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Abstract

The author studies the boundary value problems for systems of nonlinear second order dif-

ferential difference equations and adopts a new-type Nagumo condition, in which the control
function is a vector-valued function of several variables and which can guarantee simultane-
ously and easily finding a priori bounds of each component of the derivatives of the solutions.
Under this new-type Nagumo condition the existence results of solution are proved by means

of differential inequality technique.
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§1. Introduction

In study of some practical problems, for example, population problems, optimal control

problems and some problems in biomathematics, one must consider the time delay in order

that the true prosesses can be described more precisely. So the established mathemati-

cal models are often certain differential difference equations (or systems). This motivates

mathematicians to study the initial or boundary value problems for differential difference

equations, for example, L. J. Grimm and K. Schmitt[1,2], K. Schmitt[3,4], Miao Shumei

and Zhou Qinde[5] and Miao Shumei[6]. They discuss mainly the following boundary value

problems for nonlinear second order differential difference equations

x′′ = f(t, x(t− τ1), · · · , x(t− τm), x, x′),

x(t) = ϕ(t), −τ ≤ t ≤ 0, x(1) = α,

where 0 < τi < 1, i = 1, 2, · · · ,m, ϕ(t) ∈ C([−τ, 0], R), τ = max{τ1, τ2, · · · , τm}, by means

of differential inequality technique. However it is very difficult to apply this technique to

the boundary value problems for systems of nonlinear second order differential difference

equations, because the control functions in the classical Nagumo conditions are all functions

of one variable (see [7–11]). Hence the related works are rare.

In this paper we study the boundary value problems for systems of nonlinear second

order differential difference equations and adopt a new-type Nagumo condition, in which

the control function is a vector-valued function of several variables and which can guarantee
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simultaneously and easily finding a priori bounds of each component of the derivatives of the

solutions. Under this new-type Nagumo condition we prove the existence results of solution

for the boundary value problems of nonlinear differential difference systems by means of

differential inequality technique. This is the contents in Section 3. Finally in Section 4 we

exhibit an example as an application of the results obtained in Section 3.

§2. Notations and Definitions

Consider the following boundary value problems for the systems of nonlinear second order

differential difference equations

x′′ = f(t, x(t− τ), x, x′), 0 ≤ t ≤ 1, (2.1)

x(t) = ϕ(t),−τ ≤ t ≤ 0, x(1) = A, (2.2)

where x, f ∈ Rn, ϕ(t) ∈ C([−τ, 0], Rn), A ∈ Rn is a constant vector.

For simplification of writing we will adopt following notations: For x = (x1, x2, · · · , xn),

y = (y1, y2, · · · , yn) and f(x) ∈ C(Rn, Rn),

x ≥ y means xi ≥ yi, i = 1, 2, · · · , n,
|x| = (|x1|, |x2|, · · · , |xn|), ∥x∥ = max{|x1|, |x2|, · · · , |xn|},

x[yi]i = (x1, · · · , xi−1, yi, xi+1, · · · , xn),

x[0]i = (x1, · · · , xi−1, 0, xi+1, · · · , xn),

f(x[y]) = (f1(x[y1]1), f2(x[y2]2), · · · , fn(x[yn]n)),
f(x[0]) = (f1(x[0]1), f2(x[0]2), · · · , fn(x[0]n)).

For N ∈ R, let N⃗ = (N,N, · · · , N) ∈ Rn. And for g(t) ∈ C([a, b], Rn), let

∥g(t)∥[a,b] = max
1≤i≤n

{max
a≤t≤b

|gi(t)|}.

Definition 2.1. A function x(t) ∈ C([−τ, 1], Rn)∩C2([0, 1], Rn) is said to be a solution

of the boundary value problem (2.1), (2.2), if x(t) satisfies (2.1), (2.2).

Definition 2.2. Two functions ω̄(t), ω(t) ∈ C([−τ, 1], Rn) ∩ C2([0, 1], Rn) are said to be

upper and lower solutions of the boundary value problem (2.1),(2.2) respectively, if

ω(t) ≤ ω̄(t), −τ ≤ t ≤ 1,

ω(t) ≤ ϕ(t) ≤ ω̄(t), −τ ≤ t ≤ 0,

ω(1) ≤ A ≤ ω̄(1)

and for any function g(t) ∈ B[ω, ω̄]

ω′′(t) ≥ f(t, g(t− τ), g[ω], g′[ω′]), 0 ≤ t ≤ 1,

ω̄′′(t) ≤ f(t, g(t− τ), g[ω̄], g′[ω̄′]), 0 ≤ t ≤ 1,

where

B[ω, ω̄] = {g(t) : g(t) ∈ C([−τ, 1], Rn) ∩ C2([0, 1], Rn),

ω(t) ≤ g(t) ≤ ω̄(t), −τ ≤ t ≤ 1}.

Definition 2.3. If for any real number r > 0, there exists a function H(ξ) ∈ C([0,∞)n,

(0,∞)n), which is nondecreasing in every ξi, such that |f(t, x, y, z)| ≤ H(|z|) for 0 ≤ t ≤
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1, ∥x∥, ∥y∥ ≤ r and there exists a real number N0 > 0 such that∫ N

2r

[ξi/hi(N⃗ [ξi]i)]dξi > 2r, i = 1, 2, · · · , n

for any N > N0, where hi is the i-th component of H. Then we say that the function

f(t, x, y, z) satisfies Nagumo condition with respect to z.

§3. Existence Theorems of Solution

For the boundary value problem (2.1), (2. 2) our essential hypotheses are as follows:

(H1) f(t, x, y, z) ∈ C([0, 1]×R3n, Rn) satisfies Nagumo condition with respect to z.

(H2) fi(t, x, y, z) is strictly increasing in yi as any other variables are fixed, i = 1, 2, · · · , n.
(H3) Boundary value problem (2.1) (2.2) has upper and lower solutions ω̄(t) and ω(t).

The following theorems are our main results.

Theorem 3.1. Assume that (H1), (H2) and (H3) hold. Then boundary value problem

(2.1), (2.2) has a solution x(t) satisfying the inequality

ω(t) ≤ x(t) ≤ ω̄(t), 0 ≤ t ≤ 1. (3.1)

Proof. Let r = max{∥ω̄(t)∥[−τ,1], ∥ω(t)∥[−τ,1]}. From (H1) there exists a functionH(ξ) ∈
C([0,∞)n, (0,∞)n), which is nondecreasing in every ξi, such that |f(t, x, y, z)| ≤ H(|z|) for
0 ≤ t ≤ 1, ∥x∥, ∥y∥ ≤ r and there exists a real number N0 > 0 such that∫ N

2r

[ξi/hi(N⃗ [ξi]i)]dξi > 2r, i = 1, 2, · · · , n

for any N > N0. For such an N > N0 we define the set of functions as follows:

B = {g(t) : g(t) ∈ B[ω, ω̄], g(t) ≡ ϕ(t), −τ ≤ t ≤ 0, g(1) = A, ∥g′(t)∥[0.1] ≤ N}.

Obviously B is a bounded closed convex subset of Banach space C([−τ, 1], Rn) with the

norm ∥ · ∥[−τ,1].

Next we divide the proof into three steps.

1) We prove that for each g(t) ∈ B̄ the corresponding boundary value problem

x′′ = f(t, g(t− τ), g[x], g′[x′]), (3.2)

x(0) = ϕ(0), x(1) = A (3.3)

has a unique solution xg(t) satisfying the inequality

ω(t) ≤ xg(t) ≤ ω(t), 0 ≤ t ≤ 1. (3.4)

Since (3.2) consists of n equations independent of each other, from Theorem 7.3 in [11]

we immediately conclude that (3.2), (3.3) has a solution xg(t) satisfying (3.4). In addition,

from (H2) it is clear that xg(t) is the unique solution of (3.2),(3.3).

2) We prove that for all functions g(t) ∈ B, the solutions xg(t) of the corresponding

boundary value problems (3.2), (3.3) all satisfy the inequality

∥x′
g(t)∥[0,1] ≤ N. (3.5)

Assume that (3.5) is not true. Then there exist a g0(t) ∈ B̄, an i0(1 ≤ i0 ≤ n) and a

t0 ∈ [0, 1] such that |x′
g0,i0

(t0)| > N. From Lagrange mean value theorem there exists a t1 ∈
(0, 1) such that |x′

g0,i0
(t1)| = |xg0,i0(1)−xg0,i0(0)| ≤ 2r. Owing to the continuity of x′

g0,i0
(t)
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there exist t2, t3 ∈ [0, 1] with |x′
g0,i0

(t2)| = 2r, |x′
g0,i0

(t3)| = N and 2r < |x′
g0,i0

(t)| < N for

t2 < t < t3 (or t3 < t < t2). Thus taking note of

|fi0(t, g0(t− τ), g0[xi0 ]i0 , g
′
0[x

′
i0]i0)| ≤ hi0(|g′0[x′

i0 ]i0 |) ≤ hi0(N⃗ [|x′
i0 |]i0),

we have

2r <

∫ N

2r

[ξi0/hi0(N⃗ [ξi0 ]i0)]dξi0 ≤
∣∣∣∫ t3

t2

x′
g0,i0

(t)|x′′
g0,i0

(t)|
hi0(N⃗ [|x′

g0,i0
(t)|]i0)

dt
∣∣∣

≤
∣∣∣∫ t3

t2

x′
g0,i0(t)dt

∣∣∣ = |xg0,i0(t3)− xg0,i0(t2)| ≤ 2r.

This contradiction shows that (3.5) holds.

3) We prove that boundary value problem (2.1),(2.2) has a solution x(t) satisfying (3.1).

For 1) and 2) we know that for each g(t) ∈ B there exists a unique function xg(t), which

is the unique solution of (3.2), (3.3) and satisfies (3.4), (3.5). Define

x(t) =

{
ϕ(t), −τ ≤ t ≤ 0,

xg(t), 0 ≤ t ≤ 1,
(3.6)

so that x(t) ∈ B. This defines a mapping T : B → B as follows: T : g(t) → x(t), where

g(t) ∈ B, x(t) is given by (3.6). It is clear that T is a continuous mapping on B. Furthermore

we will prove that T is a completely continuous mapping. Assume that {xk(t)} ⊂ T (B).

Then

∥xk(t)∥[−τ,1] ≤ r, ∥x′
k(t)∥[0,1] ≤ N and ∥x′′

k(t)∥[0,1] ≤ M,

where M is the maximum of ∥f(t, x, y, z)∥ on 0 ≤ t ≤ 1, ∥x∥, ∥y∥ ≤ r, ∥z∥ ≤ N . This shows

that {xk(t)} is a uniformly bounded and equicontinuous sequence of functions on [−τ, 1]

because xk(t) ≡ ϕ(t),−τ ≤ t ≤ 0 and {x′
k(t)} is also such on [0,1]. Consequently, from

Ascoli-Arzela Theorem there exist subsequences {xkj (t)} and {x′
kj
(t)} converging uniformly

on [−τ, 1] and [0,1] respectively, such that

lim
j→∞

xkj (t) = x̂(t), −τ ≤ t ≤ 1, lim
j→∞

x′
kj
(t) = x̂′(t), 0 ≤ t ≤ 1

and

∥x̂(t)∥[−τ,1] ≤ r, ∥x̂′(t)∥[0,1] ≤ N, x̂(t) ≡ ϕ(t), −τ ≤ t ≤ 0, x̂(1) = A.

Hence x̂(t) ∈ B. This shows T is a completely continuous mapping on B. Thus by Schauder

fixed point theorem T has a fixed point x∗(t) in B. This x∗(t) is a solution of (2.1),(2.2)

and satisfies (3.1). The proof of Theorem 3.1 is completed.

Theorem 3.2. Assume that f(t, x, y, z) ∈ C([0, 1] × R3n, Rn), fi(t, x, y, z) satisfies Lip-

schitz condition with respect to z, i = 1, 2, · · · , n, and conditions (H2), (H3) hold. Then

boundary value problem (2.1), (2.2) has a solution x(t) satisfying (3.1).

Proof. We only need to prove that f(t, x, y, z) satisfies Nagumo condition with respect

to z.

For any real number r > 0, let

Mi = max
0≤t≤1

∥x∥,∥y∥≤r

|fi(t, x, y, 0)|, i = 1, 2, · · · , n.
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Then we have

|fi(t, x, y, z)| ≤ |fi(t, x, y, z)− fi(t, x, y, 0)|+ |fi(t, x, y, 0)|

≤ Li

n∑
j=1

|zj |+Mi, i = 1, 2, · · · , n,

for 0 ≤ t ≤ 1, ∥x∥, ∥y∥ ≤ r, where Li is the Lipschitz constant. We define H(ξ) =

(h1(ξ), h2(ξ), . . . , hn(ξ)) ∈ C([0,∞)n, (0,∞)n) by

hi(ξ) = Li

n∑
j=1

ξj +Mi, i = 1, 2, · · · , n.

Since for i = 1, 2, · · · , n,∫ N

2r

ξi
Liξi + (n− 1)NLi +Mi

dξi

=
1

Li

[
N − 2r −

(
(n− 1)N +

Mi

Li

)
ln

nNLi +Mi

(n− 1)NLi +Mi + 2rLi

]
,

let us consider the function f(θ) ∈ C([2r,∞), R):

f(θ) = θ − 2r −
[
(n− 1)θ +

Mi

Li

]
ln

nθLi +Mi

(n− 1)θLi +Mi + 2rLi
.

It is easy to see that

lim
θ→∞

f(θ)

θ
= 1− (n− 1) ln

n

n− 1

def.
= k > 0,

lim
θ→∞

(f(θ)− kθ) = −2r − Mi

Li
ln

n

n− 1
+

2rnLi +Mi

nLi

def
= b.

So w = kθ + b is the asymptotic line of f(θ) for θ → ∞. Hence f(θ) → ∞(θ → ∞).

Consequently there exists a real number N0 > 0 such that f(θ) > 2rLi for θ > N0. This

shows that ∫ N

2r

ξi
Liξi + (n− 1)NLi +Mi

dξi > 2r

for any N > N0. Thus we conclude that f(t, x, y, z) satisfies Nagumo condition. The proof

of Theorem 3.2 is completed.

Theorem 3.3. Assume that f(t, x, y, z) ∈ C1([0, 1]×R3n, Rn),∣∣∣∣∂fi∂zj

∣∣∣∣ ≤ m, i, j = 1, 2, · · · , n, ∂fi
∂yi

≥ li > 0, i = 1, 2, · · · , n

and |f(t, x, y[0], z[0])| ≤ M , where M = (M1, . . . ,Mn). Then the boundary value problem

(2.1),(2.2) has at least a solution.

Proof.
∣∣∣ ∂fi∂zj

∣∣∣ ≤ m, i, j = 1, 2, · · · , n, implies that fi(t, x, y, z) satisfies Lipschitz condition,

i = 1, 2, · · · , n. Hence similarly to the proof of Theorem 3.2 we conclude that f(t, x, y, z)

satisfies Nagumo condition with respect to z. Furthermore the condition (H2) holds because
∂fi
∂yi

≥ li > 0, i = 1, 2, · · · , n. Finally let

ωi(t) =

{
|ϕi(t)|+ |αi|+ Mi

li
, −τ ≤ t ≤ 0,

(|ϕi(0)|+ |αi|)eλit + Mi

li
, 0 ≤ t ≤ 1,

ωi(t) ≡ −ωi(t), −τ ≤ t ≤ 1,
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where λi = (−m+
√
m2 + 4li)/2, ϕi, αi are i-th components of ϕ,A respectively. We define

ω(t) = (ω1(t), ω2(t), · · · , ωn(t)), ω(t) = (ω1(t), ω2(t), · · · , ωn(t)).

Then it is easy to prove that ω(t), ω(t) are upper and lower solutions of (2.1),(2.2), respec-

tively. Thus from Theorem 3.1, (2.1),(2.2) has at least a solution. The proof is completed.

§4. An Example

Consider the following boundary value problem

x′′ = (2 + sin[x(t− τ) + y(t− τ)])x′ +
y′

1 + (y′)2
+ x+ arctg y + et, (4.1)

y′′ = |x′|1/2 · y′ + ychx+ exp(−[x2(t− τ) + y2(t− τ)] + ln(1 + t), (4.2)

x(t) = y(t) = 0, −τ ≤ t ≤ 0, x(1) = y(1) = 0. (4.3)

Obviously it is impossible or very difficult to apply the classical Nagumo conditions to

this example. However it is easy to verify that the functions on the right hand sides of (4.1),

(4.2) satisfy Nagumo condition.

Next let ω(t) = (ω1(t), ω2(t)), ω(t) = (ω1(t), ω2(t)), where

ω1(t) =

{ π
2 + 1

2 , −τ ≤ t ≤ 0,

exp
(

1+
√
5

2 t
)
+
(
π
2 − 1

2

)
, 0 ≤ t ≤ 1,

ω1(t) ≡ −ω1(t), −τ ≤ t ≤ 1,

ω2(t) =

{
1, −τ ≤ t ≤ 0,

et, 0 ≤ t ≤ 1,

ω2(t) ≡ −ω2(t), −τ ≤ t ≤ 1.

We can prove that ω(t) and ω(t) are upper and lower solutions of (4.1)-(4.3) respectively.

Consequently, from Theorem 3.1 boundary value problem (4.1)-(4.3) has at least a solution.
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