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TENSOR PRODUCT OF SEMIGROUPS
AND THE EQUATION AC-CB=Q***
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Abstract

Properties for tensor products of semigroups are considered and the solutions of the equation
AC — CB = @ are discussed. Results obtained in this paper considerably generalize those
obtained in [9].
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¢1. Introduction

Let X, Z be complex Banach spaces and let X = B(Z, X) be the space of all bounded
linear operators from Z into X. {H(t) : ¢t > 0}, {G(t) : t > 0} are semigroups of operators
on X, Z, respectively. The family {T'(¢) : t > 0} of operators on X, defined by T(¢t)C =
H(t)CG(t), with C € X, is a semigroup of operators on X and will be referred to as the
tensor product of H( - ) and G( - ).

For a linear operator F, R(E), N(E) and D(FE) denote the range, the null space and the
domain of F.

Assume that the generators A and —B of H( - ) and G( - ) exist, respectively, in a sense
that will be made clear in §4. Our objective in this paper is to study the existence and
uniqueness of the operator equation

AC —CB=Q, (1.1)

with @ in X. By a solution of equation (1.1), we mean an element C € X, satisfying the
following conditions:

CD(B) Cc D(A), ACz—CBz=Qz forall z € D(B).

Let A be the operator defined in X whose domain D(A) consists of all C’s in X, such that
CD(B) C D(A),AC — CB is bounded on B(D), and which sends each C' to the (unique)
closure of AC — C'B. Here, we assume that D(B) is norm-dense in Z. Then, an equivalent
formulation of (1.1) is to find C' € X such that AC = Q.
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M. Rosenblum!” and J. A. Goldstein[?! considered equation (1.1) for the case in which A
and B were selfadjoint operators in a separable Hilbert space X = Z = H. J. M. Freeman!!
studied the case in which A and B were generators of Cy-semigroups on a reflexive Banach
space X = Z.S. Y. Shaw et al.l?! examined a more general case and obtained a new criterion
for the solvability of (1.1), with A and B still generators of Cy-semigroups. For other papers
on this subject, see the bibliographies in [1,2,7,9].

Our starting point is a more general one than the above mentioned [1,2,7,9] and we shall
give a criterion for the solvability of (1.1) based on the characterization of Abel-ergodic
properties established in [10]. Our result, compared to [1,2,7], is new and it is an essential
generalization of [9].

Since we shall identify A to the generator of the tensor product 7'( - ) of H( - ) and G( - ),
under certain addition conditions, it will be convenient to consider first the general operator

equation
Az = q, (1.2)

where A is the generator of a semigroup.

§2. The Operator Equation Ax=q

For the complex Banach space X, assume that Y is a norm-closed subspace of X*, the
dual of X, so that X and Y are reciprocal, that is,

]l = sup{[{z, y)|/llyll : y € ¥, y # 0},

for all z € X. Let T'( - ) be a semigroup of operators on X, satisfying the following conditions
(see [9)):

(W1) Y is invariant under T'(¢)*, for each ¢t > 0;

(W2) T( - )x is o(X,Y)-continuous on (0, 00), for each z € X;

(W3) (a) foreachz € X and y € Y, (T'(t)z,Y) as a function of ¢ is L-integrable on [0, 1];

(b) fol (T(t)x,y)dt is o(Y, X )-continuous with respect to y € Y, for each fixed z € X;

(W4) Xo =U{R(T(n)) : n >0} is 0(X,Y)-dense in X and N{N(T(n)) : n > 0} = {0}.

Such a T'( - ) is referred to as a weakly Y-integrable semigroup. As mentioned in [10],
the semigroups of translations on spaces of Holder-continuous functions are not strongly
continuous. Actually they are weakly Y-integrable for some suitably chosen Y. Also, it was
reported in [11] that the tensor product of two strongly continuous semigroups (even of Cp-
class) may no longer be strongly continuous. A simple example of a strongly discontinuous
semigroup is T'( - ) defined on L (—o00,c0) by

[T(t)z](s) =z(s+ 1), =€ L*(—00,00).

A simple calculation shows that T'( - ) is weakly Y-integrable, with ¥ = L(—o0, 00).

If T( - ) satisfies (W1), (W2), (W3) and the following

(W4)" n{N(T(n)) : n > 0} = {0},

then T'( - ) is referred to as a pre-weakly Y-integrable semigroup.
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If T( - ) only satisfies (W1), (W2), and (W3), then T( - ) is referred to as a quasi-weakly
Y-integrable semigroup. In [10], we studied the Abel-ergodic properties for a quasi-weakly
Y-integrable semigroup, which will be used in this paper (see Theorem 2.1).

Now assume that T'( - ) is pre-weakly Y-integrable. It is easily seen that Theorem 3.5
and Proposition 4.2 of [11] are applicable to T'( - ), under consideration. Hence the resolvent
R(A) of T'( - ) exists for A with ReX > wp, where wy is the type of T'( - ). Further, following
[10], we may define the Laplace transform Ry ( - ) of T'( - ) in a weaker sense. Let Ry (A, )
be the operator defined by the equality

(Ry (A ), 3)) — /0 = (T (w)z, ) du.

It follows from [10] that Ry (X,t) is a bounded linear operator on X, for each ¢ > 0 and
A € C. Consider those \’s for which tli}m (Ry (A, t)x,y) exists for all z € X and y € Y, and

it defines a bounded linear operator Ry (\) € B(X) such that
¢
lim e MYT (u)z, y)du.

t—o0 0

(Ry (Ma,y) = lim (Ry (A, 1)z, y)

It has been proved in [10, Proposition 7] that if for a complex number Ao, Ry (\g) is a
bounded linear operator on X, then so is Ry (\) for all A with Re\ >Re)g. This enables us
to define the number
04 := inf{u € (—00,00) : Ry (A) is analytic for A\ with Re\ > u}. (2.1)
The following example[®8) shows that the following strict inequality may occur:
—00 =04 < 0 < wp. (2.2)

Example 2.1. Let 1 < p < g < oo, and let X be the set of all L-measurable functions
on (0,00) such that

o 2 1/p > 1/q
I190= ([ e roras) "+ ([ 1)) <o tor fex.
0 0
Then (X,]| - ||) is a Banach lattice. For aw > 0, let T,,( - ) be the semigroup defined by
(Ta()f)(s) = e f(t+5), feX; st>0.

Then T,(t) = e**Ty(t). It was shown in [3] that | To(¢)|| = 1 for all ¢ > 0 and for Tp( - ),
0, = —00. Further, the type of T,( - ) is clearly equal to a. If & > 0, then (2.2) holds for
To( - ).

We return to discuss the pre-weakly Y-integrable semigroup T'( - ). From the definition,
it is easily seen that Ry (\) = R()\) for A\ with Re\ > wqg. To simplify notation, we shall
denote Ry (\) by R()), for all A with ReX > &,. The generator of T( - ) is denoted to be
the following operator A:

D(A) = R(R(N)),
A=At =R(\), Xe€C, Re) > o,
Clearly, A is closed and hence N(A) is closed.

The following theorem is a special case of [10, Corollary 3], that will serve our purpose.

(2.3)
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Theorem 2.1. Let R( - ) be the resolvent of the pre-weakly Y -integrable semigroup T'( - ).
If 0, <0 and

lim [|AR(N)| < oo, (2.4)
A—0
then the operator Pg defined by Psx := s — )l\ir% AR(N)z, provided that the limit exists, has
—

the following properties:
(i) Ps is a bounded projection with its domain D(Pg) closed;
(ii) N(Ps) = R(R(1) = I) = R(A), R(Ps)=N(R(1)—1I)= N(A) and hence

D(Ps) = R(A) & N(A). (2.5)

In terms of Theorem 2.1, one can prove the following
Theorem 2.2. Let T( - ) be a pre-weakly Y -integrable semigroup with generator A. If
condition (2.4) holds, then the following statements are equivalent:
(i) ¢ € A[D(A) N R(A)};
(ii) x = s — lim[-R(\)q| exists in X;
A—0

(iii) there exists a sequence {\,} converging to zero such that x = s — lim [—R(\,)¢]
n—oo

exists in X;

(iv) there ezists a sequence {\,} converging to zero such that x = w — lim [—R(\y)q]
n—oo

exists in X.

If any of conditions (i)—(iv) holds, then x is the unique solution of equation (1.2) in R(A).

Proof. (i)=-(ii): Assuming that ¢ € A(D(A) N R(A), we see that there exists = €

D(A) N R(A) such that Az = q and hence
—R(A)g=—-R(MNAzxz =2 — AR(A\)z, or x = —R(A\)g + AR(\)x.

Since x € R(A) = N(Ps), one has

rT=s— }\ii%[fR()\)q +ARN)zx] =5 — ;\er%)[fR(A)q].

Implications (ii)=-(iii) and (iii)=(iv) are clear.
(iv)=-(i): The existence of z = w — lim [—R(\,)q] implies

n—oo
s — nler;O[AnR(An)q] =0.
Thus, it follows that
A[=R(An)q] = q = MR(An)q = g
in the norm topology. Since A is closed in the norm (and hence in the weak) topology,

x € D(A) and Az = q. Thus « is a solution of (1.2).
The equalities

r=w— lim [-R(A\,)q] = w— lim [-R(A\,)Az] = w — lim [z — A\, R(\,)2]

n—oo n—oo n—oo

imply that z € R(R(1) — I) = R(A). Therefore g € A[D(A) N R(A)] and hene (i) is proved.
Finally, assume that one of conditions (i)—(iv) holds. Since N(A) N R(A) = {0} by (2.5),
x is evidently the unique solution of (1.2) in R(A).




No.2 Wang, S. W. & I. Erdelyi TENSOR PRODUCTS OF SEMIGROUPS 271

It has been proved in [10] that the strong and weak Abel-ergodicity for pseudo-resolvents
(hence for pre-weakly Y-integrable semigroups) are equivalent, and when this property holds,
one has

X = R(A) ® N(4) = N(Ps) ® R(Ps).

Thus

A straightforward consequence is the following

Corollary 2.1. Assume that T( - ) is strongly (hence weakly) Abel-ergodic. The following
statements are equivalent:

(i) ¢ € R(A);
(ii) z = s — lim [-R(\)q];
A—0
(iil) there exists a sequence {A\,} — 0, as n — oo, such that

x=s— lim [-R(\,)q]

n—oo
exists in X;

(iv) there exists a sequence {\,} — 0, as n — oo, such that

€T =w — lim [—R()\n)q]

n—oo
exists in X.
Proof. Implications (i)’ = (ii)=-(iii)= (iv) are clear. We claim that (iv)=-(i)" also holds.
Indeed, it follows from A[—R(\,)q] = ¢— A R(A,)q that one has Az = g and hence ¢ € R(A).
We can compare the above Theorem 2.2 to [8, Theorem 2.3]. For this we need the
following

Proposition 2.1. If the pre-weakly Y -integrable semigroup T'( - ) satisfies condition
T 1
Hm S]] < oo, (2.6)

then o, < 0 and (2.4) holds, where S(T) € B(X) is defined by

t
(Sw) = [ Ty,
0
If, in addition to (2.6), we assume that the following limit exists
—ec_ i -1
v = s lim (7 F(1)q) (27)

then q satisfies (i) of Theorem 2.2. In (2.7), F(t) € B(X) is defined by

<F(t)x’y>:/0 (S(T)z, y)dr.

Remark 2.1. The existence and the properties of S( - ) have been studied in [12], those
for F'( - ) can be deduced from S( - ).

Proof of Proposition 2.1. By condition (2.6), there exists a number M > 0 so that
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t=1|S(t)|] < M for t < 1. Then, for z € X, y € Y one has

[ v < e et + [ sl

to
t
< [té-Re*)t + toel"ReNto 1 \AI/ e(_ReA)“udU}Mﬂxll 1yll-
to

Hence, for any given € > 0, the inequality

| / T (w)z,y)du| < el ] 2.8)

holds uniformly for A in every compact subset of the half plane {\ : ReX > 0}, whenever
t > to(> 1) are sufficiently large. Consequently, Ry () = tlg(r)lo Ry (A, t) exists uniformly for
A in every compact subset of the upper half plane. Ry (A, t) is analytic in A on {A : ReX > 0}
and so is Ry (). Hence o, < 0. Letting to = 0 and ¢ = oo in (2.8) one gets for A > 0,

ORWz9)] < (¥ [ e udu) o] ] = M o]

and hence (2.4) holds.
Finally, we assume the additional condition (2.7). From [11, Theorem 3.5] and by inte-
gration by parts, one has

[{R(A)q+ z,y)| = )\2‘/0 e Mt F(t)qg + z, y>dt‘

< ([ e Ntde) sup e F(e)a + | o]
N t>N

N N
+>\2/ e Mtdt sup |[F(t)q]| Hy||+A2/ e M|z [lyll-
0 0<t<N 0

In view of (2.7) and the boundedness of F( - ) on every closed interval [a,b] C [0, 00), it is
easy to see that ;in% IR(A)g + z|| = 0. Thus ¢ satisfies Theorem 2.2 (ii) and hence (i).
—

Remark 2.2. A result similar to Theorem 2.2 was obtained in [9, Theorem 2.3]. In the
latter there were assumed (2.7),
|T(t)x|| = o(t) as t— oo, for each x € D(A) (2.9)

and conditions on T'( - ), much stronger than (W1), (W2) and (W3) (see [8] for details).
Proposition 2.1 and the following example show that Theorem 2.2 is an essential extension
of [9, Theorem 2.3].

Example 2.2. Let X = L(0,1) and define
1

00 = 15 / (t — u) ™ f(u)du

In [4, pp. 664-665], the following were proved:
(i) the type wp of {J¢ : & = Re¢ > 0} satisfies

wo = lim ¢ tlog||J¢||]2 = —o0
E—o0

and hence the spectrum of the infinitesimal generator A of J¢ is empty;
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(i) {J : n = Im{ € (—o0,00)} is a strongly continuous group of operators on L?(0,1)
with infinitesimal generator iA4, so o(iA) = 0.

In view of [4, Theorem 23.16.1], it is easily seen that the function z, with x(¢t) = 1 on
[0,1] is in D(A). By a few computations, one obtains

) ) 1
Jx|o > (J T, 2)| = ———.
It follows from [6, p.550] that
1 3
log == = 1 — ~log(4 + n?) + narg(in + 2) + C(in + 2), 2.10
e T+ 2| 1 o84 +17) + narg(in +2) + C(in + 2) (2.10)

where C(in + 2) is such that |C(in + 2)| < §. Relation (2.10) implies that

1
el -
nseol Tlin + 2)1 ~

Therefore, J does not satisfy (2.9) and hence [9, Theorem 2.3] does not apply to J.
On the other hand, o(iA) = () shows that )l\irr%) [AR(A,iA)|| = 0. Consequently J satisfies
—
(2.4) and hence our Theorem 2.2 is applicable.

§3. Tensor Products of Semigroups

Let H( - ),G( - ) be the semigroups given in §1. In order to reach the target of this
paper, some additional conditions on H( - ),G( - ) will be needed. Assume that H( - ) is
a pre-weakly Y-integrable semigroup, G( - ) is a Cy-semigroup. The tensor product T'( - )
of H( - ) and G( - ) (see §1) is defined to be the family {T'(¢) : ¢ > 0} of operators on X
satisfying

Tt)C =H({t)CG(t), t>0, CeX.

For each z € Z, y € Y, let f,g, be the linear functional on X, defined by (C, f.gy,) =
(Cz,y). Then f,g, is bounded and ||f.gyll = 12| ly|l (see [9]). Let ¥ C X* be the norm-
closed linear span of all f,g,, with z € Z,y € Y. It has also been shown in [9] that X and
Y are reciprocal.

Lemma 3.1. The tensor product has the following property

IT@I = [IHOIIG@I, t>0. (3.1)
Proof. Let € > 0 and let ¢t > 0 be fixed. Choose zg € X with ||zg]| =1 and zp € Z with
|lzo]| = 1 such that
[H®)zoll = [H®)I — e, GE)zoll = IGE)] —e.
Let 2§ € Z satisfy conditions (G(t)zo/||G(t)z0]|, 25) = 1 and ||| = 1. Define C € X by
Cz = (z,zy)xg, forall ze€ Z.
Then ||C|| =1 and
IT@) = I[T(#)Clzoll = [[HE)CG(t)z0ll
= [[H@)zo[l |[G®)llz0ll = (IH @) = e)([GE)]| = &)
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Since e is arbitrary, one obtains | T(¢)|| > ||H(®)||||G(¢)|. This, together with the evident
opposite inequality, yields (3.1).
Corollary 3.1. Let w,wg,w; be the type of T( - ), H( - ),G( - ), respectively. Then
W= wqg + wi.
Proposition 3.1. If H( - ) is pre-weakly Y —integrable, G( - ) is of Cy-class, then T( - )
is 0(X,Y)-continuous on (0, 00).
Proof. For each z € Z, y € Y and t > 0, one has
(Tt + A)C, fay) = (T()C, fray)]
= [CG(t + At)z, H(t + At)'y) — (CG(t)z, H(t)'y)]
<CG(t+ At)z, CG(t)z, H(t + At)y)| + (CG(t)z, H(t + At)'y — H(t)'y)|
< ICINGE+ At) = G| [|H (t + At)'y]|
+ {CG(t)z, [H(t+ At) — H(t)'|y)| — 0, as At — 0, (3.2)
where H(t) = H(t)*|Y. By Lemma 3.1, T( - ) is bounded on every closed subinterval [a, b]
of (0,00). This, together with (3.2), asserts that
(Tt+ANC, f) > (T ()C, f) as At — 0, forall feY.

Proposition 3.2. Y is invariant under T(t)*, for each t > 0.
Proof. Let z € Z, y € Y. For every C' € X, one obtains successively:

(C.T(t)" fzey) = (T()C, fzay) = (CG()z, H(t)'y) = (C, fawzan(tyy)-
Thus T'(t)* f.ey = faw)-eH(t)y €Y and hence Y is invariant under T'(t)*.

Propositions 3.1, 3.2 assert that T'( - ) satisfies conditions (W1), (W2), respectively. In
the sequel, we shall denote T'( - )’ = T'( - )*|Y. The following proposition gives a sufficient
condition for T'( - ) to satisfy condition (W3).

Proposition 3.3. Suppose that G( - ) is a Cy-semigroup, H( - ) satisfies properties (W1),
(W2), (W4) and

IH@)| < (), ae. te(0,00), (3.3)
where (- ) is a non-negative L-integrable function on [0,00). Then T( - ) satisfies (W3).

Remark 3.1. Condition (3.3) implies (W3) by [11, Proposition 3.5], therefore H( - ) is
a pre-weakly Y-integrable semigroup.

Proof of Proposition 3.3. The inequality

1T = IHOING@)] < M(t),

where M > 0 is a constant, and [11, Proposition 3.5] imply that T'( - ) satisfies (W3).
Proposition 3.4. With the condition of Proposition 3.3, T( - ) has the following property:

(VN (@) : n >0} = {0}. (3.4)

Proof. Let C' € X be such that T(n)C = 0 for all n > 0. Then, for each z € Z, y € Y
and all n > 0, we have

(CGn)z, H(n)'y) = (T(n)C, fagy) = 0. (3.5)
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Let u € U{CR(G(n)) : n > 0} and v € U{R(H(n)") : n > 0}. There exist 11,72 > 0 such that
u € CR(G(m)), v € R(H(n2)"). Set n = min{ny,n2}. Then, clearly v € CR(G(n)), v €
R(H(n)'). Choose z and y such that u = CG(n)z and v = H(n)'y. By (3.5), (u,v) = 0 and
hence
U{CR(G(n)) : n > 0} LU{R(H(n)") : n > 0}.
(W4)" applied to H( - ) gives
N{N(H(n)) : n >0} = {0}
and hence U{R(H(n)") : n > 0} is (Y, X)-dense in Y. Consequently,
U{CR(G(n)) : n > 0} = {0},
or equivalently,
C(HAE(G(n)) : n > 0}) = {0}
Since U{R(G(n)) : n > 0} is norm-dense in Z, one has C' = 0, and hence (3.4) holds.
Corollary 3.2. The resolvent Ry(X) of T( - ) is injective on X.
Proof. The statement of the corollary follows from [11, Proposition 4.2] and (3.4).
So far we do not know whether Ry ()) has a o(X,Y)-dense range in X. We can prove
the following weaker result. Let Y be the linear span of f.g,, with z € Z, y € Y.
Proposition 3.5. Assume that G( - ) is a Co-semigroup, H( - ) satisfies (W1),(W2),
(W4), and (3.3). Then
X :=U{R(T(n)) :n >0} (3.6)
is 0(X,Y)-dense in X.
Proof. To prove that X, is 0(X,Y)-dense in X, it suffices to show that
AN(T () 1Yo) 0 > 0} = {0},
Now assume that 7'(n)’ f.y =0 for all n > 0, and for some z € Z, y € Y. For C € X, we
have

0= <CaT(77)/fz®y> = <T(77)Cv fz®y>
= (H(n)CG(n)z,y) = (CG(n)z, H(n)'y)

= <O7 fG(n)z@H(n)’y>~ (37)
Thus, fam)zeH )y = 0, or equivalently,
G(n)z® H(n)'y=0, forall n>0. (3.8)

There are only two possible cases implied by (3.8):
(a) G(n)z =0 for all n > 0. In this case z = 0, because z = s — li%l G(n)z.
n

—0+

(b) G(no) # 0 for some 1y > 0. In this case G(n)z # 0 for 0 < 5 < 1y, hence H(n)'y =0
for 0 < n <mno. H( - )" being a weakly X-integrable semigroup on Y by [12, Theorem 2.1],
one has y = 0. Thus either of cases (a) and (b) implies f.g, = 0.

Next, assume that for some f = f,,,, where w, = »_ z; ® y;, one has
Jj=1

Tm)'f=T"n) fu, =0.
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A calculation similar to that of (3.7) produces the following analogue of (3.8):
> G(n)z; @ H(n)'y; =0 for all 5> 0. (3.9)
j=1

We may assume that one of {2;}7_;, {y;}}_;, say the latter, is linearly independent. We
shall assert that the system {H(n)'y;}}_; is linearly independent for a sufficiently small
n > 0. Assuming the contrary, there exists, at least, one decreasing sequence {n,,} that
converges to zero such that {H (nm)"y;}7—; is linearly dependent. Hence, for each m, there

n

exists a system of numbers {b;m) 7—1 satisfying the relations

n m

Hm) (300 05) = S 0™ Hm)'y; = 0, for all m;
j=1 P

ST =1, (3.10)
j=1

Clearly, we may assume that, for each j, b;m)

> bl =1. (3.11)
j=1

— b;, as m — oo. Then (3.10) implies

Let mg be fixed. Then, for m > my,

H (o) [ Y2043 = H g = 1) |3 0™ H(ma) 3] = 0.

J=1 Jj=1
Letting m — oo, one obtains

n
H(my)' [Z bjyj} =0
=1
for each mg. Hence
> by € N{N(H(n)') : n > 0},
j=1
and
Z bjyj =0.
j=1

The latter implies that b, =0 (j =1,2,--- ,n), contradicting (3.11). Therefore, the system
{H(n)"y;}}—, is linearly independent for sufficiently small 5 > 0. It follows from (3.9) that
G(n)z; =0 for each j =1,2,--- ,n and sufficiently small > 0. Thus z; € "{N(G(n)) : n >
0} and hence z; =0 for j =1,2,--- ,n. One has f = f,,, =0.
Y, being a linear span of all f,g, with z € Z, y € Y, the previous argument asserts that
N{N(T(n)'[¥) : n > 0} = {0}.
Thus U{R(T'(n)) : n > 0} is 0(X,Y)-dense in X.

t4. The Solution of AC=Q

Throughout this section we shall assume that H( - ) satisfies conditions (W1), (W2),
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(W4) and (3.3), G( - ) is a Cy-semigroup, A and —B are the generators of H( - ) and G( - ),
respectively. It has been shown that A is o(X,Y")-closed and densely defined, the dual A’ on
Y is o(X,Y)-closed and densely defined, A is the dual of A’ in X[*?I. For the Cy-semigroup
G( - ), B is norm-closed and densely defined.

Lemma 4.1. A is 0(X,Y)-closed, where A is defined in §1.

Proof. Assume that {C,} C D(A) converges to C' and {AC,} converges to C in the
o(X,Y)-topology. For each z € D(B), y € D(A’), we have

(A, Caz,y) — (CaBz,y) = (ACqz,y),
or equivalently
(Ca, frwary) — (Ca, [B2gy) = (ACq, fray)- (4.1)
Going to the limit in (4.1), one obtains
(C, fzpary) —(C, fB2y) = (C, f2ay)
that is,
(Cz, A'y) — (CBz,y) = (Cz,y). (4.2)

Since (CBz,y), (Cz,y) are o(X,Y )-continuous linear functionals on D(A’), so is (Cz, A'y).
Consequently, Cz € D(A) and (ACz,y) = (Cz, A'y). (4.2) implies

(AC —CB)z=Cz forall z€ D(B).

Thus C € D(A), AC = C and hence A is (X, Y)-closed.

Under the conditions set in this section on H( - ) and GF( - ), Propositions 3.2-3.5 assert
that T'( - ) is a pre-weakly Y-integrable semigroup on X. Furthermore, the generator A; of
T( - ) is defined by (see §2.):

D(Ay) = R(Rr(N\); (A=At =Rp()), forall A with Re) > w.
Furthermore, if ReA > w, we have
(Br(A)Cz,y) = ( Rr(N)C, fray)
= /0 h e M(T(#)C, fogy)dt
- /O T e M), )y (4.3)

forallCe X, z€ 2, yeY.
Theorem 4.1. A = Ay, that is, A is the generator of T( - ).
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Proof. Let z € D(B), y € D(A’). Then for each C' € D(A), (4.3) implies
(Rr(A)ACz,y)

= [T earwacpi= [T e raac - en)za

/ T e NUH B (AC — CB)G ()2, y)dt

/00 “MAH () CG(t)z, y)dt — /00 e M(H(t)CG(t)Bz, y)dt
0 0

/0 T en (CG(t)z, H(t) Aly)dt — /0 b e M(CG(t)Bz, H(t)'y)dt
= [ e G = [ e L mOCG0=
= (AR7(\ )Cz,y) —(Cz,y), forall A with Re\ > w. (4.4)
In the equalities of (4.4), we used integration by parts and relations
(ZG( t)z = —G(t)Bz for all z € D(B),
th( )y =H(t)A'y forall ye D(A). (4.5)

The first equality of (4.5) is an easy consequence of Cp-semigroups and the second one has
been verified in [12]. Since D(A’) is o(Y, X)-dense in Y and D(B) is norm dense in X, one
obtains
Ry (A)AC = ARp(N)C — C. (4.6)

Hence C' € R(Rp(N) = D(A1), and A C Ay. To claim the opposite inclusion, we still
assume z € D(B), y € D(A"). Then, for each C € X, by a similar argument of (4.4), one
obtains

([Rr(N)Clz, A'y) = (A[Rr(M)Clz,y) = (Cz,y) + ([Rr(A\)C]Bz, y). (4.7)
Thus ([Rp(A\)C]z, A'y) is a o(Y, X )-continuous linear functional on D(A’) because so is the
right-hand side of (4.7). Therefore, [Ry(A\)C]z € D(A) and

(A[Rr(A\)Clz,y) — ([Rr(A)C]Bz,y) = (A[Rr(A\)Clz,y) — (Cz,y).
Thus

A[Rr(A)C] = [Rr(MN)C]B = ARp(A\)C = C, Rr(A\)C € D(A)

and hence D(A;1) C D(A). This, together with the inclusion A C A; yields A = A;.
The following theorem is a direct consequence of Theorem 2.2.
Theorem 4.2. Suppose that

lim | AR (\)|| < oo.
A—0
Then, the following statements are equivalent:

(i) Q € A(D(A)N Rr(X)), where Rr(X) is the uniform closure of Ryp(\);
(i) )l\irr%) Rr(N)Q ezists in the uniform operator topology;
—
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(iil) there exists a sequence {\,} converging to zero, as n — oo, such that lim Ry (\,)Q
n—oo

exists in the uniform operator topology;

(iv) there exists a sequence {\,} converging to zero, as n — oo, such that lim Rp(\,)Q
n— oo

exists in the weak topology of X.

If one of (i)-(iv) holds, then C = HILH;O[_RT()‘")Q] is the unique solution of (1.1) in
R(A).

Application of the results presented here will be the subject of a forthcoming paper.
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