TENSOR PRODUCT OF SEMIGROUPS AND THE EQUATION $AC-CB=Q^{***}$

WANG SHENGWANG* I. ERDELYI**

Abstract

Properties for tensor products of semigroups are considered and the solutions of the equation AC - CB = Q are discussed. Results obtained in this paper considerably generalize those obtained in [9].

Keywords Tensor product, Semigroup of operator, Complex Banach space. **1991 MR Subject Classification** 47H20.

§1. Introduction

Let X, Z be complex Banach spaces and let $\underline{X} = B(Z, X)$ be the space of all bounded linear operators from Z into X. $\{H(t) : t > 0\}$, $\{G(t) : t > 0\}$ are semigroups of operators on X, Z, respectively. The family $\{T(t) : t > 0\}$ of operators on \underline{X} , defined by T(t)C =H(t)CG(t), with $C \in X$, is a semigroup of operators on \underline{X} and will be referred to as the tensor product of $H(\cdot)$ and $G(\cdot)$.

For a linear operator E, R(E), N(E) and D(E) denote the range, the null space and the domain of E.

Assume that the generators A and -B of $H(\cdot)$ and $G(\cdot)$ exist, respectively, in a sense that will be made clear in §4. Our objective in this paper is to study the existence and uniqueness of the operator equation

$$AC - CB = Q, \tag{1.1}$$

with Q in \underline{X} . By a solution of equation (1.1), we mean an element $C \in \underline{X}$, satisfying the following conditions:

$$CD(B) \subset D(A), \quad ACz - CBz = Qz \text{ for all } z \in D(B).$$

Let Δ be the operator defined in \underline{X} whose domain $D(\Delta)$ consists of all C's in \underline{X} , such that $CD(B) \subset D(A), AC - CB$ is bounded on B(D), and which sends each C to the (unique) closure of AC - CB. Here, we assume that D(B) is norm-dense in Z. Then, an equivalent formulation of (1.1) is to find $C \in X$ such that $\Delta C = Q$.

Manuscript received June 2, 1992.

^{*}Department of Mathematics, Nanjing University, Nanjing 210008, China.

^{**}Deparatment of Mathematics, Temple University, U.S.A.

^{***}Project supported by the National Natural Science Foundation of China

M. Rosenblum^[7] and J. A. Goldstein^[2] considered equation (1.1) for the case in which A and B were selfadjoint operators in a separable Hilbert space X = Z = H. J. M. Freeman^[1] studied the case in which A and B were generators of C_0 -semigroups on a reflexive Banach space X = Z. S. Y. Shaw et al.^[9] examined a more general case and obtained a new criterion for the solvability of (1.1), with A and B still generators of C_0 -semigroups. For other papers on this subject, see the bibliographies in [1,2,7,9].

Our starting point is a more general one than the above mentioned [1,2,7,9] and we shall give a criterion for the solvability of (1.1) based on the characterization of Abel-ergodic properties established in [10]. Our result, compared to [1,2,7], is new and it is an essential generalization of [9].

Since we shall identify Δ to the generator of the tensor product $T(\cdot)$ of $H(\cdot)$ and $G(\cdot)$, under certain addition conditions, it will be convenient to consider first the general operator equation

$$Ax = q, \tag{1.2}$$

where A is the generator of a semigroup.

§2. The Operator Equation Ax=q

For the complex Banach space X, assume that Y is a norm-closed subspace of X^* , the dual of X, so that X and Y are reciprocal, that is,

$$||x|| = \sup\{|\langle x, y \rangle| / ||y|| : y \in Y, \ y \neq 0\},\$$

for all $x \in X$. Let $T(\cdot)$ be a semigroup of operators on X, satisfying the following conditions (see [9]):

(W1) Y is invariant under $T(t)^*$, for each t > 0;

(W2) $T(\cdot)x$ is $\sigma(X, Y)$ -continuous on $(0, \infty)$, for each $x \in X$;

- (W3) (a) for each $x \in X$ and $y \in Y$, $\langle T(t)x, Y \rangle$ as a function of t is L-integrable on [0, 1];
- (b) $\int_0^1 \langle T(t)x, y \rangle dt$ is $\sigma(Y, X)$ -continuous with respect to $y \in Y$, for each fixed $x \in X$;

(W4) $X_0 = \bigcup \{\underline{R}(T(\eta)) : \eta > 0\}$ is $\sigma(X, Y)$ -dense in X and $\cap \{N(T(\eta)) : \eta > 0\} = \{0\}.$

Such a $T(\cdot)$ is referred to as a weakly Y-integrable semigroup. As mentioned in [10], the semigroups of translations on spaces of Hölder-continuous functions are not strongly continuous. Actually they are weakly Y-integrable for some suitably chosen Y. Also, it was reported in [11] that the tensor product of two strongly continuous semigroups (even of C_0 class) may no longer be strongly continuous. A simple example of a strongly discontinuous semigroup is $T(\cdot)$ defined on $L^{\infty}(-\infty, \infty)$ by

$$[T(t)x](s) = x(s+t), \quad x \in L^{\infty}(-\infty, \infty).$$

A simple calculation shows that $T(\cdot)$ is weakly Y-integrable, with $Y = L(-\infty, \infty)$.

If $T(\cdot)$ satisfies (W1), (W2), (W3) and the following

 $(W4)' \cap \{N(T(\eta)) : \eta > 0\} = \{0\},\$

then $T(\cdot)$ is referred to as a pre-weakly Y-integrable semigroup.

If $T(\cdot)$ only satisfies (W1), (W2), and (W3), then $T(\cdot)$ is referred to as a quasi-weakly Y-integrable semigroup. In [10], we studied the Abel-ergodic properties for a quasi-weakly Y-integrable semigroup, which will be used in this paper (see Theorem 2.1).

Now assume that $T(\cdot)$ is pre-weakly Y-integrable. It is easily seen that Theorem 3.5 and Proposition 4.2 of [11] are applicable to $T(\cdot)$, under consideration. Hence the resolvent $R(\lambda)$ of $T(\cdot)$ exists for λ with $\text{Re}\lambda > \omega_0$, where ω_0 is the type of $T(\cdot)$. Further, following [10], we may define the Laplace transform $R_Y(\cdot)$ of $T(\cdot)$ in a weaker sense. Let $R_Y(\lambda, t)$ be the operator defined by the equality

$$\langle R_Y(\lambda,t)x,y\rangle = \int_0^t e^{-\lambda u} \langle T(u)x,y\rangle du.$$

It follows from [10] that $R_Y(\lambda, t)$ is a bounded linear operator on X, for each t > 0 and $\lambda \in \mathbb{C}$. Consider those λ 's for which $\lim_{t\to\infty} \langle R_Y(\lambda, t)x, y \rangle$ exists for all $x \in X$ and $y \in Y$, and it defines a bounded linear operator $R_Y(\lambda) \in B(X)$ such that

$$\langle R_Y(\lambda)x,y\rangle = \lim_{t \to \infty} \langle R_Y(\lambda,t)x,y\rangle = \lim_{t \to \infty} \int_0^t e^{-\lambda u} \langle T(u)x,y\rangle du.$$

It has been proved in [10, Proposition 7] that if for a complex number $\lambda_0, R_Y(\lambda_0)$ is a bounded linear operator on X, then so is $R_Y(\lambda)$ for all λ with $\text{Re}\lambda > \text{Re}\lambda_0$. This enables us to define the number

$$\sigma_a := \inf\{u \in (-\infty, \infty) : R_Y(\lambda) \text{ is analytic for } \lambda \text{ with } \operatorname{Re} \lambda > u\}.$$
(2.1)

The following example^[3,8] shows that the following strict inequality may occur:

$$-\infty = \sigma_a < 0 < \omega_0. \tag{2.2}$$

Example 2.1. Let $1 \le p \le q < \infty$, and let X be the set of all L-measurable functions on $(0, \infty)$ such that

$$||f|| := \left(\int_0^\infty e^{ps^2} |f(s)|^p ds\right)^{1/p} + \left(\int_0^\infty |f(s)|^q ds\right)^{1/q} < \infty \text{ for } f \in X.$$

Then $(X, \|\cdot\|)$ is a Banach lattice. For $\alpha \ge 0$, let $T_{\alpha}(\cdot)$ be the semigroup defined by

$$(T_{\alpha}(t)f)(s) = e^{\alpha t}f(t+s), \quad f \in X; \ s,t \ge 0.$$

Then $T_a(t) = e^{\alpha t} T_0(t)$. It was shown in [3] that $||T_0(t)|| = 1$ for all $t \ge 0$ and for $T_0(\cdot)$, $\sigma_a = -\infty$. Further, the type of $T_\alpha(\cdot)$ is clearly equal to α . If $\alpha > 0$, then (2.2) holds for $T_\alpha(\cdot)$.

We return to discuss the pre-weakly Y-integrable semigroup $T(\cdot)$. From the definition, it is easily seen that $R_Y(\lambda) = R(\lambda)$ for λ with $\text{Re}\lambda > \omega_0$. To simplify notation, we shall denote $R_Y(\lambda)$ by $R(\lambda)$, for all λ with $\text{Re}\lambda > \sigma_a$. The generator of $T(\cdot)$ is denoted to be the following operator A:

$$\begin{cases} D(A) = \underline{R}(R(\lambda)), \\ (\lambda - A)^{-1} = R(\lambda), \quad \lambda \in \mathbf{C}, \ \mathrm{Re}\lambda > \sigma_a. \end{cases}$$
(2.3)

Clearly, A is closed and hence N(A) is closed.

The following theorem is a special case of [10, Corollary 3], that will serve our purpose.

Theorem 2.1. Let $R(\cdot)$ be the resolvent of the pre-weakly Y-integrable semigroup $T(\cdot)$. If $\sigma_a \leq 0$ and

$$\overline{\lim} \|\lambda R(\lambda)\| < \infty, \tag{2.4}$$

then the operator P_S defined by $P_S x := s - \lim_{\lambda \to 0} \lambda R(\lambda) x$, provided that the limit exists, has the following properties:

(i) P_S is a bounded projection with its domain $D(P_S)$ closed;

(ii) $N(P_S) = \overline{\underline{R}(R(1) - I)} = \overline{\underline{R}(A)}, \quad \underline{R}(P_S) = \overline{N(R(1) - I)} = N(A) \text{ and hence}$

$$D(P_S) = \overline{\underline{R}(A)} \oplus N(A). \tag{2.5}$$

In terms of Theorem 2.1, one can prove the following

Theorem 2.2. Let $T(\cdot)$ be a pre-weakly Y-integrable semigroup with generator A. If condition (2.4) holds, then the following statements are equivalent:

(i) $q \in A[D(A) \cap \underline{R}(A)];$

(ii) $x = s - \lim_{\lambda \to 0} [-R(\lambda)q]$ exists in X;

(iii) there exists a sequence $\{\lambda_n\}$ converging to zero such that $x = s - \lim_{n \to \infty} [-R(\lambda_n)q]$ exists in X;

(iv) there exists a sequence $\{\lambda_n\}$ converging to zero such that $x = w - \lim_{n \to \infty} [-R(\lambda_n)q]$ exists in X.

If any of conditions (i)–(iv) holds, then x is the unique solution of equation (1.2) in $\overline{\underline{R}(A)}$. **Proof.** (i) \Rightarrow (ii): Assuming that $q \in A(D(A) \cap \overline{\underline{R}(A)})$, we see that there exists $x \in D(A) \cap \overline{\underline{R}(A)}$ such that Ax = q and hence

$$-R(\lambda)q = -R(\lambda)Ax = x - \lambda R(\lambda)x, \text{ or } x = -R(\lambda)q + \lambda R(\lambda)x$$

Since $x \in \overline{\underline{R}(A)} = N(P_S)$, one has

$$x = s - \lim_{\lambda \to 0} [-R(\lambda)q + \lambda R(\lambda)x] = s - \lim_{\lambda \to 0} [-R(\lambda)q].$$

Implications (ii) \Rightarrow (iii) and (iii) \Rightarrow (iv) are clear.

(iv) \Rightarrow (i): The existence of $x = w - \lim_{n \to \infty} [-R(\lambda_n)q]$ implies

$$s - \lim_{n \to \infty} [\lambda_n R(\lambda_n) q] = 0.$$

Thus, it follows that

$$A[-R(\lambda_n)q] = q - \lambda_n R(\lambda_n)q \to q$$

in the norm topology. Since A is closed in the norm (and hence in the weak) topology, $x \in D(A)$ and Ax = q. Thus x is a solution of (1.2).

The equalities

$$x = w - \lim_{n \to \infty} \left[-R(\lambda_n)q \right] = w - \lim_{n \to \infty} \left[-R(\lambda_n)Ax \right] = w - \lim_{n \to \infty} \left[x - \lambda_n R(\lambda_n)x \right]$$

imply that $x \in \overline{\underline{R}(R(1) - I)} = \overline{\underline{R}(A)}$. Therefore $q \in A[D(A) \cap \overline{\underline{R}(A)}]$ and hene (i) is proved.

Finally, assume that one of conditions (i)–(iv) holds. Since $N(A) \cap \overline{\underline{R}(A)} = \{0\}$ by (2.5), x is evidently the unique solution of (1.2) in $\overline{\underline{R}(A)}$.

It has been proved in [10] that the strong and weak Abel-ergodicity for pseudo-resolvents (hence for pre-weakly Y-integrable semigroups) are equivalent, and when this property holds, one has

$$X = \underline{R}(A) \oplus N(A) = N(P_S) \oplus \underline{R}(P_S).$$

Thus

$$\underline{R}(A) = A(D(A)) = A[D(A) \cap (\underline{R}(A) \oplus N(A))] = A(D(A) \cap \underline{R}(A)).$$

A straightforward consequence is the following

Corollary 2.1. Assume that $T(\cdot)$ is strongly (hence weakly) Abel-ergodic. The following statements are equivalent:

- (i)' $q \in \underline{R}(A);$
- (ii) $x = s \lim_{\lambda \to 0} [-R(\lambda)q];$
- (iii) there exists a sequence $\{\lambda_n\} \to 0$, as $n \to \infty$, such that

$$x = s - \lim_{n \to \infty} [-R(\lambda_n)q]$$

exists in X;

(iv) there exists a sequence $\{\lambda_n\} \to 0$, as $n \to \infty$, such that

$$x = w - \lim_{n \to \infty} \left[-R(\lambda_n)q \right]$$

exists in X.

Proof. Implications (i)' \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) are clear. We claim that (iv) \Rightarrow (i)' also holds. Indeed, it follows from $A[-R(\lambda_n)q] = q - \lambda_n R(\lambda_n)q$ that one has Ax = q and hence $q \in \underline{R}(A)$.

We can compare the above Theorem 2.2 to [8, Theorem 2.3]. For this we need the following

Proposition 2.1. If the pre-weakly Y-integrable semigroup $T(\cdot)$ satisfies condition

$$\overline{\lim_{t \to \infty}} t^{-1} \| S(t) \| < \infty, \tag{2.6}$$

then $\sigma_a \leq 0$ and (2.4) holds, where $S(T) \in B(X)$ is defined by

$$\langle S(t)x,y\rangle = \int_0^t \langle T(\tau)x,y\rangle d\tau.$$

If, in addition to (2.6), we assume that the following limit exists

$$x = s - \lim_{t \to \infty} [t^{-1} F(t)q],$$
(2.7)

then q satisfies (i) of Theorem 2.2. In (2.7), $F(t) \in B(X)$ is defined by

$$\langle F(t)x,y\rangle = \int_0^t \langle S(\tau)x,y\rangle d\tau.$$

Remark 2.1. The existence and the properties of $S(\cdot)$ have been studied in [12], those for $F(\cdot)$ can be deduced from $S(\cdot)$.

Proof of Proposition 2.1. By condition (2.6), there exists a number M > 0 so that

$$\begin{split} \int_{t_0}^t e^{\lambda u} \langle T(u)x, y \rangle du \Big| &\leq \left| [e^{-\lambda u} \langle S(u)x, y \rangle]_{t_0}^t + |\lambda| \int_{t_0}^t e^{-\lambda u} \langle S(u)x, y \rangle du \right| \\ &\leq \left[te^{(-\operatorname{Re}\lambda)t} + t_0 e^{(-\operatorname{Re}\lambda)t_0} + |\lambda| \int_{t_0}^t e^{(-\operatorname{Re}\lambda)u} u du \right] M \|x\| \|y\|. \end{split}$$

Hence, for any given $\varepsilon > 0$, the inequality

$$\left|\int_{t_0}^t e^{-\lambda u} \langle T(u)x, y \rangle du\right| \le \varepsilon \|x\| \, \|y\| \tag{2.8}$$

holds uniformly for λ in every compact subset of the half plane $\{\lambda : \operatorname{Re} \lambda > 0\}$, whenever $t \geq t_0 \geq 1$ are sufficiently large. Consequently, $R_Y(\lambda) = \lim_{t \to \infty} R_Y(\lambda, t)$ exists uniformly for λ in every compact subset of the upper half plane. $R_Y(\lambda, t)$ is analytic in λ on $\{\lambda : \operatorname{Re} \lambda > 0\}$ and so is $R_Y(\lambda)$. Hence $\sigma_a \leq 0$. Letting $t_0 = 0$ and $t = \infty$ in (2.8) one gets for $\lambda > 0$,

$$|\langle \lambda R(\lambda)x, y \rangle| \le \left(\lambda^2 \int_0^\infty e^{-\lambda u} u du\right) M ||x|| ||y|| = M ||x|| ||y||$$

and hence (2.4) holds.

Finally, we assume the additional condition (2.7). From [11, Theorem 3.5] and by integration by parts, one has

$$\begin{split} |\langle R(\lambda)q + x, y\rangle| &= \lambda^2 \Big| \int_0^t e^{-\lambda t} t \langle t^{-1} F(t)q + x, y\rangle dt \Big| \\ &\leq \lambda^2 \Big(\int_N^\infty e^{-\lambda t} t dt \Big) \sup_{t \ge N} \|t^{-1} F(t)q + x\| \|y\| \\ &+ \lambda^2 \int_0^N e^{-\lambda t} t dt \sup_{0 \le t \le N} \|F(t)q\| \|y\| + \lambda^2 \int_0^N e^{-\lambda t} dt \|x\| \|y\|. \end{split}$$

In view of (2.7) and the boundedness of $F(\cdot)$ on every closed interval $[a, b] \subset [0, \infty)$, it is easy to see that $\lim_{\lambda \to 0} ||R(\lambda)q + x|| = 0$. Thus q satisfies Theorem 2.2 (ii) and hence (i).

Remark 2.2. A result similar to Theorem 2.2 was obtained in [9, Theorem 2.3]. In the latter there were assumed (2.7),

$$|T(t)x|| = o(t)$$
 as $t \to \infty$, for each $x \in D(A)$ (2.9)

and conditions on $T(\cdot)$, much stronger than (W1), (W2) and (W3) (see [8] for details). Proposition 2.1 and the following example show that Theorem 2.2 is an essential extension of [9, Theorem 2.3].

Example 2.2. Let $X = L_2(0, 1)$ and define

$$(J^{\zeta}x)(t) = \frac{1}{\Gamma(\zeta)} \int_0^t (t-u)^{\zeta-1} f(u) du.$$

In [4, pp. 664-665], the following were proved:

(i) the type ω_0 of $\{J^{\xi} : \xi = \operatorname{Re}\zeta > 0\}$ satisfies

$$\omega_0 = \lim_{\xi \to \infty} \xi^{-1} \log \|J^{\xi}\|_2 = -\infty$$

and hence the spectrum of the infinitesimal generator A of J^{ξ} is empty;

(ii) $\{J^{i\eta} : \eta = \text{Im}\zeta \in (-\infty, \infty)\}$ is a strongly continuous group of operators on $L^2(0, 1)$ with infinitesimal generator iA, so $\sigma(iA) = \emptyset$.

In view of [4, Theorem 23.16.1], it is easily seen that the function x, with x(t) = 1 on [0,1] is in D(A). By a few computations, one obtains

$$\|J^{i\eta}x\|_2 \ge |\langle J^{i\eta}x,x\rangle| = \frac{1}{|\Gamma(i\eta+2)|}$$

It follows from [6, p.550] that

$$\log \frac{1}{|\Gamma(i\eta+2)|} = 1 - \frac{3}{4}\log(4+\eta^2) + \eta \arg(i\eta+2) + C(i\eta+2),$$
(2.10)

where $C(i\eta + 2)$ is such that $|C(i\eta + 2)| \leq \frac{\pi}{8}$. Relation (2.10) implies that

$$\lim_{\eta \to \infty} \left| \frac{1}{\Gamma(i\eta + 2)} \right| = \infty.$$

Therefore, $J^{i\eta}$ does not satisfy (2.9) and hence [9, Theorem 2.3] does not apply to $J^{i\eta}$.

On the other hand, $\sigma(iA) = \emptyset$ shows that $\lim_{\lambda \to 0} ||\lambda R(\lambda, iA)|| = 0$. Consequently $J^{i\eta}$ satisfies (2.4) and hence our Theorem 2.2 is applicable.

§3. Tensor Products of Semigroups

Let $H(\cdot), G(\cdot)$ be the semigroups given in §1. In order to reach the target of this paper, some additional conditions on $H(\cdot), G(\cdot)$ will be needed. Assume that $H(\cdot)$ is a pre-weakly Y-integrable semigroup, $G(\cdot)$ is a C_0 -semigroup. The tensor product $T(\cdot)$ of $H(\cdot)$ and $G(\cdot)$ (see §1) is defined to be the family $\{T(t) : t > 0\}$ of operators on X satisfying

$$T(t)C = H(t)CG(t), \quad t > 0, \quad C \in X.$$

For each $z \in Z$, $y \in Y$, let $f_{z \otimes y}$ be the linear functional on X, defined by $\langle C, f_{z \otimes y} \rangle = \langle Cz, y \rangle$. Then $f_{z \otimes y}$ is bounded and $||f_{z \otimes y}|| = ||z|| ||y||$ (see [9]). Let $\underline{Y} \subset \underline{X}^*$ be the normclosed linear span of all $f_{z \otimes y}$, with $z \in Z, y \in Y$. It has also been shown in [9] that \underline{X} and \underline{Y} are reciprocal.

Lemma 3.1. The tensor product has the following property

$$||T(t)|| = ||H(t)|| ||G(t)||, \quad t > 0.$$
(3.1)

Proof. Let $\varepsilon > 0$ and let t > 0 be fixed. Choose $x_0 \in X$ with $||x_0|| = 1$ and $z_0 \in Z$ with $||z_0|| = 1$ such that

$$||H(t)x_0|| \ge ||H(t)|| - \varepsilon, \quad ||G(t)x_0|| \ge ||G(t)|| - \varepsilon.$$

Let $z_0^* \in Z$ satisfy conditions $\langle G(t)z_0/||G(t)z_0||, z_0^*\rangle = 1$ and $||z_0^*|| = 1$. Define $C \in \underline{X}$ by

$$Cz = \langle z, z_0^* \rangle x_0$$
, for all $z \in Z$

Then ||C|| = 1 and

$$||T(t)|| \ge ||[T(t)C]z_0|| = ||H(t)CG(t)z_0||$$

= ||H(t)x_0|| ||G(t)||z_0|| \ge (||H(t)|| - \varepsilon)(||G(t)|| - \varepsilon)

Since ε is arbitrary, one obtains $||T(t)|| \ge ||H(t)|| ||G(t)||$. This, together with the evident opposite inequality, yields (3.1).

Corollary 3.1. Let $\omega, \omega_0, \omega_1$ be the type of $T(\cdot), H(\cdot), G(\cdot)$, respectively. Then $\omega = \omega_0 + \omega_1$.

Proposition 3.1. If $H(\cdot)$ is pre-weakly Y-integrable, $G(\cdot)$ is of C_0 -class, then $T(\cdot)$ is $\sigma(\underline{X}, \underline{Y})$ -continuous on $(0, \infty)$.

Proof. For each $z \in Z$, $y \in Y$ and t > 0, one has

$$\begin{aligned} |\langle T(t+\Delta t)C, f_{z\otimes y}\rangle - \langle T(t)C, f_{z\otimes y}\rangle| \\ &= |\langle CG(t+\Delta t)z, H(t+\Delta t)'y\rangle - \langle CG(t)z, H(t)'y\rangle| \\ &\leq |\langle CG(t+\Delta t)z, CG(t)z, H(t+\Delta t)y\rangle| + |\langle CG(t)z, H(t+\Delta t)'y - H(t)'y\rangle| \\ &\leq ||C|| ||[G(t+\Delta t) - G(t)z]|| ||H(t+\Delta t)'y|| \\ &+ |\langle CG(t)z, [H(t+\Delta t)' - H(t)']y\rangle| \to 0, \text{ as } \Delta t \to 0, \end{aligned}$$
(3.2)

where $H(t)' = H(t)^* | Y$. By Lemma 3.1, $T(\cdot)$ is bounded on every closed subinterval [a, b] of $(0, \infty)$. This, together with (3.2), asserts that

$$\langle T(t + \Delta t)C, f \rangle \to \langle T(t)C, f \rangle$$
 as $\Delta t \to 0$, for all $f \in \underline{Y}$.

Proposition 3.2. \underline{Y} is invariant under $T(t)^*$, for each t > 0. **Proof.** Let $z \in Z$, $y \in Y$. For every $C \in \underline{X}$, one obtains successively:

$$\langle C, T(t)^* f_{z \otimes y} \rangle = \langle T(t)C, f_{z \otimes y} \rangle = \langle CG(t)z, H(t)'y \rangle = \langle C, f_{G(t)z \otimes H(t)'y} \rangle.$$

Thus $T(t)^* f_{z \otimes y} = f_{G(t)z \otimes H(t)'y} \in \underline{Y}$ and hence \underline{Y} is invariant under $T(t)^*$.

Propositions 3.1, 3.2 assert that $T(\cdot)$ satisfies conditions (W1), (W2), respectively. In the sequel, we shall denote $T(\cdot)' = T(\cdot)^* | \underline{Y}$. The following proposition gives a sufficient condition for $T(\cdot)$ to satisfy condition (W3).

Proposition 3.3. Suppose that $G(\cdot)$ is a C_0 -semigroup, $H(\cdot)$ satisfies properties (W1), (W2), (W4)' and

$$||H(t)|| \le \psi(t), \text{ a.e. } t \in (0,\infty),$$
(3.3)

where $\psi(\cdot)$ is a non-negative L-integrable function on $[0,\infty)$. Then $T(\cdot)$ satisfies (W3).

Remark 3.1. Condition (3.3) implies (W3) by [11, Proposition 3.5], therefore $H(\cdot)$ is a pre-weakly Y-integrable semigroup.

Proof of Proposition 3.3. The inequality

$$|T(t)|| = ||H(t)|| ||G(t)|| \le M\psi(t),$$

where M > 0 is a constant, and [11, Proposition 3.5] imply that $T(\cdot)$ satisfies (W3).

Proposition 3.4. With the condition of Proposition 3.3, $T(\cdot)$ has the following property:

$$\bigcap \{ N(T(\eta)) : \eta > 0 \} = \{ 0 \}.$$
(3.4)

Proof. Let $C \in \underline{X}$ be such that $T(\eta)C = 0$ for all $\eta > 0$. Then, for each $z \in Z$, $y \in Y$ and all $\eta > 0$, we have

$$\langle CG(\eta)z, H(\eta)'y \rangle = \langle T(\eta)C, f_{z \otimes y} \rangle = 0.$$
(3.5)

Let $u \in \bigcup \{C\underline{R}(G(\eta)) : \eta > 0\}$ and $v \in \bigcup \{\underline{R}(H(\eta)') : \eta > 0\}$. There exist $\eta_1, \eta_2 > 0$ such that $u \in C\underline{R}(G(\eta_1)), v \in \underline{R}(H(\eta_2)')$. Set $\eta = \min\{\eta_1, \eta_2\}$. Then, clearly $u \in C\underline{R}(G(\eta)), v \in \underline{R}(H(\eta)')$. Choose z and y such that $u = CG(\eta)z$ and $v = H(\eta)'y$. By (3.5), $\langle u, v \rangle = 0$ and hence

$$\cup \{C\underline{R}(G(\eta)) : \eta > 0\} \bot \cup \{\underline{R}(H(\eta)') : \eta > 0\}.$$

(W4)' applied to $H(\cdot)$ gives

$$\cap \{ N(H(\eta)) : \eta > 0 \} = \{ 0 \}$$

and hence $\cup \{R(H(\eta)') : \eta > 0\}$ is $\sigma(Y, X)$ -dense in Y. Consequently,

$$\cup \{C\underline{R}(G(\eta)) : \eta > 0\} = \{0\}$$

or equivalently,

$$C(\cup\{\underline{R}(G(\eta)):\eta>0\})=\{0\}$$

Since $\cup \{\underline{R}(G(\eta)) : \eta > 0\}$ is norm-dense in Z, one has C = 0, and hence (3.4) holds.

Corollary 3.2. The resolvent $R_T(\lambda)$ of $T(\cdot)$ is injective on <u>X</u>.

Proof. The statement of the corollary follows from [11, Proposition 4.2] and (3.4).

So far we do not know whether $R_T(\lambda)$ has a $\sigma(\underline{X}, \underline{Y})$ -dense range in \underline{X} . We can prove the following weaker result. Let \underline{Y}_0 be the linear span of $f_{z \otimes y}$, with $z \in Z$, $y \in Y$.

Proposition 3.5. Assume that $G(\cdot)$ is a C_0 -semigroup, $H(\cdot)$ satisfies (W1),(W2), (W4), and (3.3). Then

$$\underline{X}_0 := \cup \{ \underline{R}(T(\eta)) : \eta > 0 \}$$

$$(3.6)$$

is $\sigma(\underline{X}, \underline{Y})$ -dense in \underline{X} .

Proof. To prove that \underline{X}_0 is $\sigma(\underline{X}, \underline{Y})$ -dense in \underline{X} , it suffices to show that

$$\cap \{ N(T(\eta)' | \underline{Y}_0) : \eta > 0 \} = \{ 0 \}.$$

Now assume that $T(\eta)' f_{z \otimes y} = 0$ for all $\eta > 0$, and for some $z \in Z$, $y \in Y$. For $C \in \underline{X}$, we have

$$0 = \langle C, T(\eta)' f_{z \otimes y} \rangle = \langle T(\eta) C, f_{z \otimes y} \rangle$$

= $\langle H(\eta) CG(\eta) z, y \rangle = \langle CG(\eta) z, H(\eta)' y \rangle$
= $\langle C, f_{G(\eta) z \otimes H(\eta)' y} \rangle.$ (3.7)

Thus, $f_{G(\eta)z\otimes H(\eta)'y} = 0$, or equivalently,

$$G(\eta)z \otimes H(\eta)'y = 0, \text{ for all } \eta > 0.$$
(3.8)

There are only two possible cases implied by (3.8):

(a) $G(\eta)z = 0$ for all $\eta > 0$. In this case z = 0, because $z = s - \lim_{\eta \to 0+} G(\eta)z$.

(b) $G(\eta_0) \neq 0$ for some $\eta_0 > 0$. In this case $G(\eta)z \neq 0$ for $0 \leq \eta \leq \eta_0$, hence $H(\eta)'y = 0$ for $0 < \eta \leq \eta_0$. $H(\cdot)'$ being a weakly X-integrable semigroup on Y by [12, Theorem 2.1], one has y = 0. Thus either of cases (a) and (b) implies $f_{z \otimes y} = 0$.

Next, assume that for some $f = f_{w_n}$, where $w_n = \sum_{j=1}^n z_j \otimes y_j$, one has

$$T(\eta)'f = T(\eta)'f_{w_n} = 0.$$

A calculation similar to that of (3.7) produces the following analogue of (3.8):

$$\sum_{j=1}^{n} G(\eta) z_j \otimes H(\eta)' y_j = 0 \quad \text{for all} \quad \eta > 0.$$
(3.9)

We may assume that one of $\{z_j\}_{j=1}^n$, $\{y_j\}_{j=1}^n$, say the latter, is linearly independent. We shall assert that the system $\{H(\eta)'y_j\}_{j=1}^n$ is linearly independent for a sufficiently small $\eta > 0$. Assuming the contrary, there exists, at least, one decreasing sequence $\{\eta_m\}$ that converges to zero such that $\{H(\eta_m)'y_j\}_{j=1}^n$ is linearly dependent. Hence, for each m, there exists a system of numbers $\{b_j^{(m)}\}_{j=1}^n$ satisfying the relations

$$H(\eta_m)'\left(\sum_{j=1}^n b_j^{(m)} y_j\right) = \sum_{j=1}^m b_j^{(m)} H(\eta_m)' y_j = 0, \text{ for all } m;$$
$$\sum_{j=1}^n |b_j^{(m)}| = 1.$$
(3.10)

Clearly, we may assume that, for each $j, b_j^{(m)} \to b_j$, as $m \to \infty$. Then (3.10) implies

$$\sum_{j=1}^{n} |b_j| = 1.$$
(3.11)

Let m_0 be fixed. Then, for $m > m_0$,

$$H(\eta_{m_0})' \Big[\sum_{j=1}^n b_j^{(m)} y_j \Big] = H(\eta_{m_0} - \eta_m)' \Big[\sum_{j=1}^m b_j^{(m)} H(\eta_m)' y_j \Big] = 0.$$

Letting $m \to \infty$, one obtains

$$H(\eta_{m_0})'\Big[\sum_{j=1}^n b_j y_j\Big] = 0$$

for each m_0 . Hence

$$\sum_{j=1}^n b_j y_j \in \cap \{N(H(\eta)') : \eta > 0\}$$

and

$$\sum_{j=1}^{n} b_j y_j = 0$$

The latter implies that $b_j = 0$ $(j = 1, 2, \dots, n)$, contradicting (3.11). Therefore, the system $\{H(\eta)'y_j\}_{j=1}^n$ is linearly independent for sufficiently small $\eta > 0$. It follows from (3.9) that $G(\eta)z_j = 0$ for each $j = 1, 2, \dots, n$ and sufficiently small $\eta > 0$. Thus $z_j \in \cap\{N(G(\eta)) : \eta > 0\}$ and hence $z_j = 0$ for $j = 1, 2, \dots, n$. One has $f = f_{w_n} = 0$.

 \underline{Y}_0 being a linear span of all $f_{z \otimes y}$ with $z \in Z, y \in Y$, the previous argument asserts that

$$\cap \{ N(T(\eta)' | \underline{Y}_0) : \eta > 0 \} = \{ 0 \}.$$

Thus $\cup \{\underline{R}(T(\eta)) : \eta > 0\}$ is $\sigma(\underline{X}, \underline{Y}_0)$ -dense in \underline{X} .

§4. The Solution of $\Delta C = Q$

Throughout this section we shall assume that $H(\cdot)$ satisfies conditions (W1), (W2),

(W4) and (3.3), $G(\cdot)$ is a C_0 -semigroup, A and -B are the generators of $H(\cdot)$ and $G(\cdot)$, respectively. It has been shown that A is $\sigma(X, Y)$ -closed and densely defined, the dual A' on Y is $\sigma(X, Y)$ -closed and densely defined, A is the dual of A' in $X^{[12]}$. For the C_0 -semigroup $G(\cdot)$, B is norm-closed and densely defined.

Lemma 4.1. Δ is $\sigma(\underline{X}, \underline{Y})$ -closed, where Δ is defined in §1.

Proof. Assume that $\{C_{\alpha}\} \subset D(\Delta)$ converges to C and $\{\Delta C_{\alpha}\}$ converges to \underline{C} in the $\sigma(\underline{X},\underline{Y})$ -topology. For each $z \in D(B), y \in D(A')$, we have

$$\langle A, C_{\alpha}z, y \rangle - \langle C_{\alpha}Bz, y \rangle = \langle \Delta C_{\alpha}z, y \rangle,$$

or equivalently

$$\langle C_{\alpha}, f_{z \otimes A'y} \rangle - \langle C_{\alpha}, f_{Bz \otimes y} \rangle = \langle \Delta C_{\alpha}, f_{z \otimes y} \rangle.$$
 (4.1)

Going to the limit in (4.1), one obtains

$$\langle C, f_{z \otimes A'y} \rangle - \langle C, f_{Bz \otimes y} \rangle = \langle \underline{C}, f_{z \otimes y} \rangle,$$

that is,

$$\langle Cz, A'y \rangle - \langle CBz, y \rangle = \langle \underline{C}z, y \rangle.$$
 (4.2)

Since $\langle CBz, y \rangle$, $\langle \underline{C}z, y \rangle$ are $\sigma(X, Y)$ -continuous linear functionals on D(A'), so is $\langle Cz, A'y \rangle$. Consequently, $Cz \in D(A)$ and $\langle ACz, y \rangle = \langle Cz, A'y \rangle$. (4.2) implies

$$(AC - CB)z = \underline{C}z$$
 for all $z \in D(B)$.

Thus $C \in D(\Delta)$, $\Delta C = \underline{C}$ and hence Δ is $\sigma(\underline{X}, \underline{Y})$ -closed.

Under the conditions set in this section on $H(\cdot)$ and $GF(\cdot)$, Propositions 3.2-3.5 assert that $T(\cdot)$ is a pre-weakly <u>Y</u>-integrable semigroup on <u>X</u>. Furthermore, the generator Δ_1 of $T(\cdot)$ is defined by (see §2.):

$$D(\Delta_1) = \underline{R}(R_T(\lambda)); \quad (\lambda - \Delta_1)^{-1} = R_T(\lambda), \text{ for all } \lambda \text{ with } \operatorname{Re} \lambda > \omega.$$

Furthermore, if $\operatorname{Re} \lambda > \omega$, we have

$$\langle R_T(\lambda)Cz, y \rangle = \langle R_T(\lambda)C, f_{z \otimes y} \rangle$$

$$= \int_0^\infty e^{-\lambda t} \langle T(t)C, f_{z \otimes y} \rangle dt$$

$$= \int_0^\infty e^{-\lambda t} \langle T(t)Cz, y \rangle dy$$

$$(4.3)$$

for all $C \in \underline{X}, z \in Z, y \in Y$.

Theorem 4.1. $\Delta = \Delta_1$, that is, Δ is the generator of $T(\cdot)$.

Proof. Let $z \in D(B)$, $y \in D(A')$. Then for each $C \in D(\Delta)$, (4.3) implies

$$\langle R_T(\lambda)\Delta Cz, y \rangle$$

$$= \int_0^\infty e^{-\lambda t} \langle [T(t)\Delta C, y] \rangle dt = \int_0^\infty e^{-\lambda t} \langle [T(t)(AC - CB)]z, y \rangle dt$$

$$= \int_0^\infty e^{-\lambda t} \langle H(t)(AC - CB)G(t)z, y \rangle dt$$

$$= \int_0^\infty e^{-\lambda t} \langle AH(t)CG(t)z, y \rangle dt - \int_0^\infty e^{-\lambda t} \langle H(t)CG(t)Bz, y \rangle dt$$

$$= \int_0^\infty e^{-\lambda t} \langle CG(t)z, H(t)'A'y \rangle dt - \int_0^\infty e^{-\lambda t} \langle CG(t)Bz, H(t)'y \rangle dt$$

$$= \int_0^\infty e^{-\lambda t} \frac{d}{dt} \langle CG(t)z, H(t)'y \rangle dt = \int_0^\infty e^{-\lambda t} \frac{d}{dt} \langle H(t)CG(t)z, y \rangle dt$$

$$= \langle \lambda R_T(\lambda)Cz, y \rangle - \langle Cz, y \rangle, \text{ for all } \lambda \text{ with } \operatorname{Re} \lambda > \omega. \qquad (4.4)$$

In the equalities of (4.4), we used integration by parts and relations

$$\frac{d}{dt}G(t)z = -G(t)Bz \text{ for all } z \in D(B),$$

$$\frac{d}{dt}H(t)'y = H(t)'A'y \text{ for all } y \in D(A').$$
(4.5)

The first equality of (4.5) is an easy consequence of C_0 -semigroups and the second one has been verified in [12]. Since D(A') is $\sigma(Y, X)$ -dense in Y and D(B) is norm dense in X, one obtains

$$R_T(\lambda)\Delta C = \lambda R_T(\lambda)C - C. \tag{4.6}$$

Hence $C \in \underline{R}(R_T(\lambda)) = D(\Delta_1)$, and $\Delta \subset \Delta_1$. To claim the opposite inclusion, we still assume $z \in D(B)$, $y \in D(A')$. Then, for each $C \in \underline{X}$, by a similar argument of (4.4), one obtains

$$\langle [R_T(\lambda)C]z, A'y \rangle = \langle \lambda [R_T(\lambda)C]z, y \rangle - \langle Cz, y \rangle + \langle [R_T(\lambda)C]Bz, y \rangle.$$
(4.7)

Thus $\langle [R_T(\lambda)C]z, A'y \rangle$ is a $\sigma(Y, X)$ -continuous linear functional on D(A') because so is the right-hand side of (4.7). Therefore, $[R_T(\lambda)C]z \in D(A)$ and

$$A[R_T(\lambda)C]z, y\rangle - \langle [R_T(\lambda)C]Bz, y\rangle = \langle \lambda[R_T(\lambda)C]z, y\rangle - \langle Cz, y\rangle.$$

Thus

$$A[R_T(\lambda)C] - [R_T(\lambda)C]B = \lambda R_T(\lambda)C - C, \quad R_T(\lambda)C \in D(\Delta)$$

and hence $D(\Delta_1) \subset D(\Delta)$. This, together with the inclusion $\Delta \subset \Delta_1$ yields $\Delta = \Delta_1$.

The following theorem is a direct consequence of Theorem 2.2.

Theorem 4.2. Suppose that

<

$$\overline{\lim_{\lambda \to 0}} \|\lambda R_T(\lambda)\| < \infty.$$

Then, the following statements are equivalent:

(i) $Q \in \Delta(D(\Delta) \cap \overline{R_T(\lambda)})$, where $\overline{R_T(\lambda)}$ is the uniform closure of $R_T(\lambda)$;

(ii) $\lim_{\lambda \to 0} R_T(\lambda)Q$ exists in the uniform operator topology;

(iii) there exists a sequence $\{\lambda_n\}$ converging to zero, as $n \to \infty$, such that $\lim_{n \to \infty} R_T(\lambda_n)Q$ exists in the uniform operator topology;

(iv) there exists a sequence $\{\lambda_n\}$ converging to zero, as $n \to \infty$, such that $\lim_{n \to \infty} R_T(\lambda_n)Q$ exists in the weak topology of \underline{X} .

If one of (i)-(iv) holds, then $C = \lim_{n \to \infty} [-R_T(\lambda_n)Q]$ is the unique solution of (1.1) in $R(\Delta)$.

Application of the results presented here will be the subject of a forthcoming paper.

References

- [1] Freeman, J. M., The tensor product of semigroups and the operator equation SX XT = A, J. Math. Mech., **19** (1970), 819-828.
- [2] Goldstein, J. A., On the operator equation AX + XB = Q, Proc. Amer. Math. Soc., 70 (1978), 31-34.
- [3] Greiner, G., Voigt, J. & Wolf, M., On the spectral bound of the generator of semigroups of positive operators, J. Operator Theory, 5 (1981), 245-256.
- [4] Hille, E. & Phillips, R. S., Functional analysis and semigroups, Amer. Math. Soc. Colloq. Publ. Vol. 31, Amer. Math. Soc., Providence, R. I. 1957.
- [5] Lange, R. & Wang, S., Abel-ergodic properties and decomposition of semigroups, (to be published).
- [6] Markushevitch, A. I., Theory of analytic functions (in Russian), Gosudarstv. Izdat. Tehn.-Theor. Lit., Moscow-Leningrad, 1950.
- [7] Rosenblum, M., The operator equation BX XA = Q with selfadjoint A and B, Proc. Amer. Math. Soc., 20 (1969), 115-120.
- [8] Shaw, S. Y., Uniform ergodic properties for locally integrable semigroups and pseudo-resolvents, Proc. Amer. Math. Soc., 98 (1986), 61-67.
- [9] Shaw, S. Y. & Lin, S. C., On the equations Ax = q and SX XT = Q, J. Funct. Anal., 77 (1988), 352-363.
- [10] Wang, S. & Erdelyi, I., Abel-ergodic properties for pseudo-resolvents and applications to semigroups, *Tôhoku Math. J.*, 45 (1993), 539-554.
- [11] Wang, S. & Lange, R., Weakly Y-integrable semigroups and extension of Hille-Yoshida theorem (to be published).
- [12] Wang, S., Cesaro-ergodic properties for weakly Y-integrable semigroups, Chin. Ann. of Math., 13B:3 (1992), 411-421.