥ 0 is bounded, was studied in detail in [4]. It is well known that when

1 < n < m + 2, all solutions of Equation (1.1) blow up, i.e., they become unbounded

in a finite period provided that φ ∈ C0(R, [0,∞)) and φ ̸≡ 0. But the situation changes

completely when a boundary condition is added to Equation (1.1). It will become even more

complicated when um and un in Equation (1.1) are replaced by two generalized functions.

Our purpose in this paper is to study the boundedness and unboundedness of solutions for

generalized reaction-diffusion equations.

§2. Bounded Solutions

We consider the initial-boundary problem
ut = ∆Φ(u) + F (u, x, t),

u(x, 0) = φ(x), x ∈ (−a, a),
u(±a, t) = h±(t), t ∈ (0,∞),

(2.1)

where a > 0 and

1) Φ ∈ C1(R+, R+), indecreasing and Φ(0) = 0;
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2) F : R+ ×R×R+ → R locally Lipschitzian continuous in u and F (0, x, t) = 0;

3) φ ∈ C0([−a, a], R+);

4) h±(t) ∈ Lloc(R
+), bounded.

Denote by Ω and ΩT the sets (−a, a) and (−a, a)× (0, T ) respectively.

Definition 2.1. A function u ∈ C0([0, T ], L1(Ω)) ∩ L∞(QT ) is a solution to Equation

(2.1) on [0, T ] if it satisfies∫
Ω

u(t)ψ(t)−
∫∫

Qt

(uψt +Φ(u)∆ψ) +

∫ t

0

[Φ(h+(s))ψx(a, s)− Φ(h−(s))ψx(−a, s)]ds

=

∫
Ω

φψ(0) +

∫∫
Qt

Fψ

for all t ∈ (0, T ] and ψ ∈ C2(Q̄T , R) such that ψ ≥ 0 and ψ = 0 when (x, t) ∈ {−a, a} ×
[0, T ]. A solution on [0,∞) means a solution on each [0, T ] for any T > 0. A superso-

lution (subsolution) is defined by (2.2) with equality replaced by ≥ (≤) and with h̄±(t) ≥
h±(t) (h±(t) ≤ h±(t)).

Lemma 2.1.[1, Theorem 12] Let ū be a supersolution and u a subsolution of (2.1) when

F (t, x, u) = F (u) with initial data ū0 and u0 respectively. If u0 ≤ ū0, then

u ≤ ū.

Obviously Lemma 2.1 ensures the uniqueness of solution to Equation (2.1). Denote by Φ−1

the inverse function of Φ : R+ → R+.

Theorem 2.1. Suppose h±(t) = 0, F (u) > 0 for u > 0, lim
u→∞

Φ(u) = ∞ and

lim
u→0

F (u)

Φ(u)
= α >

π2

4a2
, lim

u→∞

F (u)

Φ(u)
= β <

π2

4a2
.

Then {
∆ϕ(u) + F (u) = 0,

u(±a) = 0
(2.2)

has a unique nontrivial solution ũ(x) which satisfies u(x) > 0 for |x| < a and if F (u) satisfies

F (Φ−1(sv)) < sF (Φ−1(v)) (2.3)

for any s > 1 and v > 0, then every solution of (2.1) is bounded and approaches ũ(x) as

t→ ∞ provided φ(x) ̸≡ 0.

Proof. Let v = Φ(u). Then (2.2) is equivalent to{
∆v + F (Φ−1(v)) = 0,

v(±a) = 0.
(2.4)

For ∆v + F (Φ−1(v)) = 0, its trajectories are determined by

1

2
v̇2 +

∫ v

0

F (Φ−1(s))ds = C. (2.5)

Extend the domains for F and Φ as Φ(−u) = −Φ(u) and F (−u) = −F (u) for u < 0 al-

though we have interest only in the case u ≥ 0. Then curve (2.5) is simply closed with

period, say, 4T. By use of the method of qualitative analysis in ordinary differential equa-

tions we can easily prove that T > a as C → ∞ and T < a as C → 0. Therefore there exists
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at least one C0 > 0 such that, T = a. Then the equation

d2v

dx2
+ F (Φ−1(v)) = 0

has a solution v(x) such that v′(0) = 0 and∫ v(0)

0

F (Φ−1(s))ds = C0.

Hence v(±T ) = v(±a). Obviously ũ(x) = Φ−1(v(x)) is a solution to Equation (2.2). The

uniqueness is ensured by Lemma 2.1.

For the boundedness of solutions of Equation (2.1), it suffices to prove that ∥u∥L∞ is

bounded since the solution exists. It follows from the condition

lim
u→∞

F (u)

Φ(u)
= β <

π2

4a2

that we can choose M0 large enough such that for a constant e ∈ (a, π/2
√
β)

F (u)

Φ(u)
≤ π2

4e2

holds for u ≥M0. Let M1 = max
0≤u≤M0

F (u). Then F (u) < M1 +
π2

4e2Φ(u). Set

M̃ =≥ sec
πa

2e
·
[
4M1e

2

π2
+max{Φ(u), ∥φ∥L∞}

]
and

ū(x, t) := Φ−1
(
M̃ cos

πx

2e
− 4M1e

2

π2

)
.

Then

ūt −∆Φ(ū) = −∆Φ(ū) =
M̃π2

4e2
cos

πx

2e

=
π2

4e2

[
M̃cos

πx

2e
− 4M1e

2

π2

]
+M1 > F (u)

and

ū(x, 0) = Φ−1
(
M̃ cos

πx

2e
− 4M1e

2

π2

)
≥ Φ−1

(
M̃ cos

πa

2e
− 4M1e

2

π2
)

= Φ−1(max{Φ(M0), ∥φ∥L∞})
≥ ∥φ∥L∞ ,

i.e., ū(t, x) is a supersolution of (2.1). Since u ≡ 0 is a subsolution, Lemma 2.1 implies the

conclusion.

In order to prove the remaining part of the theorem we need the following lemma.

Lemma 2.2. Suppose that u1(x) and u2(x), with u
′
1(0) = u′2(0) = 0, are in their own

support two arbitrary solutions to the stationary equation

d2Φ(u)

dx2
+ F (u) = 0, (2.6)

where Φ and F satisfy the requirements of Theorem 2.1 and for some ϵ > 0

suppu1 ⊂ (−a, a) ⊂ (−a− ϵ, a+ ϵ) ⊂ suppu2.
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If

φ(x) =

{
u1(x), x ∈ suppu1

0, x ∈ [−a, a]\suppu1
[φ(x) = u2(x), |x| ≤ a],

then the solution u(x, t) to Equation (2.1) with h±(t) = 0 satisfies

ut(x, t) ≥ 0 [≤ 0] for (x, t) ∈ [−a, a]× (0,∞).

Proof. Since lim
t→0

u(x, 0) = u1(x) for x ∈ suppu1, it is obvious that

∂u(x, 0)

∂t
=
d2(Φ(u(x, 0))

dx2
+ F (u(x, 0)) = 0

for x ∈ [−a, a]\∂{suppu1}. It follows from u1(x) satisfying (2.6) that Φ(u1(x)) satisfies

(2.5) with C = C0 > 0. Let dΦ(u1(x))/dx = w1(x). Then

lim
x→b+[c−]

dΦ(u1(x))

dx
= lim

x→b+[c−]
w1(x) =

√
2C0 [−

√
2C0]

since u1(b) = u1(c) = 0. But

lim
x→b−[c+]

dΦ(u1(x))

dx
= 0.

Therefore dΦ(u(x))/dt has discontinuous points at x = b, c with right limits greater than

left ones. In solving Equation (2.1), both d2Φ(u1(b))/dx
2 and d2Φ(u1(c))/dx

2 serve as +∞.

Then the inequality

∂u(x, 0)

∂t
=
∂2Φ(u(x, 0))

∂x2
+ F (u(x, 0)) ≥ 0

implies that there exists δ > 0 such that u(x,∆t) ≥ u(x, 0) for (x,∆t) ∈ [−a, a] × (0, δ).

Consider u(x,∆t) and u(c, 0) as two initial functions. By applying Lemma 2.1, we have

u(x, t+∆t) ≥ u(x, t) and hence u(x, t) ≥ 0.

The proof for the conclusion about u2(x) is the same as above.

We now continue to prove Theorem 2.1.

Suppose that u1(x) and u2(x) satisfy the requirements of Lemma 2.2 and u1(x) < u2(x)

for |x| ≤ a. Denote by ui(x, t) the solutions of (2.1) with φ(x) = ui(x), i = 1, 2. As u1(x, t) is

monotone and bounded, there is ul(x) ≥ 0 (> 0, x ∈ (−a, a)) such that lim
t→∞

u1(x, t) = ul(x).

But ul(x) must satisfy u′ = 0 and therefore (2.2) holds. This means ul(x) = ũ(x). Similarly

lim
t→∞

u2(x, t) = ũ(x).

If φ(x) ≥ 0, |x| ≤ a is an arbitrary continuous function with φ(x) ̸≡ 0, then the conditions

lim
u→0

F (u)/Φ(u) = α >
π2

4a2
and lim

u→∞
F (u)/Φ(u) = β <

π2

4a2

ensure that there exist u1(x) and u2(x) such that u1(x) ≤ φ(x) ≤ u2(x). Then u1(x, t) ≤
u2(x, t) ≤ u2(x) and

lim
t→∞

u(x, t) = ũ(x), |x| < a. (2.7)

The proof is now completed.

Before giving another theorem we consider at first a special equation when F (u, x, t) =

Φ(u), i.e.,

∆Φ(u) + Φ(u) = 0. (2.8)
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Lemma 2.3. Suppose that Φ(u) satisfies the requirements given above. If u(x) is a

solution of Equation (2.8) together with the initial conditions

u(0) = u0 > 0, u′(0) = 0, (2.9)

then u(t) satisfies u(±π/2) = 0 and

xu′(x) < 0, a.e., for 0 < |x| < π

2
. (2.10)

Proof. Let v = Φ(u). Then v(x) = Φ(u(x)) is the solution of initial problem{
v′′ + v = 0,

v(0) = Φ(u0), v′(0) = 0.
(2.11)

Solve (2.11) and we have

v(x) = Φ(u0) cosx. (2.12)

Then u(x) = Φ−1(v(x)) = Φ−1(Φ(u0) cosx).

The fact that Φ is an increasing function implies Φ′ ≥ 0, meas{u|Φ′(u) = 0} = 0 and

hence

u′(x) = − ϕ(U0) sinx

Φ′(Φ(u0) cosx)
, a.e., for |x| < π

2
. (2.13)

The truth of Lemma 2.3 is now obvious.

Theorem 2.2. Suppose F (u, x, t) ≤ AΦ(u), A > 0 a constant. If u < π/2
√
A, then the

solution u(x, t) to the initial-boundary problem (1.2) with h±(t) = 0 is bounded and tends to

the trivial solution u = 0.

Proof. Without loss of generality we suppose that A = 1.

Let u0(x) be the solution to Equation (2.8) with the initial conditions u(0) = c, u′(0) = 0.

Clearly B = {uc(x)|c ≥ 0} is a strip in the x, u-plane: (−π/2, π/2) × R+. For any a ∈
(0, π/2),M > 0 there exists a c > 0 such that uc(x) > M, |x| ≤ a. FixM = max

|x|≤a
|φ(x)| and

let ũ0(x) = uc(x), |x| ≤ a. Denote by ũ(x, t) the solution of the initial-boundary problem

(1.1) with u(x, 0) = ũ0(x), h±(t) = 0. Then according to the comparison theorem we have

u(x, t) ≤ ũ(x, t) in their common existence interval t ∈ (0, T ).

To prove Theorem 2.2 it suffices to prove that ũ(x, t) exists for t < T, where T is any

positive constant, and lim
t→∞

ũ(x, t) = 0.

Since ũ0(x) is a solution to Equation (2.8) and

lim
t→0

ũ(x, t) = ũ0(x) > 0, |x| < a,

we have ∂
∂tu(x, 0) = 0, |x| < a. At the same time, it follows from ũ(−a) = ũ(a) > M > 0

that

lim
t→0

∆ũ(a, t) = lim
t→0

∆ũ(−a, t) = −∞.

Then

lim
t→0

∂ũ(x, t)

∂t
≤ 0, x ∈ [−a, a],

i.e., ũ(x, t) does not increase as t increases from t = 0 to t = δ, where δ > 0 is small enough.

Then based on the comparison theorem it is easy to prove that ũt(x, t) ≤ 0. This, together
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with the fact ũ(x, t) ≥ 0 which follows from ũ0(x) > 0, implies that ũ(x, t) exists for ever

and lim
t→∞

ũ(x, t) = ū(x), |x| ≤ a. Obviously ū(x) must satisfy Equation (2.8). But when

a < π/2, Lemma 2.1 implies that Equation (2.8) with the boundary condition u(±a) = 0 has

only the trivial solution u(x) ≡ 0. Therefore ū(x) ≡ 0 and hence lim
t→∞

u(x, t) = 0, |x| ≤ a,

since 0 ≤ u(x, t) ≤ ũ(x, t).

§3. Unbounded Solutions

Consider the Cauchy problem{
ut = ∆Φ(u) + F (u, x, t),

u(x, 0) = φ(x),
(3.1)

where φ ∈ C0(R,R+), φ ≥ 0, suppφ bounded and Φ(0) = F (0, x, t) = 0.

Theorem 3.1. Suppose that F ∈ C0(R+, R),Φ1/m ∈ C1(R+, R), [Φ1/m(u)]′u ≥ 1 for

some m > 1. If there are two constants A > 0 and n ∈ (1,m) such that F (u, x, t) >

AΦn/m(u), then the solution u(x, t) to (3.1) will be unbounded in a finite period provided

that φ ̸≡ 0.

Such a solution is called a blow-up solution of (3.1).

Proof. It follows from the condition [Φ1/m(u)]′u ≥ 1 that Φ1/m(u) and hence Φ(u) are

strictly increasing on (0,∞). Then Φ−1 exists. Without loss of generality we suppose A = 1

and 0 ∈ int{suppφ}.
Take in account the problem {

vt = ∆vm + vn,

v(x, 0) = ϕ(x),
(3.2)

where m > n > 1, ϕ ∈ C0(R,R+) and ϕ ≥ 0[ ̸≡ 0] with the support bounded.

Let y = x/
√
m. Then Equation (3.2) is equivalent to vt =

∂

∂y
(vm−1 ∂v

∂y
) + vn,

v(y, 0) = ϕ(
√
my).

(3.3)

It is well known (see [4]) that the first equation in (3.3) has self similarity solutions

v̄(y, t) =
1

(T − t)1/(n−1)
θ
(
|y|(T − t)

m−n
2(n−1)

)
+
,

where (f(x))+ means max{f(x), 0} and θ(r) ≥ 0 is the compactly and connectedly supported

solution to 
d

dr

(
θm−1 dθ

dr

)
+

m− n

2(n− 1)
r
dθ

dr
− 1

n− 1
θ + θn = 0,

dθ(0)

dt
= 0, θ(+∞) = 0, θ(0) > 0.

(3.4)

Besides, θ has the property that θ′(r) > 0, where r, θ > 0. Then v̄(., t) is compactly

supported for any t ∈ [0, T ) and so is the self similarity solutions of (3.2)

v(x, t) =
1

(T − t)1/(n−1)
θ(|x|(T − t)(m−n)/2(n−1)/

√
m)+.

It is easy to see that v(x, 0) ≥ 0 for x ∈ R and ∆um + un ≥ 0 since v(x, t) is a solution of

vt = ∆vm + vn on R× [0, t).
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Let vm = Φ(u). Then

w(x, t) = Φ−1

[
1

(T − t)m/(n−1)
θm(|x|(T − t)(m−n)/2(n−1)/

√
m)+

]
(3.5)

is the solution of 
∂u

∂t
=

1

[Φ1/m(u)]′u
[∆Φ(u) + Φn/m(u)],

u(x, 0) = w(x, 0).

(3.6)

For a given t in [0, T ] denote by Xt the set {(x, t)|w(x, t) > 0} and X = {Xt|t ∈ [0, T ]}.
Obviously wt(x, t) > 0 for (x, t) ∈ X.

Choose T > 0 so large that w(x, 0) ≤ ϕ(x), (x, 0) ∈ X0. Let u(x, t) be the solution of

Equation (3.1). Then there exists δ > 0 such that

w(x, t) < u(x, t), for (x, t) ∈ {Xt|t ∈ (0, δ}. (3.7)

Suppose that u(x, t) does not blow up before t = T . It suffices to prove that Equation (3.7)

holds for all t ∈ (0, T ). Otherwise we suppose that there exists a point (x0, t0), t0 < T , such

that

w(x0, t0) = u(x0, t0), w(x, t) < u(x, t) for (x, t) ∈ Xt, t ∈ (0, t0).

Then

∂u(x0, t0)

∂t
= ∆Φ(u) + F (u, x0, t0) > ∆Φ(u) + Φn/m(u)

≥ 1

[Φ1/m(u)]0′u
[∆Φ(u) + Φn/m(u)]

=
∂w(x0, t0)

∂t

since wt > 0. Here u stands for u(x0, t0). Thus there is δ > 0 such that u(x0, t) <

w(x0, t) for t ∈ (t0 − δ, t0), a contradiction.

So (3.7) holds for t ∈ (0, T ) and this means that u(x, t) must blow up in (0, T ).

Consider the problem {
ut = ∆um + um, m > 1,

u(±a, t) = 0, t ∈ R+.
(3.8)

Lemma 3.1.[4,p.1266] For any a > π/2, (3.8) has a solution ū(x, t) which blows up in a

finite period and satisfies ūt(x, t) > 0 when ū(x, t) > 0.

Theorem 3.2. Suppose there are constants m > 1 and A > 0 such that Φ1/m ∈
C1(R+, R), [Φ1/m(u)]′u ≥ 1 and F (u, x, t) > AΦ(u). If a > π/2

√
A, then the solution

u(x, t) to the initial-boundary problem (2.1) with h±(t) = 0 will blow up in a finite period

provided φ(x) ̸≡ 0.

Proof. Without loss of generality we assume A = 1.

Suppose that the theorem is false. Then for some a > π/2 there is φ(x) ≥ 0 continuous

and φ(x) ̸≡ 0 such that for any T > 0 the solution u(x, t) to (2.1) remains bounded when

t ∈ (0, T ].

Assume that φ(x0) > 0 for some x0 ∈ (−a, a). Then for the given φ(x) there exist T > 0
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large enough and γ > 0 small enough such that

ϕ(x) =

[
(m− 1)γ2

2(m+ 1)

]
T− 1

m+1

1−( x− x0

mγT
1

m+1

)2
 1

m−1

+

satisfies suppϕ ⊂ (−a, a) and ϕ(x) ≤ φ(x), |x| < a. Consider
ut = ∆Φ(u),

u(x, 0) = ϕ(x),

u(±a, t) = 0.

(3.9)

Its solution is

v(x, t) =

[
(m− 1)γ2

2(m+ 1)

]
(T + t)−

1
m+1

1−( x− x0

mγ(T + t)
1

m+1

)2
 1

m−1

+

when

t ≤ t1 = min
{(a− x0

mγ

)m+1

− T,
(a+ x0

mγ

)m+1

− T
}
.

Clearly t1 > 0 when γ is small enough.

Since v(x, t) is the solution of diffusion problem (3.9), it approaches a constant d > 0 for

x ∈ (−a, a) as t→ ∞ and then there is T1 > t1 such that

v(x, t) >
d

2
> 0, |x| < a, t ≥ T1. (3.10)

It is not difficult to prove that

∂

∂x
v(a, t) < −b < 0,

∂

∂x
v(−a, t) > b > 0, for t > T1. (3.11)

By applying the comparison theorem, it follows that

u(x, t) >
d

2
> 0 for |x| < a, t ≥ T1

and hence

∂

∂x
u(a, t) < −b, ∂

∂x
u(−a, t) > b, for t > T1. (3.12)

Let w(x, t) = Φ1/m(u(x, t)). Then w(x, t)) is the solution of the initial-boundary problem
wt = [Φ1/m]′u[∆w

m + F (Φ−1(wm), x, t)],

w(x, 0) = Φ1/m(φ(x)),

w(±a, t) = 0.

(3.13)

Furthermore, let w̃(x, t) = w(x, t+ T1). Then w(x, t) satisfies the first equation of (3.13)

and the initial condition w̃(x, 0) = Φ1/m(u(x, T1)).

For the solution y(t) of the equation

y′′ − 1

m− 1
y1/m + y = 0, y ≥ 0,

with y(±a) = 0, it follows from

w̃x(±a, 0) =
1

m
lim

x→±a
Φ

1−m
m (u)u′(x, T1) = ∓∞
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that we can choose T > T1 > 0 large enough such that

1

T
1

m−1

y
1
m (x) < w̃(x, 0), |x| < a.

We now prove that for ṽ(x, t) = (T − t)−
1

m−1 y
1
m (x) it holds that

ṽ(x, t) < w̃(x, t), |x| < a, t ∈ (0, T ). (3.14)

If inequality (3.14) is not true, then there exist t0 ∈ (0, T ) and x0 ∈ (−a, a) such that

ṽ(x, t) < w̃(x, t), (x, t) ∈ (−a, a)× (0, t0) (3.15)

and ṽ(x0, t0) = w̃(x0, t0). This implies

∂ṽ(x0, t0)

∂x
=
∂w̃(x0, t0)

∂x
, ∆ṽ(x0, t0) ≤ ∆w̃(x0, t0).

At the same time we have at (x0, t0)

∂ṽ(x0, t0)

∂t
=

1

(m− 1)(T − t0)
m

m−1
y

1
m (x0) > 0,

i.e.,

∆ṽm(x0, t0) + ṽm(x0, t0) > 0.

Therefore
∂ṽ(x0, t0)

∂t
= ∆ṽm(x0, t0) + ṽm(x0, t0)

≤ [Φ1/m(u)]′u[∆ṽ
m(x0, t0) + ṽm(x0, t0)]

≤ [Φ1/m(u)]′u[∆w̃
m(x0, t0) + w̃m(x0, t0)]

< [Φ1/m(u)]′u[∆w̃
m(x0, t0) + F (w̃(x0, t0), x0, t0)]

=
∂w̃(x0, t0)

∂t
,

that is to say, there is t̄ ∈ (0, t0) such that

ṽ(x0, t̄) > w̃(x0, t̄),

a contradiction to (3.15). Then the fact that v(x, t) blows up at t = T implies that w̃(x, t)

must blow up before t = T . Obviously w(x, t) blows up before t = T1 + T . It follows from

wm = Φ(u) that u(x, t) blows up before t = T1 + T . The proof is now completed.

Example. Consider
ut = ∆(u3 + u2) + (3u3 + 2u2 + |x|u),
u(±a, t) = 0,

u(x, 0) = φ(x),

|x| ≤ a,

t > 0,

|x| < 0,

(3.16)

where φ ∈ C0([−a, a], R+), φ(x) ̸≡ 0.

Here Φ(x) = u3 + u2. Therefore

f(u) = [Φ
1
3 (x)]′u =

3u2 + 2u

3(u3 + u2)
2
3

.

It is easy to show that lim
u→∞

f(u) = 1 and f(u) decreases on R+ . Therefore f(u) > 1. It

follows from

F (u, x, t) = 3u3 + 2u2 + |x|u > 2Φ(u)
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that the solution to (3.16) will blow up in a finite period provided a > π/2
√
2.

Remark. The comparison theorem can only be applied for two solutions in a common

existence interval in t. Consider{
ut = ∆um + f(u) in S = RN ×R+,

u(x, 0) = u0(x), x ∈ RN ,
(3.17)

where u0 ≥ 0 continuous with bounded support, f(0) = 0, f ∈ C1(R+, R+).

By comparing (3.17) to the special case f(x) ≡ 0, paper [2] gave a conclusion that if

f(s) ≥ 0 when s ≥ 0, then for any x ∈ RN there exists T (x) ≥ 0 such that u(x, t) >

0 for any t > T.

But it is false. For example, when f(u) = um and

u0(x) =


[

2m

(m2 − 1)T

] 1
m−1

cos
2

m−1

(
m− 1

2m

)
x, |x| ≤ mπ

m1
,

0, |x| > mπ

m− 1
,

(3.18)

Equation (3.17) has the solution

u(x, t) =


[

2m

(m2 − 1)(T − t)

] 1
m−1

cos
2

m−1

(
m− 1

2m

)
x, |x| ≤ mπ

m− 1
,

0, |x| > mπ

m− 1
.

(3.19)

Obviously u(x, t) remains 0 when |x| ≥ mπ/(m− 1). That is because u(x, t) will blow up

at t = T . After then there is no reason to compare it with other solutions.
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