
Chin. Ann. of Math.
16B: 2(1995),267-278.

TENSOR PRODUCT OF SEMIGROUPS

AND THE EQUATION AC−CB=Q***

Wang Shengwang* I. Erdelyi**

Abstract

Properties for tensor products of semigroups are considered and the solutions of the equation
AC − CB = Q are discussed. Results obtained in this paper considerably generalize those

obtained in [9].
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§1. Introduction

Let X,Z be complex Banach spaces and let X = B(Z,X) be the space of all bounded

linear operators from Z into X. {H(t) : t > 0}, {G(t) : t > 0} are semigroups of operators

on X,Z, respectively. The family {T (t) : t > 0} of operators on X, defined by T (t)C =

H(t)CG(t), with C ∈ X, is a semigroup of operators on X and will be referred to as the

tensor product of H( · ) and G( · ).
For a linear operator E, R(E), N(E) and D(E) denote the range, the null space and the

domain of E.

Assume that the generators A and −B of H( · ) and G( · ) exist, respectively, in a sense

that will be made clear in §4. Our objective in this paper is to study the existence and

uniqueness of the operator equation

AC − CB = Q, (1.1)

with Q in X. By a solution of equation (1.1), we mean an element C ∈ X, satisfying the

following conditions:

CD(B) ⊂ D(A), ACz − CBz = Qz for all z ∈ D(B).

Let ∆ be the operator defined in X whose domain D(∆) consists of all C ′s in X, such that

CD(B) ⊂ D(A), AC − CB is bounded on B(D), and which sends each C to the (unique)

closure of AC − CB. Here, we assume that D(B) is norm-dense in Z. Then, an equivalent

formulation of (1.1) is to find C ∈ X such that ∆C = Q.
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M. Rosenblum[7] and J. A. Goldstein[2] considered equation (1.1) for the case in which A

and B were selfadjoint operators in a separable Hilbert space X = Z = H. J. M. Freeman[1]

studied the case in which A and B were generators of C0-semigroups on a reflexive Banach

space X = Z. S. Y. Shaw et al.[9] examined a more general case and obtained a new criterion

for the solvability of (1.1), with A and B still generators of C0-semigroups. For other papers

on this subject, see the bibliographies in [1,2,7,9].

Our starting point is a more general one than the above mentioned [1,2,7,9] and we shall

give a criterion for the solvability of (1.1) based on the characterization of Abel-ergodic

properties established in [10]. Our result, compared to [1,2,7], is new and it is an essential

generalization of [9].

Since we shall identify ∆ to the generator of the tensor product T ( · ) of H( · ) and G( · ),
under certain addition conditions, it will be convenient to consider first the general operator

equation

Ax = q, (1.2)

where A is the generator of a semigroup.

§2. The Operator Equation Ax=q

For the complex Banach space X, assume that Y is a norm-closed subspace of X∗, the

dual of X, so that X and Y are reciprocal, that is,

∥x∥ = sup{|⟨x, y⟩|/∥y∥ : y ∈ Y, y ̸= 0},

for all x ∈ X. Let T ( · ) be a semigroup of operators on X, satisfying the following conditions

(see [9]):

(W1) Y is invariant under T (t)∗, for each t > 0;

(W2) T ( · )x is σ(X,Y )-continuous on (0,∞), for each x ∈ X;

(W3) (a) for each x ∈ X and y ∈ Y , ⟨T (t)x, Y ⟩ as a function of t is L-integrable on [0, 1];

(b)
∫ 1

0
⟨T (t)x, y⟩dt is σ(Y,X)-continuous with respect to y ∈ Y , for each fixed x ∈ X;

(W4) X0 = ∪{R(T (η)) : η > 0} is σ(X,Y )-dense in X and ∩{N(T (η)) : η > 0} = {0}.
Such a T ( · ) is referred to as a weakly Y -integrable semigroup. As mentioned in [10],

the semigroups of translations on spaces of Hölder-continuous functions are not strongly

continuous. Actually they are weakly Y -integrable for some suitably chosen Y. Also, it was

reported in [11] that the tensor product of two strongly continuous semigroups (even of C0-

class) may no longer be strongly continuous. A simple example of a strongly discontinuous

semigroup is T ( · ) defined on L∞(−∞,∞) by

[T (t)x](s) = x(s+ t), x ∈ L∞(−∞,∞).

A simple calculation shows that T ( · ) is weakly Y -integrable, with Y = L(−∞,∞).

If T ( · ) satisfies (W1), (W2), (W3) and the following

(W4)′ ∩{N(T (η)) : η > 0} = {0},
then T ( · ) is referred to as a pre-weakly Y -integrable semigroup.
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If T ( · ) only satisfies (W1), (W2), and (W3), then T ( · ) is referred to as a quasi-weakly

Y -integrable semigroup. In [10], we studied the Abel-ergodic properties for a quasi-weakly

Y -integrable semigroup, which will be used in this paper (see Theorem 2.1).

Now assume that T ( · ) is pre-weakly Y -integrable. It is easily seen that Theorem 3.5

and Proposition 4.2 of [11] are applicable to T ( · ), under consideration. Hence the resolvent

R(λ) of T ( · ) exists for λ with Reλ > ω0, where ω0 is the type of T ( · ). Further, following
[10], we may define the Laplace transform RY ( · ) of T ( · ) in a weaker sense. Let RY (λ, t)

be the operator defined by the equality

⟨RY (λ, t)x, y⟩ =
∫ t

0

e−λu⟨T (u)x, y⟩du.

It follows from [10] that RY (λ, t) is a bounded linear operator on X, for each t > 0 and

λ ∈ C. Consider those λ’s for which lim
t→∞

⟨RY (λ, t)x, y⟩ exists for all x ∈ X and y ∈ Y , and

it defines a bounded linear operator RY (λ) ∈ B(X) such that

⟨RY (λ)x, y⟩ = lim
t→∞

⟨RY (λ, t)x, y⟩ = lim
t→∞

∫ t

0

e−λu⟨T (u)x, y⟩du.

It has been proved in [10, Proposition 7] that if for a complex number λ0, RY (λ0) is a

bounded linear operator on X, then so is RY (λ) for all λ with Reλ >Reλ0. This enables us

to define the number

σa := inf{u ∈ (−∞,∞) : RY (λ) is analytic for λ with Reλ > u}. (2.1)

The following example[3,8] shows that the following strict inequality may occur:

−∞ = σa < 0 < ω0. (2.2)

Example 2.1. Let 1 ≤ p ≤ q < ∞, and let X be the set of all L-measurable functions

on (0,∞) such that

∥f∥ :=
(∫ ∞

0

eps
2

|f(s)|pds
)1/p

+
(∫ ∞

0

|f(s)|qds
)1/q

<∞ for f ∈ X.

Then (X, ∥ · ∥) is a Banach lattice. For α ≥ 0, let Tα( · ) be the semigroup defined by

(Tα(t)f)(s) = eαtf(t+ s), f ∈ X; s, t ≥ 0.

Then Ta(t) = eαtT0(t). It was shown in [3] that ∥T0(t)∥ = 1 for all t ≥ 0 and for T0( · ),
σa = −∞. Further, the type of Tα( · ) is clearly equal to α. If α > 0, then (2.2) holds for

Tα( · ).
We return to discuss the pre-weakly Y -integrable semigroup T ( · ). From the definition,

it is easily seen that RY (λ) = R(λ) for λ with Reλ > ω0. To simplify notation, we shall

denote RY (λ) by R(λ), for all λ with Reλ > σa. The generator of T ( · ) is denoted to be

the following operator A:{
D(A) = R(R(λ)),

(λ−A)−1 = R(λ), λ ∈ C, Reλ > σa.
(2.3)

Clearly, A is closed and hence N(A) is closed.

The following theorem is a special case of [10, Corollary 3], that will serve our purpose.
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Theorem 2.1. Let R( · ) be the resolvent of the pre-weakly Y -integrable semigroup T ( · ).
If σa ≤ 0 and

lim
λ→0

∥λR(λ)∥ <∞, (2.4)

then the operator PS defined by PSx := s − lim
λ→0

λR(λ)x, provided that the limit exists, has

the following properties:

(i) PS is a bounded projection with its domain D(PS) closed;

(ii) N(PS) = R(R(1)− I) = R(A), R(PS) = N(R(1)− I) = N(A) and hence

D(PS) = R(A)⊕N(A). (2.5)

In terms of Theorem 2.1, one can prove the following

Theorem 2.2. Let T ( · ) be a pre-weakly Y -integrable semigroup with generator A. If

condition (2.4) holds, then the following statements are equivalent:

(i) q ∈ A[D(A) ∩R(A)];
(ii) x = s− lim

λ→0
[−R(λ)q] exists in X;

(iii) there exists a sequence {λn} converging to zero such that x = s − lim
n→∞

[−R(λn)q]
exists in X;

(iv) there exists a sequence {λn} converging to zero such that x = w − lim
n→∞

[−R(λn)q]
exists in X.

If any of conditions (i)–(iv) holds, then x is the unique solution of equation (1.2) in R(A).

Proof. (i)⇒(ii): Assuming that q ∈ A(D(A) ∩ R(A), we see that there exists x ∈
D(A) ∩R(A) such that Ax = q and hence

−R(λ)q = −R(λ)Ax = x− λR(λ)x, or x = −R(λ)q + λR(λ)x.

Since x ∈ R(A) = N(PS), one has

x = s− lim
λ→0

[−R(λ)q + λR(λ)x] = s− lim
λ→0

[−R(λ)q].

Implications (ii)⇒(iii) and (iii)⇒(iv) are clear.

(iv)⇒(i): The existence of x = w − lim
n→∞

[−R(λn)q] implies

s− lim
n→∞

[λnR(λn)q] = 0.

Thus, it follows that

A[−R(λn)q] = q − λnR(λn)q → q

in the norm topology. Since A is closed in the norm (and hence in the weak) topology,

x ∈ D(A) and Ax = q. Thus x is a solution of (1.2).

The equalities

x = w − lim
n→∞

[−R(λn)q] = w − lim
n→∞

[−R(λn)Ax] = w − lim
n→∞

[x− λnR(λn)x]

imply that x ∈ R(R(1)− I) = R(A). Therefore q ∈ A[D(A) ∩R(A)] and hene (i) is proved.

Finally, assume that one of conditions (i)–(iv) holds. Since N(A)∩R(A) = {0} by (2.5),

x is evidently the unique solution of (1.2) in R(A).
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It has been proved in [10] that the strong and weak Abel-ergodicity for pseudo-resolvents

(hence for pre-weakly Y -integrable semigroups) are equivalent, and when this property holds,

one has

X = R(A)⊕N(A) = N(PS)⊕R(PS).

Thus

R(A) = A(D(A)) = A[D(A) ∩ (R(A)⊕N(A))] = A(D(A) ∩R(A)).

A straightforward consequence is the following

Corollary 2.1. Assume that T ( · ) is strongly (hence weakly) Abel-ergodic. The following

statements are equivalent:

(i)′ q ∈ R(A);

(ii) x = s− lim
λ→0

[−R(λ)q];

(iii) there exists a sequence {λn} → 0, as n→ ∞, such that

x = s− lim
n→∞

[−R(λn)q]

exists in X;

(iv) there exists a sequence {λn} → 0, as n→ ∞, such that

x = w − lim
n→∞

[−R(λn)q]

exists in X.

Proof. Implications (i)′ ⇒(ii)⇒(iii)⇒ (iv) are clear. We claim that (iv)⇒(i)′ also holds.

Indeed, it follows from A[−R(λn)q] = q−λnR(λn)q that one has Ax = q and hence q ∈ R(A).

We can compare the above Theorem 2.2 to [8, Theorem 2.3]. For this we need the

following

Proposition 2.1. If the pre-weakly Y -integrable semigroup T ( · ) satisfies condition

lim
t→∞

t−1∥S(t)∥ <∞, (2.6)

then σa ≤ 0 and (2.4) holds, where S(T ) ∈ B(X) is defined by

⟨S(t)x, y⟩ =
∫ t

0

⟨T (τ)x, y⟩dτ.

If, in addition to (2.6), we assume that the following limit exists

x = s− lim
t→∞

[t−1F (t)q], (2.7)

then q satisfies (i) of Theorem 2.2. In (2.7), F (t) ∈ B(X) is defined by

⟨F (t)x, y⟩ =
∫ t

0

⟨S(τ)x, y⟩dτ.

Remark 2.1. The existence and the properties of S( · ) have been studied in [12], those

for F ( · ) can be deduced from S( · ).
Proof of Proposition 2.1. By condition (2.6), there exists a number M > 0 so that
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t−1∥S(t)∥ ≤M for t ≤ 1. Then, for x ∈ X, y ∈ Y one has∣∣∣∫ t

t0

eλu⟨T (u)x, y⟩du
∣∣∣ ≤ ∣∣∣[e−λu⟨S(u)x, y⟩]tt0 + |λ|

∫ t

t0

e−λu⟨S(u)x, y⟩du
∣∣∣

≤
[
te(−Reλ)t + t0e

(−Reλ)t0 + |λ|
∫ t

t0

e(−Reλ)uudu
]
M∥x∥ ∥y∥.

Hence, for any given ε > 0, the inequality∣∣∣∫ t

t0

e−λu⟨T (u)x, y⟩du
∣∣∣ ≤ ε∥x∥ ∥y∥ (2.8)

holds uniformly for λ in every compact subset of the half plane {λ : Reλ > 0}, whenever
t ≥ t0(≥ 1) are sufficiently large. Consequently, RY (λ) = lim

t→∞
RY (λ, t) exists uniformly for

λ in every compact subset of the upper half plane. RY (λ, t) is analytic in λ on {λ : Reλ > 0}
and so is RY (λ). Hence σa ≤ 0. Letting t0 = 0 and t = ∞ in (2.8) one gets for λ > 0,

|⟨λR(λ)x, y⟩| ≤
(
λ2

∫ ∞

0

e−λuudu
)
M∥x∥ ∥y∥ =M∥x∥ ∥y∥

and hence (2.4) holds.

Finally, we assume the additional condition (2.7). From [11, Theorem 3.5] and by inte-

gration by parts, one has

|⟨R(λ)q + x, y⟩| = λ2
∣∣∣∫ t

0

e−λtt⟨t−1F (t)q + x, y⟩dt
∣∣∣

≤ λ2
(∫ ∞

N

e−λttdt
)
sup
t≥N

∥t−1F (t)q + x∥ ∥y∥

+ λ2
∫ N

0

e−λttdt sup
0≤t≤N

∥F (t)q∥ ∥y∥+ λ2
∫ N

0

e−λtdt∥x∥ ∥y∥.

In view of (2.7) and the boundedness of F ( · ) on every closed interval [a, b] ⊂ [0,∞), it is

easy to see that lim
λ→0

∥R(λ)q + x∥ = 0. Thus q satisfies Theorem 2.2 (ii) and hence (i).

Remark 2.2. A result similar to Theorem 2.2 was obtained in [9, Theorem 2.3]. In the

latter there were assumed (2.7),

∥T (t)x∥ = o(t) as t→ ∞, for each x ∈ D(A) (2.9)

and conditions on T ( · ), much stronger than (W1), (W2) and (W3) (see [8] for details).

Proposition 2.1 and the following example show that Theorem 2.2 is an essential extension

of [9, Theorem 2.3].

Example 2.2. Let X = L2(0, 1) and define

(Jζx)(t) =
1

Γ(ζ)

∫ t

0

(t− u)ζ−1f(u)du.

In [4, pp. 664-665], the following were proved:

(i) the type ω0 of {Jξ : ξ = Reζ > 0} satisfies

ω0 = lim
ξ→∞

ξ−1 log ∥Jξ∥2 = −∞

and hence the spectrum of the infinitesimal generator A of Jξ is empty;
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(ii) {J iη : η = Imζ ∈ (−∞,∞)} is a strongly continuous group of operators on L2(0, 1)

with infinitesimal generator iA, so σ(iA) = ∅.
In view of [4, Theorem 23.16.1], it is easily seen that the function x, with x(t) = 1 on

[0, 1] is in D(A). By a few computations, one obtains

∥J iηx∥2 ≥ |⟨J iηx, x⟩| = 1

|Γ(iη + 2)|
.

It follows from [6, p.550] that

log
1

|Γ(iη + 2)|
= 1− 3

4
log(4 + η2) + ηarg(iη + 2) + C(iη + 2), (2.10)

where C(iη + 2) is such that |C(iη + 2)| ≤ π
8 . Relation (2.10) implies that

lim
η→∞

∣∣∣ 1

Γ(iη + 2)

∣∣∣ = ∞.

Therefore, J iη does not satisfy (2.9) and hence [9, Theorem 2.3] does not apply to J iη.

On the other hand, σ(iA) = ∅ shows that lim
λ→0

∥λR(λ, iA)∥ = 0. Consequently J iη satisfies

(2.4) and hence our Theorem 2.2 is applicable.

§3. Tensor Products of Semigroups

Let H( · ), G( · ) be the semigroups given in §1. In order to reach the target of this

paper, some additional conditions on H( · ), G( · ) will be needed. Assume that H( · ) is

a pre-weakly Y -integrable semigroup, G( · ) is a C0-semigroup. The tensor product T ( · )
of H( · ) and G( · ) (see §1) is defined to be the family {T (t) : t > 0} of operators on X

satisfying

T (t)C = H(t)CG(t), t > 0, C ∈ X.

For each z ∈ Z, y ∈ Y, let fz⊗y be the linear functional on X, defined by ⟨C, fz⊗y⟩ =

⟨Cz, y⟩. Then fz⊗y is bounded and ∥fz⊗y∥ = ∥z∥ ∥y∥ (see [9]). Let Y ⊂ X∗ be the norm-

closed linear span of all fz⊗y, with z ∈ Z, y ∈ Y. It has also been shown in [9] that X and

Y are reciprocal.

Lemma 3.1. The tensor product has the following property

∥T (t)∥ = ∥H(t)∥ ∥G(t)∥, t > 0. (3.1)

Proof. Let ε > 0 and let t > 0 be fixed. Choose x0 ∈ X with ∥x0∥ = 1 and z0 ∈ Z with

∥z0∥ = 1 such that

∥H(t)x0∥ ≥ ∥H(t)∥ − ε, ∥G(t)x0∥ ≥ ∥G(t)∥ − ε.

Let z∗0 ∈ Z satisfy conditions ⟨G(t)z0/∥G(t)z0∥, z∗0⟩ = 1 and ∥z∗0∥ = 1. Define C ∈ X by

Cz = ⟨z, z∗0⟩x0, for all z ∈ Z.

Then ∥C∥ = 1 and

∥T (t)∥ ≥ ∥[T (t)C]z0∥ = ∥H(t)CG(t)z0∥
= ∥H(t)x0∥ ∥G(t)∥z0∥ ≥ (∥H(t)∥ − ε)(∥G(t)∥ − ε).
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Since ε is arbitrary, one obtains ∥T (t)∥ ≥ ∥H(t)∥ ∥G(t)∥. This, together with the evident

opposite inequality, yields (3.1).

Corollary 3.1. Let ω, ω0, ω1 be the type of T ( · ),H( · ), G( · ), respectively. Then

ω = ω0 + ω1.

Proposition 3.1. If H( · ) is pre-weakly Y−integrable, G( · ) is of C0-class, then T ( · )
is σ(X,Y )-continuous on (0,∞).

Proof. For each z ∈ Z, y ∈ Y and t > 0, one has

|⟨T (t+∆t)C, fz⊗y⟩ − ⟨T (t)C, fz⊗y⟩|
= |⟨CG(t+∆t)z,H(t+∆t)′y⟩ − ⟨CG(t)z,H(t)′y⟩|
≤ |⟨CG(t+∆t)z, CG(t)z,H(t+∆t)y⟩|+ |⟨CG(t)z,H(t+∆t)′y −H(t)′y⟩|
≤ ∥C∥ ∥[G(t+∆t)−G(t)z]∥ ∥H(t+∆t)′y∥
+ |⟨CG(t)z, [H(t+∆t)′ −H(t)′]y⟩| → 0, as ∆t→ 0, (3.2)

where H(t)′ = H(t)∗|Y. By Lemma 3.1, T ( · ) is bounded on every closed subinterval [a, b]

of (0,∞). This, together with (3.2), asserts that

⟨T (t+∆t)C, f⟩ → ⟨T (t)C, f⟩ as ∆t→ 0, for all f ∈ Y .

Proposition 3.2. Y is invariant under T (t)∗, for each t > 0.

Proof. Let z ∈ Z, y ∈ Y. For every C ∈ X, one obtains successively:

⟨C, T (t)∗fz⊗y⟩ = ⟨T (t)C, fz⊗y⟩ = ⟨CG(t)z,H(t)′y⟩ = ⟨C, fG(t)z⊗H(t)′y⟩.

Thus T (t)∗fz⊗y = fG(t)z⊗H(t)′y ∈ Y and hence Y is invariant under T (t)∗.

Propositions 3.1, 3.2 assert that T ( · ) satisfies conditions (W1), (W2), respectively. In

the sequel, we shall denote T ( · )′ = T ( · )∗|Y . The following proposition gives a sufficient

condition for T ( · ) to satisfy condition (W3).

Proposition 3.3. Suppose that G( · ) is a C0-semigroup, H( · ) satisfies properties (W1),

(W2), (W4)′ and

∥H(t)∥ ≤ ψ(t), a.e. t ∈ (0,∞), (3.3)

where ψ( · ) is a non-negative L-integrable function on [0,∞). Then T ( · ) satisfies (W3).

Remark 3.1. Condition (3.3) implies (W3) by [11, Proposition 3.5], therefore H( · ) is
a pre-weakly Y -integrable semigroup.

Proof of Proposition 3.3. The inequality

∥T (t)∥ = ∥H(t)∥ ∥G(t)∥ ≤Mψ(t),

where M > 0 is a constant, and [11, Proposition 3.5] imply that T ( · ) satisfies (W3).

Proposition 3.4. With the condition of Proposition 3.3, T ( · ) has the following property:∩
{N(T (η)) : η > 0} = {0}. (3.4)

Proof. Let C ∈ X be such that T (η)C = 0 for all η > 0. Then, for each z ∈ Z, y ∈ Y

and all η > 0, we have

⟨CG(η)z,H(η)′y⟩ = ⟨T (η)C, fz⊗y⟩ = 0. (3.5)



No.2 Wang, S. W. & I. Erdelyi TENSOR PRODUCTS OF SEMIGROUPS 275

Let u ∈ ∪{CR(G(η)) : η > 0} and v ∈ ∪{R(H(η)′) : η > 0}. There exist η1, η2 > 0 such that

u ∈ CR(G(η1)), v ∈ R(H(η2)
′). Set η = min{η1, η2}. Then, clearly u ∈ CR(G(η)), v ∈

R(H(η)′). Choose z and y such that u = CG(η)z and v = H(η)′y. By (3.5), ⟨u, v⟩ = 0 and

hence

∪{CR(G(η)) : η > 0}⊥ ∪ {R(H(η)′) : η > 0}.

(W4)′ applied to H( · ) gives

∩{N(H(η)) : η > 0} = {0}

and hence ∪{R(H(η)′) : η > 0} is σ(Y,X)-dense in Y. Consequently,

∪{CR(G(η)) : η > 0} = {0},

or equivalently,

C(∪{R(G(η)) : η > 0}) = {0}.

Since ∪{R(G(η)) : η > 0} is norm-dense in Z, one has C = 0, and hence (3.4) holds.

Corollary 3.2. The resolvent RT (λ) of T ( · ) is injective on X.

Proof. The statement of the corollary follows from [11, Proposition 4.2] and (3.4).

So far we do not know whether RT (λ) has a σ(X,Y )-dense range in X. We can prove

the following weaker result. Let Y 0 be the linear span of fz⊗y, with z ∈ Z, y ∈ Y.

Proposition 3.5. Assume that G( · ) is a C0-semigroup, H( · ) satisfies (W1),(W2),

(W4), and (3.3). Then

X0 := ∪{R(T (η)) : η > 0} (3.6)

is σ(X,Y )-dense in X.

Proof. To prove that X0 is σ(X,Y )-dense in X, it suffices to show that

∩{N(T (η)′|Y 0) : η > 0} = {0}.

Now assume that T (η)′fz⊗y = 0 for all η > 0, and for some z ∈ Z, y ∈ Y . For C ∈ X, we

have

0 = ⟨C, T (η)′fz⊗y⟩ = ⟨T (η)C, fz⊗y⟩
= ⟨H(η)CG(η)z, y⟩ = ⟨CG(η)z,H(η)′y⟩
= ⟨C, fG(η)z⊗H(η)′y⟩. (3.7)

Thus, fG(η)z⊗H(η)′y = 0, or equivalently,

G(η)z ⊗H(η)′y = 0, for all η > 0. (3.8)

There are only two possible cases implied by (3.8):

(a) G(η)z = 0 for all η > 0. In this case z = 0, because z = s− lim
η→0+

G(η)z.

(b) G(η0) ̸= 0 for some η0 > 0. In this case G(η)z ̸= 0 for 0 ≤ η ≤ η0, hence H(η)′y = 0

for 0 < η ≤ η0. H( · )′ being a weakly X-integrable semigroup on Y by [12, Theorem 2.1],

one has y = 0. Thus either of cases (a) and (b) implies fz⊗y = 0.

Next, assume that for some f = fwn , where wn =
n∑

j=1

zj ⊗ yj , one has

T (η)′f = T (η)′fwn = 0.
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A calculation similar to that of (3.7) produces the following analogue of (3.8):
n∑

j=1

G(η)zj ⊗H(η)′yj = 0 for all η > 0. (3.9)

We may assume that one of {zj}nj=1, {yj}nj=1, say the latter, is linearly independent. We

shall assert that the system {H(η)′yj}nj=1 is linearly independent for a sufficiently small

η > 0. Assuming the contrary, there exists, at least, one decreasing sequence {ηm} that

converges to zero such that {H(ηm)′yj}nj=1 is linearly dependent. Hence, for each m, there

exists a system of numbers {b(m)
j }nj=1 satisfying the relations

H(ηm)′
( n∑
j=1

b
(m)
j yj

)
=

m∑
j=1

b
(m)
j H(ηm)′yj = 0, for all m;

n∑
j=1

|b(m)
j | = 1. (3.10)

Clearly, we may assume that, for each j, b
(m)
j → bj , as m→ ∞. Then (3.10) implies

n∑
j=1

|bj | = 1. (3.11)

Let m0 be fixed. Then, for m > m0,

H(ηm0)
′
[ n∑
j=1

b
(m)
j yj

]
= H(ηm0 − ηm)′

[ m∑
j=1

b
(m)
j H(ηm)′yj

]
= 0.

Letting m→ ∞, one obtains

H(ηm0)
′
[ n∑
j=1

bjyj

]
= 0

for each m0. Hence
n∑

j=1

bjyj ∈ ∩{N(H(η)′) : η > 0},

and
n∑

j=1

bjyj = 0.

The latter implies that bj = 0 (j = 1, 2, · · · , n), contradicting (3.11). Therefore, the system

{H(η)′yj}nj=1 is linearly independent for sufficiently small η > 0. It follows from (3.9) that

G(η)zj = 0 for each j = 1, 2, · · · , n and sufficiently small η > 0. Thus zj ∈ ∩{N(G(η)) : η >

0} and hence zj = 0 for j = 1, 2, · · · , n. One has f = fwn = 0.

Y 0 being a linear span of all fz⊗y with z ∈ Z, y ∈ Y, the previous argument asserts that

∩{N(T (η)′|Y 0) : η > 0} = {0}.

Thus ∪{R(T (η)) : η > 0} is σ(X,Y 0)-dense in X.

§4. The Solution of ∆C=Q

Throughout this section we shall assume that H( · ) satisfies conditions (W1), (W2),
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(W4) and (3.3), G( · ) is a C0-semigroup, A and −B are the generators of H( · ) and G( · ),
respectively. It has been shown that A is σ(X,Y )-closed and densely defined, the dual A′ on

Y is σ(X,Y )-closed and densely defined, A is the dual of A′ in X [12]. For the C0-semigroup

G( · ), B is norm-closed and densely defined.

Lemma 4.1. ∆ is σ(X,Y )-closed, where ∆ is defined in §1.

Proof. Assume that {Cα} ⊂ D(∆) converges to C and {∆Cα} converges to C in the

σ(X,Y )-topology. For each z ∈ D(B), y ∈ D(A′), we have

⟨A,Cαz, y⟩ − ⟨CαBz, y⟩ = ⟨∆Cαz, y⟩,

or equivalently

⟨Cα, fz⊗A′y⟩ − ⟨Cα, fBz⊗y⟩ = ⟨∆Cα, fz⊗y⟩. (4.1)

Going to the limit in (4.1), one obtains

⟨C, fz⊗A′y⟩ − ⟨C, fBz⊗y⟩ = ⟨C, fz⊗y⟩,

that is,

⟨Cz,A′y⟩ − ⟨CBz, y⟩ = ⟨Cz, y⟩. (4.2)

Since ⟨CBz, y⟩, ⟨Cz, y⟩ are σ(X,Y )-continuous linear functionals on D(A′), so is ⟨Cz,A′y⟩.
Consequently, Cz ∈ D(A) and ⟨ACz, y⟩ = ⟨Cz,A′y⟩. (4.2) implies

(AC − CB)z = Cz for all z ∈ D(B).

Thus C ∈ D(∆), ∆C = C and hence ∆ is σ(X,Y )-closed.

Under the conditions set in this section on H( · ) and GF ( · ), Propositions 3.2-3.5 assert

that T ( · ) is a pre-weakly Y -integrable semigroup on X. Furthermore, the generator ∆1 of

T ( · ) is defined by (see §2.):

D(∆1) = R(RT (λ)); (λ−∆1)
−1 = RT (λ), for all λ with Reλ > ω.

Furthermore, if Reλ > ω, we have

⟨RT (λ)Cz, y⟩ = ⟨ RT (λ)C, fz⊗y⟩

=

∫ ∞

0

e−λt⟨T (t)C, fz⊗y⟩dt

=

∫ ∞

0

e−λt⟨T (t)Cz, y⟩dy (4.3)

for all C ∈ X, z ∈ Z, y ∈ Y.

Theorem 4.1. ∆ = ∆1, that is, ∆ is the generator of T ( · ).
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Proof. Let z ∈ D(B), y ∈ D(A′). Then for each C ∈ D(∆), (4.3) implies

⟨RT (λ)∆Cz, y⟩

=

∫ ∞

0

e−λt⟨[T (t)∆C, y]⟩dt =
∫ ∞

0

e−λt⟨[T (t)(AC − CB)]z, y⟩dt

=

∫ ∞

0

e−λt⟨H(t)(AC − CB)G(t)z, y⟩dt

=

∫ ∞

0

e−λt⟨AH(t)CG(t)z, y⟩dt−
∫ ∞

0

e−λt⟨H(t)CG(t)Bz, y⟩dt

=

∫ ∞

0

e−λt⟨CG(t)z,H(t)′A′y⟩dt−
∫ ∞

0

e−λt⟨CG(t)Bz,H(t)′y⟩dt

=

∫ ∞

0

e−λt d

dt
⟨CG(t)z,H(t)′y⟩dt =

∫ ∞

0

e−λt d

dt
⟨H(t)CG(t)z, y⟩dt

= ⟨λRT (λ)Cz, y⟩ − ⟨Cz, y⟩, for all λ with Reλ > ω. (4.4)

In the equalities of (4.4), we used integration by parts and relations

d

dt
G(t)z = −G(t)Bz for all z ∈ D(B),

d

dt
H(t)′y = H(t)′A′y for all y ∈ D(A′). (4.5)

The first equality of (4.5) is an easy consequence of C0-semigroups and the second one has

been verified in [12]. Since D(A′) is σ(Y,X)-dense in Y and D(B) is norm dense in X, one

obtains

RT (λ)∆C = λRT (λ)C − C. (4.6)

Hence C ∈ R(RT (λ)) = D(∆1), and ∆ ⊂ ∆1. To claim the opposite inclusion, we still

assume z ∈ D(B), y ∈ D(A′). Then, for each C ∈ X, by a similar argument of (4.4), one

obtains

⟨[RT (λ)C]z,A
′y⟩ = ⟨λ[RT (λ)C]z, y⟩ − ⟨Cz, y⟩+ ⟨[RT (λ)C]Bz, y⟩. (4.7)

Thus ⟨[RT (λ)C]z,A
′y⟩ is a σ(Y,X)-continuous linear functional on D(A′) because so is the

right-hand side of (4.7). Therefore, [RT (λ)C]z ∈ D(A) and

⟨A[RT (λ)C]z, y⟩ − ⟨[RT (λ)C]Bz, y⟩ = ⟨λ[RT (λ)C]z, y⟩ − ⟨Cz, y⟩.

Thus

A[RT (λ)C]− [RT (λ)C]B = λRT (λ)C − C, RT (λ)C ∈ D(∆)

and hence D(∆1) ⊂ D(∆). This, together with the inclusion ∆ ⊂ ∆1 yields ∆ = ∆1.

The following theorem is a direct consequence of Theorem 2.2.

Theorem 4.2. Suppose that

lim
λ→0

∥λRT (λ)∥ <∞.

Then, the following statements are equivalent:

(i) Q ∈ ∆(D(∆) ∩RT (λ)), where RT (λ) is the uniform closure of RT (λ);

(ii) lim
λ→0

RT (λ)Q exists in the uniform operator topology;
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(iii) there exists a sequence {λn} converging to zero, as n→ ∞, such that lim
n→∞

RT (λn)Q

exists in the uniform operator topology;

(iv) there exists a sequence {λn} converging to zero, as n→ ∞, such that lim
n→∞

RT (λn)Q

exists in the weak topology of X.

If one of (i)-(iv) holds, then C = lim
n→∞

[−RT (λn)Q] is the unique solution of (1.1) in

R(∆).

Application of the results presented here will be the subject of a forthcoming paper.
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