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Xu Xiang*

Abstract

A contravariant bilinear pairing K on every M(ρ) × M(ρθ) is determined and it is proved
that M(ρ) is irreducible if and only if K is left nondegenerate. It is also proved that every cyclic
pointed module is a quotient of some Verma-like pointed module; moreover if it is irreducible

then it is a quotient of the Verma-like pointed module by the left kernel of some bilinear
pairing K. In case the mass function is symmetric, there exists a bilinear form on M(ρ). It is
proved that unitary pointed modules are integrable. In addition, a characterization of the mass
functions of Kac-Moody algebras is given, which is a generalization of the finite dimensional

Lie algebras case.
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§1. Introduction

In literature, pointed representations are weight representations which admit a one-

dimensional weight space. This class of representations is a natural generalization of the

highest weight representations. In the complicated theory of representations, pointed rep-

resentations are more feasible to access next to the highest weight representations. For a

simple Lie algebra L, if U(L) is the universal enveloping algebra of L, we denote by C(h)

the centralizer of the Cartan subalgebra h in U(L). Suppose that λ : h → C is a weight of an

L-module V such that dimVλ = 1, then we get a map ρ : C(h) → C defined by ρ(c)v = cv

for c ∈ C(h). In fact ρ is an algebra homomorphism and we call it a mass function of

V . Clearly ρ restricted to h is equal to λ. Conversely, given any algebra homomorphism

ρ : C(h) → C, one can construct a unique irreducible pointed module V , which admits ρ as

a mass function.

The pointed representations of finite dimensional simple Lie algebras have been studied

by D. J. Britten, F. W. Lemire, I. Z. Bouwer, etc. In 1987, Britten and Lemire classified all

pointed L modules for arbitrary simple Lie algebra of finite dimension[1]. But for infinite

dimensional Lie algebras, there are no literature by now except for the torsion free pointed

representations of affine algebras[2].

In this paper we devote ourselves to the study of pointed representations of infinite

dimensional Lie algebras. We give some theorems and propositions, and give a generalization

of a result of finite dimensional case to the infinite dimensional case.
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§2. Definition

Let A = (aij) be an n×n generalized Cartan matrix, g(A) or g the associated Kac-Moody

algebra over C with Chevalley generators ei, fi, hi (i = 1, . . . , n).

Definition 2.1. A representation π : g(A) → gl(V ) is called pointed, if V can be

decomposed into a direct sum of weight spaces such that there are at least one weight space

which is of dimension 1.

Let U(g) denote the universal enveloping algebra of g(A) or g. Since g is a direct sum

of root spaces and every root space is of finite dimension, we can give an order to one basis

which consists of root vectors of g. With this order one can give a PBW basis of the universal

enveloping algebra U(g).

Let g = n−⊕h⊕n+ be the triangular decomposition of g. Then u(g) = U(n−)⊗U(n+)⊗
U(h). In the given order of one basis of U(g), we usually suppose that the elements of U(n−)

are in the left, and the elements of U(h) are in the right. Thus

U(g) = ⟨Y tk
k · · ·Y t1

1 Xj1
1 · · ·Xjk

k hl1
1 · · ·hln

n | ti, li, ji ≥ 0, k ≥ 0⟩. (∗)

As in the triangular decomposition, h is the Cartan subalgebra of g. We denote by C(h)

the centralizer of h in U(g). Suppose that Xi is of root βi and Yi is of root −βi. Then

C(h) = ⟨Y tk
k · · ·Y t1

1 Xj1
1 · · ·Xjk

k hl1
1 · · ·hln

n

∣∣∣ k∑
i=1

(ti − ji)βi = 0⟩.

The elements of C(h) are called cycles. A homomorphism ρ : C(h) → C is called a mass

function of g.

Let Q =
n∑

i=1

Zαi denote the root lattice of g, where αi (i = 1, . . . , n) are simple roots.

Q+ =
n∑

i=1

Z+αi, Q− =
n∑

i=1

Z−αi. Then U(g) = ⊕
α∈Q

U(g)α.

For any basis element u in (*), we denote by u(i) the number of times that the factors

Xi (i > 0) or Yi (i < 0) is contained in u; uj(0) the number of times that hj appears in u.

For any such element u, we associated it with a set of ordered numbers:

[u] = (· · · , u(−k), · · · , u(−1), u1(0), · · · , un(0), u(1), · · · , u(k), · · · ).

Now , [u] ≥ [v] if and only if u(k) ≥ v(k) for k ∈ Z, and ui(0) ≥ vi(0), i = 1, . . . , n; while

[u] > [v] if [u] ≥ [v] and [u] ̸= [v].

Definition 2.2. For any u, u′ ∈ (∗), u is said to contain (properly contain) u′, if

[u] ≥ [u′] ([u] > [u′]). An element u ̸= 1 of (∗) is called primitive if it does not properly

contain any non-trivial cycle.

§3. Pointed Representations of Kac-Moody Algebras

With A, g, C(h), etc. as in Section 2, the Cartan decomposition of g induces a gradation

of U(g)

U(g) = U(g)0 ⊕ ⊕
α ̸=0

U(g)α.

It is clear that U(g)0 = C(h). Any mass function is an algebra homomorphism from U(g)0

to C.
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Definition 3.1. A pointed module is called cyclic if it is generated by its one dimensional

weight space vectors.

Let θ be an antilinear involution of the Lie algebra g such that

θ(ei) = fi, θ(fi) = ei, θ(hi) = hi,

θ[ei fi] = [θ(fi) θ(ei)], i, j = 1, · · · , n.

Such an involution does exist and can be extended to an antilinear involution of the asso-

ciative algebra U(g), and we also denote the extended involution by θ (cf. [3]).

Let ρ : C(h) → C be any mass function. Then ker(ρ) is a maximal ideal of C(h) and it

generates a proper left ideal I(ρ) of U(g), and U(g)/I(ρ) is a g module.

Definition 3.2. For any mass function ρ : C(h) → C, the g module M(ρ) = U(g)/I(ρ)

is called Verma-like pointed module.

Theorem 3.1. Any cyclic pointed module is a quotient of some Verma-like pointed

module.

Proof. Let V = ⊕
λ
Vλ be a pointed module with dimVλ0 = 1, and the corresponding mass

function be ρ : C(h) → C.
Since V is cyclic, V = U(g)v for some nonzero v ∈ Vλ0 . We define a homomorphism

ϕ : U(g) → V by ϕ(u) = uv. Then ϕ is surjective. It is obvious that I(ρ) ⊂ ker(ϕ). This

shows that ϕ induces a homomorphism ϕ̃ : M(ρ) → V , and V is a quotient of M(ρ).

For the decomposition U(g) = U(g)0 ⊕ ⊕
α ̸=0

U(g)α, let P : U(g) → U(g)0 be the projec-

tion of U(g) onto U(g)0 parallel to the space ⊕
α ̸=0

U(g)α. If u, v ∈ U(g), let K(u, v) =

ρ(P (θ(v)u)). Then K is a contravariant bilinear form on U(g). We define

kerL(K) = { u ∈ U(g) | K(u, v) = 0 for any v ∈ U(g) },

kerR(K) = { u ∈ U(g) | K(u, v) = 0 for any v ∈ U(g) }.

Since C is a commutative algebra, we see that if ρ is a mass function, then ρθ is also a mass

function. Now a moment’s consideration shows that ker(ρ) ⊂ kerL(K), ker(ρθ) ⊂ kerR(K).

Thus we get a contravariant bilinear pairing K on M(ρ) ×M(ρθ). By the definition of K,

U(g) decomposes into a direct sum of mutually orthogonal spaces which coincide with the

gradation of U(g) by root lattice.

Lemma 3.1. Let h be a commutative Lie algebra, V a diagonalizable h module, i.e.,

V = ⊕
λ∈h∗

Vλ, where Vλ = { v ∈ V | hv = λ(h)v for all h ∈ h}. Then any submodule U of

V is graded with respect to the above gradation.

Proof. See [3].

Now we have the following

Theorem 3.2. Let g be a Kac-Moody algebra, ρ : C(h) → C a mass function of g, K

the contravariant bilinear pairing on M(ρ)×M(ρθ). Then kerL(K) (kerR(K)) is a maximal

submodule of M(ρ) (M(ρθ)), and M(ρ)/kerL(K) (M(ρθ)/kerR(K)) is an irreducible pointed

module with ρ (ρθ) as a mass function.

Proof. Consider K on U(g). Then kerL(K) is a left ideal of U(g), which infers that

kerL(K) is a submodule of M(ρ).
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Let L(ρ) = M(ρ)/kerL(K). Since M(ρ) is graded, by Lemma 3.1, kerL(K) is graded and

L(ρ) is also graded. Similar result is true for ρθ.

Suppose that V is a proper submodule of L(ρ). Let v ∈ V be a weight vector of V . We

shall show that v ∈ kerL(K). In fact, L(ρ) and L(ρθ) are decomposed into direct sum of

weight spaces, and under K the weight spaces L(ρ)ρ|h+α are orthogonal to L(ρθ)ρθ|h+β if

α ̸= β. Assume that v is of weight ρ|h+α. Than to show v ∈ kerL(K), we need only to show

that K(v, v′) = 0 for any v′ ∈ L(ρθ)ρθ|h+α. As L(ρθ) is cyclic, there exists a u ∈ U(g) such

that uv0 = v′, where v0 ∈ L(ρθ)ρθ|h . So K(v, v′) = K(θ(u)v, v0) = 0, since θ(u)v ∈ Vρ|h
and Vρ|h = 0 for V is a proper submodule of L(ρ). Thus v ∈ kerL(K) and V = 0, which

implies that L(ρ) is irreducible.

Remark 3.1. L(ρ) = M(ρ)/kerL(K) is the unique irreducible quotient module of M(ρ).

Theorem 3.3. Let ρ be any mass function of a Kac-Moody algebra g. Then on L(ρ) ×
L(ρθ) there exists a unique, up to constant factors, nondegenerate contravariant bilinear

pairing K, and with respect to K, L(ρ)ρ|h+α is orthogonal to L(ρθ)ρθ|h+β if α ̸= β.

Proof. The existence of such a contravariant bilinear pairing is given as above, it is

clearly nondegenerate.

Now, suppose that K1 and K2 are two nondegenerate contravariant bilinear pairing on

L(ρ) × L(ρθ). Let v ∈ L(ρ)ρ|h , v′ ∈ L(ρθ)ρθ|h be two vectors. Then K1(v, v′) ̸= 0 and

K2(v, v′) ̸= 0 for K1 and K2 are nondegenerate. Let c = K1(v, v′)/K2(v, v′). We claim

that K1 = cK2. In fact, since L(ρ) and L(ρθ) are decomposed into direct sum of weight

spaces and L(ρ)ρ|h+α is orthogonal to L(ρθ)ρθ|h+β when α ̸= β, we need only to show that

for any two weight vectors v1 and v2 with weights ρ|h + α and ρθ|h + α respectively, one

has K1(v1, v2) = cK2(v1, v2). Suppose v1 = u1v, v2 = u2v where u1, u2 ∈ U(g)α. Then

θ(u2)u1 ∈ U(g)0. Let c
′ = ρ(θ(u2)u1) ∈ C, which is a constant. Then

K1(v1, v2) = K1(θ(u2)u1v, v′) = c′K1(v, v′) = c′cK2(v, v′)

= cK2(c
′v, v′) = cK2(v1, v2).

This shows that K1 = cK2.

Definition 3.3. Let θ be an antilinear involution of g. A mass function ρ is called

symmetric, if ρ(θ(c)) = ρ(c) for all c ∈ C(h).

Example 3.1. Let A be a generalized Cartan matrix not of finite type, g the Kac-Moody

algebra associated with A. View g as a g module via the adjoint action. Then g is a pointed

module (the real root spaces are of dimension 1). If A is not symmetrizable, then for a fixed

nonzero real root vector the corresponding mass function is not symmetric. Conversely, if

A is symmetrizable, then for any fixed nonzero real root vector, the corresponding mass

function is symmetric.

Corollary 3.1. Let ρ : C(h) → C be a symmetric mass function, then there exists a

unique nondegenerate symmetric contravariant bilinear form K on L(ρ), and with respect

to K, L(ρ) is decomposed into a direct sum of mutually orthogonal weight spaces.

Let ω be a compact antilinear involution of g, such that ω(ei) = fi, ω(fi) = ei, ω(hi) = hi

and ω(au) = āω(u) for a ∈ C, u ∈ g, where ā is the complex conjugate of a. If ρR : C(hR) →
R is a mass function of the compact form gR of g, then gR can be extended uniquely to a

mass function of g.
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Corollary 3.2. Let ρR : C(hR) → R be a symmetric mass function (with respect to

the compact involution ω) of gR. Then there exists a unique nondegenerate contravariant

Hermitian form K on L(ρ), such that L(ρ) is a direct sum of mutually orthogonal weight

spaces.

Definition 3.4. Let ρ be a mass function. If there exists a positive definite contravariant

Hermitian form on L(ρ), then L(ρ) is called a unitary pointed representation of g.

Definition 3.5. �An h-diagonalizable module V over a Kac-Moody algebra g is called

integrable if all ei and fi, (i = 1, . . . , n) are locally nilpotent on V .

The following lemma can be seen in [3].

Lemma 3.2. (1) Let v1, v2, . . . , be a system of generators of a g-module V , and let

x ∈ g be such that adx is locally nilpotent on g and xNi(vi) = 0 for some positive integers

Ni, i = 1, . . . . Then x is locally nilpotent on V .

(2) For Kac-Moody algebra g(A), adei and adfi are locally nilpotent on g(A).

Theorem 3.3. Let L(ρ) be a unitary cyclic pointed representation of a Kac-Moody

algebra g(A), then L(ρ) is integrable.

Proof. Let v be a weight vector of L(ρ) with weight ρ|h. Since v generates L(ρ), by

Lemma 3.2 we need only to prove that there exist integers Ni and N ′
i (i = 1, . . . , n) such

that fNi
i v = e

N ′
i

i v = 0. Suppose that ρ(fiei) = ci, ρ(eifi) = di. Then ρ(hi) = di − ci. As

K(fiv, fiv) = ρ(eifi), K(eiv, eiv) = ρ(fiei), it is from the unitary of K that ci ≥ 0, di ≥ 0.

For v as above, we establish two formulas:

eif
k
i = (kρ(hi)− k(k − 1) + ci)f

k−1
i v, (3.1)

fie
k
i v = (−kρ(hi)− k(k − 1) + di)e

k−1
i v. (3.2)

Indeed

eif
k
i v = (fiei + hi)f

k−1
i v

= (ρ(hi)− 2(k − 1))fk−1
i v + fieif

k−1
i v

= (kρ(hi)− k(k − 1) + ci)f
k−1
i v.

Similarly

fie
k
i v = (eifi − hi)e

k−1
i v

= −(ρ(hi) + 2(k − 1))ek−1
i v + eifie

k−1
i v

= (−kρ(hi)− k(k − 1) + di)e
k−1
i v.

Now if fk
i v ̸= 0 for all k ∈ Z+, then K(fk

i v, fk
i v) > 0 by the assumption of unitarity. As

lim
k→∞

(k(ρ(hi)− k(k − 1) + c) = −∞, choose k0 such that k0ρ(hi)− k0(k0 − 1) + ci < 0 and

k(ρ(hi)− k(k − 1) + ci) ≥ 0, for 0 < k < k0. Then

K(fk0
i v, fk0

i v) = K(eif
k0
i v, fk0−1

i )

= (k0ρ(hi)− k0(k0 − 1) + ci)K(fk0−1
i v, fk0−1

i v). (3.3)

Since K(fk0−1
i v, fk0−1

i v) > 0 and K(fk0
i v, fk0

i v) > 0, (3.3) is a contradiction. So there

exist some positive integers Ni (i = 1, . . . , n) such that fNi
i v = 0. Similarly, there exist

some positive integers N ′
i (i = 1, . . . , n) such that e

N ′
i

i v = 0. Thus we complete the proof of

Theorem 3.3.
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As a particular case of the theorem we have the following

Corollary 3.3. Let L(Λ) be an irreducible highest weight representation of Kac-Moody

algebra g(A), where Λ ∈ h∗ is the highest weight. If L(Λ) is unitary then Λ ∈ P+.

Proof. L(Λ) is unitary, and then it is integrable by Theorem 3.3. But L(Λ) is integrable

if and only if Λ ∈ P+ (the set of dominant integral weights)[3].

Proposition 3.1. Let g be a Kac-Moody algebra and L(ρ) an integrable cyclic pointed

module. Then there exist positive integers ki and k′i (i = 1, . . . , n) such that ρ(hi) = ki −
k′i, ρ(fiei) = ki(k

′
i − 1) which are integers.

Proof. L(ρ) is integrable. By definition, there exist positive integers ki (i = 1, . . . , n)

such that fki
i v = 0 and fk

i v ̸= 0 for k < ki, where v is the vector of weight ρ|h. As

eif
ki
i v = (kiρ(hi)− ki(ki − 1) + ρ(fiei))f

ki−1
i v, and fki−1

i v ̸= 0,

this implies that

kiρ(hi)− ki(ki − 1) + ρ(fiei) = 0. (3.4)

Similarly, there exist positive integers k′i (i = 1, . . . , n) such that e
k′
i

i v = 0 and eki v ̸= 0 for

k < k′i, and −k′iρ(hi)− k′i(k
′
i − 1) + ρ(eifi) = 0. As ρ(hi) = ρ(eifi)− ρ(fiei), we have

(1− k′i)ρ(hi)− k′i(k
′
i − 1) + ρ(fiei) = 0. (3.5)

Combining (3.4) and (3.5), we have ρ(fiei) = ki(k
′
i − 1), ρ(hi) = ki − k′i.

Remark 3.2. This proposition does not completely determine a concrete mass function

of an integrable cyclic pointed module, as the primitive cycles of generating set are much

more than what we have listed (hi, fiei, i = 1, . . . , n, are only part of them) and in general,

the set of primitive cycles is very complicated.

For any Kac-Moody algebra g, its primitive cycles are countable. Thus we can fix an

order to the set π of all primitive cycles. Now we have the following theorem which is a

generalization of Theorem 4.4 of [4].

Theorem 3.4. Let π be the set of all primitive cycles with a fixed order. Suppose that

ci, cj ∈ π are two primitive cycles. Then cicj can be decomposed into a sum of products

of primitive cycles, i.e., cicj =
∑ ∏

c∈π
cn(c) (in

∏
c∈π

cn(c) all c are ordered). Moreover, if

ρ : π → C is a map such that ρ(ci)ρ(cj) =
∑ ∏

c∈π
ρ(c)n(c), then ρ defines a mass function.

Proof. It is analogous to the proof of Theorem 4.4 of [4].
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