ON THE BOUNDED AND UNBOUNDED SOLUTIONS OF ONE DIMENSIONAL NONLINEAR REACTION-DIFFUSION PROBLEM

GE WEIGAO* R. O. WEBER**

Abstract

The existence of bounded and unbounded solutions to nonlinear reaction-diffusion problem $u_t = \Delta \Phi(u) + F(u, x, t)$ with initial or initial-boundary conditions is discussed when $u = u(x, t), x \in \mathbb{R}$. Simple criteria are given.

Keywords Reaction-Diffusion equation, Bounded solution, Cauchy problem. **1991 MR Subject Classification** 35K57.

§1. Introduction

A lot of chemical reactions taken place in a nonlinear medium result in nonlinear reactiondiffusion equations. Some of their solutions become unbounded in a finite or infinite period while some remain bounded for $ever^{[1-5]}$. As a special case, the Cauchy problem

$$\begin{aligned} \hat{u}_t &= \Delta u^m + u^n, \\ u(x,0) &= \varphi(x), \end{aligned}$$
(1.1)

where $\varphi(x) \geq 0$ is bounded, was studied in detail in [4]. It is well known that when 1 < n < m + 2, all solutions of Equation (1.1) blow up, i.e., they become unbounded in a finite period provided that $\varphi \in C^0(R, [0, \infty))$ and $\varphi \neq 0$. But the situation changes completely when a boundary condition is added to Equation (1.1). It will become even more complicated when u^m and u^n in Equation (1.1) are replaced by two generalized functions. Our purpose in this paper is to study the boundedness and unboundedness of solutions for generalized reaction-diffusion equations.

§2. Bounded Solutions

We consider the initial-boundary problem

$$\begin{cases} u_t = \Delta \Phi(u) + F(u, x, t), \\ u(x, 0) = \varphi(x), & x \in (-a, a), \\ u(\pm a, t) = h_{\pm}(t), & t \in (0, \infty), \end{cases}$$
(2.1)

where a > 0 and

1) $\Phi \in C^1(\mathbb{R}^+, \mathbb{R}^+)$, indecreasing and $\Phi(0) = 0$;

Manuscript received November 27, 1992. Revised December 25, 1993.

^{*}Department of Mathematics, Beijing Institute of Technology, Beijing 100081, China.

^{**}Department of Mathematics, University College, ADFA, Canberra, ACT 2600, Australia.

- 2) $F: R^+ \times R \times R^+ \to R$ locally Lipschitzian continuous in u and F(0, x, t) = 0;
- $3) \ \varphi \in C^0([-a,a],R^+);$
- 4) $h_{\pm}(t) \in L_{loc}(R^+)$, bounded.

Denote by Ω and Ω_T the sets (-a, a) and $(-a, a) \times (0, T)$ respectively.

Definition 2.1. A function $u \in C^0([0,T], L^1(\Omega)) \cap L^\infty(Q_T)$ is a solution to Equation (2.1) on [0,T] if it satisfies

$$\begin{split} &\int_{\Omega} u(t)\psi(t) - \iint_{Q_t} (u\psi_t + \Phi(u)\Delta\psi) + \int_0^t [\Phi(h_+(s))\psi_x(a,s) - \Phi(h_-(s))\psi_x(-a,s)]ds \\ &= \int_{\Omega} \varphi\psi(0) + \iint_{Q_t} F\psi \end{split}$$

for all $t \in (0,T]$ and $\psi \in C^2(\bar{Q}_T, R)$ such that $\psi \ge 0$ and $\psi = 0$ when $(x,t) \in \{-a,a\} \times [0,T]$. A solution on $[0,\infty)$ means a solution on each [0,T] for any T > 0. A supersolution (subsolution) is defined by (2.2) with equality replaced by $\ge (\le)$ and with $\bar{h}_{\pm}(t) \ge h_{\pm}(t) (\underline{h}_{\pm}(t) \le h_{\pm}(t))$.

Lemma 2.1.^[1, Theorem 12] Let \bar{u} be a supersolution and \underline{u} a subsolution of (2.1) when F(t, x, u) = F(u) with initial data \bar{u}_0 and \underline{u}_0 respectively. If $\underline{u}_0 \leq \bar{u}_0$, then

$$\underline{u} \leq \overline{u}.$$

Obviously Lemma 2.1 ensures the uniqueness of solution to Equation (2.1). Denote by Φ^{-1} the inverse function of $\Phi : \mathbb{R}^+ \to \mathbb{R}^+$.

Theorem 2.1. Suppose $h_{\pm}(t) = 0$, F(u) > 0 for u > 0, $\lim_{u \to u} \Phi(u) = \infty$ and

$$\lim_{u\to 0}\frac{F(u)}{\Phi(u)}=\alpha>\frac{\pi^2}{4a^2},\qquad \lim_{u\to\infty}\frac{F(u)}{\Phi(u)}=\beta<\frac{\pi^2}{4a^2}.$$

Then

$$\begin{cases} \Delta \phi(u) + F(u) = 0, \\ u(\pm a) = 0 \end{cases}$$
(2.2)

has a unique nontrivial solution $\tilde{u}(x)$ which satisfies u(x) > 0 for |x| < a and if F(u) satisfies

$$F(\Phi^{-1}(sv)) < sF(\Phi^{-1}(v))$$
(2.3)

for any s > 1 and v > 0, then every solution of (2.1) is bounded and approaches $\tilde{u}(x)$ as $t \to \infty$ provided $\varphi(x) \neq 0$.

Proof. Let $v = \Phi(u)$. Then (2.2) is equivalent to

$$\begin{cases} \Delta v + F(\Phi^{-1}(v)) = 0, \\ v(\pm a) = 0. \end{cases}$$
(2.4)

For $\Delta v + F(\Phi^{-1}(v)) = 0$, its trajectories are determined by

$$\frac{1}{2}\dot{v}^2 + \int_0^v F(\Phi^{-1}(s))ds = C.$$
(2.5)

Extend the domains for F and Φ as $\Phi(-u) = -\Phi(u)$ and F(-u) = -F(u) for u < 0 although we have interest only in the case $u \ge 0$. Then curve (2.5) is simply closed with period, say, 4T. By use of the method of qualitative analysis in ordinary differential equations we can easily prove that T > a as $C \to \infty$ and T < a as $C \to 0$. Therefore there exists

at least one $C_0 > 0$ such that, T = a. Then the equation

$$\frac{d^2v}{dx^2} + F(\Phi^{-1}(v)) = 0$$

has a solution v(x) such that v'(0) = 0 and

$$\int_0^{v(0)} F(\Phi^{-1}(s)) ds = C_0.$$

Hence $v(\pm T) = v(\pm a)$. Obviously $\tilde{u}(x) = \Phi^{-1}(v(x))$ is a solution to Equation (2.2). The uniqueness is ensured by Lemma 2.1.

For the boundedness of solutions of Equation (2.1), it suffices to prove that $||u||_{L^{\infty}}$ is bounded since the solution exists. It follows from the condition

$$\lim_{u \to \infty} \frac{F(u)}{\Phi(u)} = \beta < \frac{\pi^2}{4a^2}$$

that we can choose M_0 large enough such that for a constant $e \in (a, \pi/2\sqrt{\beta})$

$$\frac{F(u)}{\Phi(u)} \le \frac{\pi^2}{4e^2}$$

holds for $u \ge M_0$. Let $M_1 = \max_{0 \le u \le M_0} F(u)$. Then $F(u) < M_1 + \frac{\pi^2}{4e^2} \Phi(u)$. Set

$$\widetilde{M} = \ge \sec \frac{\pi a}{2e} \cdot \left[\frac{4M_1 e^2}{\pi^2} + \max\{\Phi(u), \|\varphi\|_{L^{\infty}}\} \right]$$

and

$$\bar{u}(x,t) := \Phi^{-1} \left(\widetilde{M} \cos \frac{\pi x}{2e} - \frac{4M_1 e^2}{\pi^2} \right).$$

Then

$$\bar{u}_t - \Delta \Phi(\bar{u}) = -\Delta \Phi(\bar{u}) = \frac{\widetilde{M}\pi^2}{4e^2} \cos\frac{\pi x}{2e}$$
$$= \frac{\pi^2}{4e^2} \left[\widetilde{M}\cos\frac{\pi x}{2e} - \frac{4M_1e^2}{\pi^2} \right] + M_1 > F(u)$$

and

$$\bar{u}(x,0) = \Phi^{-1} \left(\widetilde{M} \cos \frac{\pi x}{2e} - \frac{4M_1 e^2}{\pi^2} \right)$$
$$\geq \Phi^{-1} \left(\widetilde{M} \cos \frac{\pi a}{2e} - \frac{4M_1 e^2}{\pi^2} \right)$$
$$= \Phi^{-1} (\max\{\Phi(M_0), \|\varphi\|_{L^{\infty}}\})$$
$$\geq \|\varphi\|_{L^{\infty}},$$

i.e., $\bar{u}(t, x)$ is a supersolution of (2.1). Since $\underline{u} \equiv 0$ is a subsolution, Lemma 2.1 implies the conclusion.

In order to prove the remaining part of the theorem we need the following lemma.

Lemma 2.2. Suppose that $u_1(x)$ and $u_2(x)$, with $u'_1(0) = u'_2(0) = 0$, are in their own support two arbitrary solutions to the stationary equation

$$\frac{d^2\Phi(u)}{dx^2} + F(u) = 0, (2.6)$$

where Φ and F satisfy the requirements of Theorem 2.1 and for some $\epsilon > 0$

$$\operatorname{supp} u_1 \subset (-a, a) \subset (-a - \epsilon, a + \epsilon) \subset \operatorname{supp} u_2$$

No.2

If

$$\varphi(x) = \begin{cases} u_1(x), & x \in \operatorname{supp} u_1 \\ 0, & x \in [-a, a] \backslash \operatorname{supp} u_1 \end{cases} \qquad [\varphi(x) = u_2(x), |x| \le a]$$

then the solution u(x,t) to Equation (2.1) with $h_{\pm}(t) = 0$ satisfies

$$u_t(x,t) \ge 0 \ [\le 0] \text{ for } (x,t) \in [-a,a] \times (0,\infty).$$

Proof. Since $\lim_{t\to 0} u(x,0) = u_1(x)$ for $x \in \text{supp}u_1$, it is obvious that

$$\frac{\partial u(x,0)}{\partial t} = \frac{d^2(\Phi(u(x,0))}{dx^2} + F(u(x,0)) = 0$$

for $x \in [-a, a] \setminus \partial \{ \sup u_1 \}$. It follows from $u_1(x)$ satisfying (2.6) that $\Phi(u_1(x))$ satisfies (2.5) with $C = C_0 > 0$. Let $d\Phi(u_1(x))/dx = w_1(x)$. Then

$$\lim_{b^+[c^-]} \frac{d\Phi(u_1(x))}{dx} = \lim_{x \to b^+[c^-]} w_1(x) = \sqrt{2C_0} \ \left[-\sqrt{2C_0} \right]$$

since $u_1(b) = u_1(c) = 0$. But

$$\lim_{x \to b^{-}[c^{+}]} \frac{d\Phi(u_{1}(x))}{dx} = 0.$$

Therefore $d\Phi(u_{(x)})/dt$ has discontinuous points at x = b, c with right limits greater than left ones. In solving Equation (2.1), both $d^2\Phi(u_1(b))/dx^2$ and $d^2\Phi(u_1(c))/dx^2$ serve as $+\infty$. Then the inequality

$$\frac{\partial u(x,0)}{\partial t} = \frac{\partial^2 \Phi(u(x,0))}{\partial x^2} + F(u(x,0)) \ge 0$$

implies that there exists $\delta > 0$ such that $u(x, \Delta t) \ge u(x, 0)$ for $(x, \Delta t) \in [-a, a] \times (0, \delta)$. Consider $u(x, \Delta t)$ and u(c, 0) as two initial functions. By applying Lemma 2.1, we have $u(x, t + \Delta t) \ge u(x, t)$ and hence $u(x, t) \ge 0$.

The proof for the conclusion about $u_2(x)$ is the same as above.

We now continue to prove Theorem 2.1.

Suppose that $u_1(x)$ and $u_2(x)$ satisfy the requirements of Lemma 2.2 and $u_1(x) < u_2(x)$ for $|x| \leq a$. Denote by $u_i(x,t)$ the solutions of (2.1) with $\varphi(x) = u_i(x), i = 1, 2$. As $u_1(x,t)$ is monotone and bounded, there is $u_l(x) \geq 0$ (> 0, $x \in (-a, a)$) such that $\lim_{t \to \infty} u_1(x,t) = u_l(x)$. But $u_l(x)$ must satisfy u' = 0 and therefore (2.2) holds. This means $u_l(x) = \tilde{u}(x)$. Similarly $\lim_{t \to \infty} u_2(x,t) = \tilde{u}(x)$.

If $\varphi(x) \ge 0$, $|x| \le a$ is an arbitrary continuous function with $\varphi(x) \ne 0$, then the conditions

$$\lim_{u \to 0} F(u)/\Phi(u) = \alpha > \frac{\pi^2}{4a^2} \quad \text{and} \quad \lim_{u \to \infty} F(u)/\Phi(u) = \beta < \frac{\pi^2}{4a^2}$$

ensure that there exist $u_1(x)$ and $u_2(x)$ such that $u_1(x) \leq \varphi(x) \leq u_2(x)$. Then $u_1(x,t) \leq u_2(x,t) \leq u_2(x)$ and

$$\lim_{t \to \infty} u(x,t) = \tilde{u}(x), \quad |x| < a.$$
(2.7)

The proof is now completed.

Before giving another theorem we consider at first a special equation when $F(u, x, t) = \Phi(u)$, i.e.,

$$\Delta \Phi(u) + \Phi(u) = 0. \tag{2.8}$$

Lemma 2.3. Suppose that $\Phi(u)$ satisfies the requirements given above. If u(x) is a solution of Equation (2.8) together with the initial conditions

$$u(0) = u_0 > 0, \quad u'(0) = 0,$$
 (2.9)

then u(t) satisfies $u(\pm \pi/2) = 0$ and

$$xu'(x) < 0, \ a.e., \qquad for \ 0 < |x| < \frac{\pi}{2}.$$
 (2.10)

Proof. Let $v = \Phi(u)$. Then $v(x) = \Phi(u(x))$ is the solution of initial problem

$$\begin{cases} v'' + v = 0, \\ v(0) = \Phi(u_0), \quad v'(0) = 0. \end{cases}$$
(2.11)

Solve (2.11) and we have

$$v(x) = \Phi(u_0) \cos x. \tag{2.12}$$

Then $u(x) = \Phi^{-1}(v(x)) = \Phi^{-1}(\Phi(u_0) \cos x).$

The fact that Φ is an increasing function implies $\Phi' \ge 0$, $\max\{u | \Phi'(u) = 0\} = 0$ and hence

$$u'(x) = -\frac{\phi(U_0)\sin x}{\Phi'(\Phi(u_0)\cos x)}, \quad a.e., \quad \text{for } |x| < \frac{\pi}{2}.$$
(2.13)

The truth of Lemma 2.3 is now obvious.

Theorem 2.2. Suppose $F(u, x, t) \leq A\Phi(u)$, A > 0 a constant. If $u < \pi/2\sqrt{A}$, then the solution u(x, t) to the initial-boundary problem (1.2) with $h_{\pm}(t) = 0$ is bounded and tends to the trivial solution u = 0.

Proof. Without loss of generality we suppose that A = 1.

Let $u_0(x)$ be the solution to Equation (2.8) with the initial conditions u(0) = c, u'(0) = 0. Clearly $B = \{u_c(x) | c \ge 0\}$ is a strip in the x, u-plane: $(-\pi/2, \pi/2) \times R^+$. For any $a \in (0, \pi/2), M > 0$ there exists a c > 0 such that $u_c(x) > M$, $|x| \le a$. Fix $M = \max_{|x| \le a} |\varphi(x)|$ and let $\tilde{u}_0(x) = u_c(x), |x| \le a$. Denote by $\tilde{u}(x, t)$ the solution of the initial-boundary problem (1.1) with $u(x, 0) = \tilde{u}_0(x), h_{\pm}(t) = 0$. Then according to the comparison theorem we have $u(x, t) \le \tilde{u}(x, t)$ in their common existence interval $t \in (0, T)$.

To prove Theorem 2.2 it suffices to prove that $\tilde{u}(x,t)$ exists for t < T, where T is any positive constant, and $\lim_{t \to T} \tilde{u}(x,t) = 0$.

Since $\tilde{u}_0(x)$ is a solution to Equation (2.8) and

$$\lim_{t \to 0} \tilde{u}(x,t) = \tilde{u}_0(x) > 0, \quad |x| < a,$$

we have $\frac{\partial}{\partial t}u(x,0) = 0$, |x| < a. At the same time, it follows from $\tilde{u}(-a) = \tilde{u}(a) > M > 0$ that

$$\lim_{t\to 0}\Delta \tilde{u}(a,t) = \lim_{t\to 0}\Delta \tilde{u}(-a,t) = -\infty.$$

Then

$$\lim_{t \to 0} \frac{\partial \tilde{u}(x,t)}{\partial t} \le 0, \quad x \in [-a,a],$$

i.e., $\tilde{u}(x,t)$ does not increase as t increases from t = 0 to $t = \delta$, where $\delta > 0$ is small enough. Then based on the comparison theorem it is easy to prove that $\tilde{u}_t(x,t) \leq 0$. This, together

Vol.16 Ser.B

with the fact $\tilde{u}(x,t) \geq 0$ which follows from $\tilde{u}_0(x) > 0$, implies that $\tilde{u}(x,t)$ exists for ever and $\lim_{t\to\infty} \tilde{u}(x,t) = \bar{u}(x)$, $|x| \leq a$. Obviously $\bar{u}(x)$ must satisfy Equation (2.8). But when $a < \pi/2$, Lemma 2.1 implies that Equation (2.8) with the boundary condition $u(\pm a) = 0$ has only the trivial solution $u(x) \equiv 0$. Therefore $\bar{u}(x) \equiv 0$ and hence $\lim_{t\to\infty} u(x,t) = 0$, $|x| \leq a$, since $0 \leq u(x,t) \leq \tilde{u}(x,t)$.

§3. Unbounded Solutions

Consider the Cauchy problem

$$\begin{cases} u_t = \Delta \Phi(u) + F(u, x, t), \\ u(x, 0) = \varphi(x), \end{cases}$$
(3.1)

where $\varphi \in C^0(R, R^+), \varphi \ge 0$, supp φ bounded and $\Phi(0) = F(0, x, t) = 0$.

Theorem 3.1. Suppose that $F \in C^0(R^+, R)$, $\Phi^{1/m} \in C^1(R^+, R)$, $[\Phi^{1/m}(u)]'_u \ge 1$ for some m > 1. If there are two constants A > 0 and $n \in (1, m)$ such that $F(u, x, t) > A\Phi^{n/m}(u)$, then the solution u(x, t) to (3.1) will be unbounded in a finite period provided that $\varphi \not\equiv 0$.

Such a solution is called a blow-up solution of (3.1).

Proof. It follows from the condition $[\Phi^{1/m}(u)]'_u \ge 1$ that $\Phi^{1/m}(u)$ and hence $\Phi(u)$ are strictly increasing on $(0, \infty)$. Then Φ^{-1} exists. Without loss of generality we suppose A = 1 and $0 \in \inf\{\operatorname{supp}\varphi\}$.

Take in account the problem

$$\begin{cases} v_t = \Delta v^m + v^n, \\ v(x,0) = \phi(x), \end{cases}$$
(3.2)

where $m > n > 1, \phi \in C^0(R, R^+)$ and $\phi \ge 0 \neq 0$ with the support bounded.

Let $y = x/\sqrt{m}$. Then Equation (3.2) is equivalent to

$$\begin{cases} v_t = \frac{\partial}{\partial y} (v^{m-1} \frac{\partial v}{\partial y}) + v^n, \\ v(y,0) = \phi(\sqrt{my}). \end{cases}$$
(3.3)

It is well known (see [4]) that the first equation in (3.3) has self similarity solutions

$$\bar{v}(y,t) = \frac{1}{(T-t)^{1/(n-1)}} \theta\left(|y|(T-t)^{\frac{m-n}{2(n-1)}} \right)_+,$$

where $(f(x))_+$ means max{f(x), 0} and $\theta(r) \ge 0$ is the compactly and connectedly supported solution to

$$\begin{cases} \frac{d}{dr} \left(\theta^{m-1} \frac{d\theta}{dr} \right) + \frac{m-n}{2(n-1)} r \frac{d\theta}{dr} - \frac{1}{n-1} \theta + \theta^n = 0, \\ \frac{d\theta(0)}{dt} = 0, \ \theta(+\infty) = 0, \ \theta(0) > 0. \end{cases}$$
(3.4)

Besides, θ has the property that $\theta'(r) > 0$, where $r, \theta > 0$. Then $\bar{v}(.,t)$ is compactly supported for any $t \in [0,T)$ and so is the self similarity solutions of (3.2)

$$v(x,t) = \frac{1}{(T-t)^{1/(n-1)}} \theta(|x|(T-t)^{(m-n)/2(n-1)}/\sqrt{m})_+.$$

It is easy to see that $v(x,0) \ge 0$ for $x \in R$ and $\Delta u^m + u^n \ge 0$ since v(x,t) is a solution of $v_t = \Delta v^m + v^n$ on $R \times [0,t)$.

Let $v^m = \Phi(u)$. Then

$$w(x,t) = \Phi^{-1} \left[\frac{1}{(T-t)^{m/(n-1)}} \theta^m (|x|(T-t)^{(m-n)/2(n-1)}/\sqrt{m})_+ \right]$$
(3.5)

is the solution of

No.2

$$\begin{cases} \frac{\partial u}{\partial t} = \frac{1}{[\Phi^{1/m}(u)]'_u} [\Delta \Phi(u) + \Phi^{n/m}(u)],\\ u(x,0) = w(x,0). \end{cases}$$
(3.6)

For a given t in [0,T] denote by X^t the set $\{(x,t)|w(x,t)>0\}$ and $X = \{X^t|t \in [0,T]\}$. Obviously $w_t(x,t) > 0$ for $(x,t) \in X$.

Choose T > 0 so large that $w(x, 0) \le \phi(x)$, $(x, 0) \in X^0$. Let u(x, t) be the solution of Equation (3.1). Then there exists $\delta > 0$ such that

$$w(x,t) < u(x,t), \quad \text{for } (x,t) \in \{X^t | t \in (0,\delta\}.$$
 (3.7)

Suppose that u(x,t) does not blow up before t = T. It suffices to prove that Equation (3.7) holds for all $t \in (0,T)$. Otherwise we suppose that there exists a point $(x_0, t_0), t_0 < T$, such that

$$w(x_0, t_0) = u(x_0, t_0), \quad w(x, t) < u(x, t) \text{ for } (x, t) \in X^t, \quad t \in (0, t_0).$$

Then

$$\begin{aligned} \frac{\partial u(x_0, t_0)}{\partial t} &= \Delta \Phi(u) + F(u, x_0, t_0) > \Delta \Phi(u) + \Phi^{n/m}(u) \\ &\geq \frac{1}{[\Phi^{1/m}(u)]^0 \iota_u} [\Delta \Phi(u) + \Phi^{n/m}(u)] \\ &= \frac{\partial w(x_0, t_0)}{\partial t} \end{aligned}$$

since $w_t > 0$. Here u stands for $u(x_0, t_0)$. Thus there is $\delta > 0$ such that $u(x_0, t) < w(x_0, t)$ for $t \in (t_0 - \delta, t_0)$, a contradiction.

So (3.7) holds for $t \in (0, T)$ and this means that u(x, t) must blow up in (0, T). Consider the problem

$$\begin{cases} u_t = \Delta u^m + u^m, & m > 1, \\ u(\pm a, t) = 0, & t \in R^+. \end{cases}$$
(3.8)

Lemma 3.1.^[4,p.1266] For any $a > \pi/2$, (3.8) has a solution $\bar{u}(x,t)$ which blows up in a finite period and satisfies $\bar{u}_t(x,t) > 0$ when $\bar{u}(x,t) > 0$.

Theorem 3.2. Suppose there are constants m > 1 and A > 0 such that $\Phi^{1/m} \in C^1(R^+, R), [\Phi^{1/m}(u)]'_u \ge 1$ and $F(u, x, t) > A\Phi(u)$. If $a > \pi/2\sqrt{A}$, then the solution u(x, t) to the initial-boundary problem (2.1) with $h_{\pm}(t) = 0$ will blow up in a finite period provided $\varphi(x) \neq 0$.

Proof. Without loss of generality we assume A = 1.

Suppose that the theorem is false. Then for some $a > \pi/2$ there is $\varphi(x) \ge 0$ continuous and $\varphi(x) \ne 0$ such that for any T > 0 the solution u(x,t) to (2.1) remains bounded when $t \in (0,T]$.

Assume that $\varphi(x_0) > 0$ for some $x_0 \in (-a, a)$. Then for the given $\varphi(x)$ there exist T > 0

large enough and $\gamma>0$ small enough such that

$$\phi(x) = \left[\frac{(m-1)\gamma^2}{2(m+1)}\right] T^{-\frac{1}{m+1}} \left[1 - \left(\frac{x-x_0}{m\gamma T^{\frac{1}{m+1}}}\right)^2\right]_+^{\frac{1}{m-1}}$$

satisfies $\mathrm{supp}\phi \subset (-a,a)$ and $\phi(x) \leq \varphi(x), \ \ |x| < a.$ Consider

$$\begin{cases} u_t = \Delta \Phi(u), \\ u(x,0) = \phi(x), \\ u(\pm a, t) = 0. \end{cases}$$
(3.9)

Its solution is

$$v(x,t) = \left[\frac{(m-1)\gamma^2}{2(m+1)}\right] (T+t)^{-\frac{1}{m+1}} \left[1 - \left(\frac{x-x_0}{m\gamma(T+t)^{\frac{1}{m+1}}}\right)^2\right]_+^{\frac{1}{m-1}}$$

when

$$t \le t_1 = \min\left\{\left(\frac{a-x_0}{m\gamma}\right)^{m+1} - T, \left(\frac{a+x_0}{m\gamma}\right)^{m+1} - T\right\}.$$

Clearly $t_1 > 0$ when γ is small enough.

Since v(x,t) is the solution of diffusion problem (3.9), it approaches a constant d > 0 for $x \in (-a, a)$ as $t \to \infty$ and then there is $T_1 > t_1$ such that

$$v(x,t) > \frac{d}{2} > 0, \qquad |x| < a, \ t \ge T_1.$$
 (3.10)

It is not difficult to prove that

$$\frac{\partial}{\partial x}v(a,t) < -b < 0, \qquad \frac{\partial}{\partial x}v(-a,t) > b > 0, \quad \text{for } t > T_1.$$
 (3.11)

By applying the comparison theorem, it follows that

$$u(x,t) > \frac{d}{2} > 0$$
 for $|x| < a, t \ge T_1$

and hence

$$\frac{\partial}{\partial x}u(a,t) < -b, \qquad \frac{\partial}{\partial x}u(-a,t) > b, \quad \text{for } t > T_1.$$
 (3.12)

Let $w(x,t) = \Phi^{1/m}(u(x,t))$. Then w(x,t) is the solution of the initial-boundary problem

$$\begin{cases} w_t = [\Phi^{1/m}]'_u [\Delta w^m + F(\Phi^{-1}(w^m), x, t)], \\ w(x, 0) = \Phi^{1/m}(\varphi(x)), \\ w(\pm a, t) = 0. \end{cases}$$
(3.13)

Furthermore, let $\tilde{w}(x,t) = w(x,t+T_1)$. Then w(x,t) satisfies the first equation of (3.13) and the initial condition $\tilde{w}(x,0) = \Phi^{1/m}(u(x,T_1))$.

For the solution y(t) of the equation

$$y'' - \frac{1}{m-1}y^{1/m} + y = 0, \quad y \ge 0.$$

with $y(\pm a) = 0$, it follows from

$$\tilde{w}_x(\pm a, 0) = \frac{1}{m} \lim_{x \to \pm a} \Phi^{\frac{1-m}{m}}(u) u'(x, T_1) = \mp \infty$$

that we can choose $T > T_1 > 0$ large enough such that

$$\frac{1}{T^{\frac{1}{m-1}}}y^{\frac{1}{m}}(x) < \tilde{w}(x,0), \quad |x| < a$$

We now prove that for $\tilde{v}(x,t) = (T-t)^{-\frac{1}{m-1}}y^{\frac{1}{m}}(x)$ it holds that

$$\tilde{v}(x,t) < \tilde{w}(x,t), \qquad |x| < a, t \in (0,T).$$
 (3.14)

If inequality (3.14) is not true, then there exist $t_0 \in (0,T)$ and $x_0 \in (-a,a)$ such that

$$\tilde{v}(x,t) < \tilde{w}(x,t), \qquad (x,t) \in (-a,a) \times (0,t_0)$$
(3.15)

and $\tilde{v}(x_0, t_0) = \tilde{w}(x_0, t_0)$. This implies

$$\frac{\partial \tilde{v}(x_0, t_0)}{\partial x} = \frac{\partial \tilde{w}(x_0, t_0)}{\partial x}, \quad \Delta \tilde{v}(x_0, t_0) \le \Delta \tilde{w}(x_0, t_0).$$

At the same time we have at (x_0, t_0)

$$\frac{\partial \tilde{v}(x_0, t_0)}{\partial t} = \frac{1}{(m-1)(T-t_0)^{\frac{m}{m-1}}}y^{\frac{1}{m}}(x_0) > 0,$$

i.e.,

$$\Delta \tilde{v}^m(x_0, t_0) + \tilde{v}^m(x_0, t_0) > 0$$

Therefore

$$\frac{\partial \tilde{v}(x_0, t_0)}{\partial t} = \Delta \tilde{v}^m(x_0, t_0) + \tilde{v}^m(x_0, t_0)
\leq [\Phi^{1/m}(u)]'_u [\Delta \tilde{v}^m(x_0, t_0) + \tilde{v}^m(x_0, t_0)]
\leq [\Phi^{1/m}(u)]'_u [\Delta \tilde{w}^m(x_0, t_0) + \tilde{w}^m(x_0, t_0)]
< [\Phi^{1/m}(u)]'_u [\Delta \tilde{w}^m(x_0, t_0) + F(\tilde{w}(x_0, t_0), x_0, t_0)]
= \frac{\partial \tilde{w}(x_0, t_0)}{\partial t},$$

that is to say, there is $\bar{t} \in (0, t_0)$ such that

$$\tilde{v}(x_0, \bar{t}) > \tilde{w}(x_0, \bar{t}),$$

a contradiction to (3.15). Then the fact that v(x,t) blows up at t = T implies that $\tilde{w}(x,t)$ must blow up before t = T. Obviously w(x,t) blows up before $t = T_1 + T$. It follows from $w^m = \Phi(u)$ that u(x,t) blows up before $t = T_1 + T$. The proof is now completed.

Example. Consider

$$\begin{cases} u_t = \Delta(u^3 + u^2) + (3u^3 + 2u^2 + |x|u), |x| \le a, \\ u(\pm a, t) = 0, & t > 0, \\ u(x, 0) = \varphi(x), & |x| < 0, \end{cases}$$
(3.16)

where $\varphi \in C^0([-a, a], R^+), \varphi(x) \neq 0.$

Here $\Phi(x) = u^3 + u^2$. Therefore

$$f(u) = \left[\Phi^{\frac{1}{3}}(x)\right]'_{u} = \frac{3u^{2} + 2u}{3(u^{3} + u^{2})^{\frac{2}{3}}}.$$

It is easy to show that $\lim_{u\to\infty}f(u)=1$ and f(u) decreases on R^+ . Therefore f(u)>1. It follows from

$$F(u, x, t) = 3u^3 + 2u^2 + |x|u > 2\Phi(u)$$

No.2

that the solution to (3.16) will blow up in a finite period provided $a > \pi/2\sqrt{2}$.

Remark. The comparison theorem can only be applied for two solutions in a common existence interval in t. Consider

$$\begin{cases} u_t = \Delta u^m + f(u) & \text{in } S = R^N \times R^+, \\ u(x,0) = u_0(x), & x \in R^N, \end{cases}$$
(3.17)

where $u_0 \ge 0$ continuous with bounded support, $f(0) = 0, f \in C^1(\mathbb{R}^+, \mathbb{R}^+)$.

By comparing (3.17) to the special case $f(x) \equiv 0$, paper [2] gave a conclusion that if $f(s) \geq 0$ when $s \geq 0$, then for any $x \in \mathbb{R}^N$ there exists $T(x) \geq 0$ such that u(x,t) > 0 for any t > T.

But it is false. For example, when $f(u) = u^m$ and

$$u_0(x) = \begin{cases} \left[\frac{2m}{(m^2 - 1)T}\right]^{\frac{1}{m-1}} \cos^{\frac{2}{m-1}} \left(\frac{m-1}{2m}\right) x, & |x| \le \frac{m\pi}{m_1}, \\ 0, & |x| > \frac{m\pi}{m-1}, \end{cases}$$
(3.18)

Equation (3.17) has the solution

$$u(x,t) = \begin{cases} \left[\frac{2m}{(m^2-1)(T-t)}\right]^{\frac{1}{m-1}} \cos^{\frac{2}{m-1}} \left(\frac{m-1}{2m}\right) x, & |x| \le \frac{m\pi}{m-1}, \\ 0, & |x| > \frac{m\pi}{m-1}. \end{cases}$$
(3.19)

Obviously u(x,t) remains 0 when $|x| \ge m\pi/(m-1)$. That is because u(x,t) will blow up at t = T. After then there is no reason to compare it with other solutions.

References

- Aronson, D., Crandall, M. G. & Peletier, L. A., Stabilization of a degenerate nonlinear diffusion problem, Nonlinear Analysis, 6:10 (1982), 1001-1022.
- [2] Levine, H. A. & Sacks, P. E., Some existence and nonexistence theorems for solutions of degenerate parabolic equations, J. Diff. Eqs., 52 (1984), 135-161.
- Bertsch, M., Kersner, R. & Peletier, L. A., Positivity versus localization in degenerate diffusion equation, *Nonlinear Analysis*, 9:9 (1985), 987-1008.
- [4] Galaktionov, V. A., Dorodnitsyn, V., Elenin, G., Kurdyumov, S. & Samarskii, A., A quasilinear heat quation with a source: peaking, localization, symmetry exact solutions, asymptotics, structure, Sov. Math., 41 (1985), 1222-1292.
- [5] Chen Xuyan & Matano, H., Convergence, asymptotic periodicity and finite-point blow-up in one-dimensional semilinear heat equations, J. Difff. Eqs., 78 (1989), 160-190.
- [6] Levine, H. A., The rate of critical exponents in blow-up theorems, SIAM Review, 32 (1990), 263-288.