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Abstract

The authors consider the existence and regularity of the oblique derivative problem:{
Pu = f in Ω,
→
ℓ u = g on ∂Ω,

where P is a second order elliptic differential operator on Rn, Ω is a bounded domain in Rn and
→
ℓ is a unit vector field on the boundary of Ω (which may be tangential to the boundary). All

above are assumed with limited smoothness. The authors show that solution u has an elliptic
gain from f in Holder spaces ( Theorem 1.1). The authors obtain Lp regualrity of solution
in Theorem 1.3, which generalizes the results in [7] to the limited smooth case. Some of the
application nonlinear problems are also discussed.
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§1. Introduction

The oblique derivative problem was first posed by Poincaré in 1910 (see [11]):{
Pu = f in Ω,
→
ℓ u = g on ∂Ω,

(1.1)

where P is an elliptic second order differential operator on Rn, Ω is a bounded domain

in Rn and
→
ℓ is a unit vector field on Rn. The prototypical example is the Neumann

problem where P is the Laplacian △ and
→
ℓ =

→
n, the unit outward normal to ∂Ω. In this

case the existence, uniqueness and regularity for (1.1) are explicitly known under very weak

smoothness requirements on the structures P , Ω and
→
ℓ . Roughly speaking, a solution u

exists if and only if
∫
∂Ω
g =

∫
Ω
f , is unique up to constants, and is 2 degrees smoother than f

and 1 degree smoother (plus 1
p from the extension to Ω) than g. If

→
ℓ is everywhere transversal

to ∂Ω, then (1.1) is an elliptic boundary value problem and the existence, uniqueness and

regularity results are the same as those for the Neumann problem, except that the existence
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requires finitely many compatibility conditions, and the uniqueness holds only up to a finite

dimensional space (see [1]).

When
→
ℓ is permitted to become tangent to ∂Ω, the situation is significantly different.

For example, as shown in [3], if P = △, Ω is the unit ball in R3 and
→
ℓ = ∂

∂x , then any

harmonic function u = u (x, y, z) that is independent of x satisfies (1.1) with f = 0 and

g = 0, thus exhibiting an infinite dimensional null space. On the other hand, infinitely

many compatibility conditons are required for the existence in the same problem but with

Ω taken to be the complement of the unit ball. These examples suggest, as established in [9]

and [5], that the values of u should be prescribed on the manifold Γ on which
→
ℓ =

→
T+ a

→
n

changes from pointing into Ω to pointing out of Ω (i.e. a changes sign from − to +) as
→
ℓ

crosses Γ in the direction of
→
T, and that a jump discontinuity should be accepted on the

manifold where a changes sign from + to −. Thus in the event Γ ̸= ϕ, we consider the

problem 
Pu = f in Ω,
→
ℓ u = g on ∂Ω,

u = h on Γ.

(1.2)

In 1969, Egorov and Kondrat’ev[5] showed that in the case where the structures P , ∂Ω,
→
ℓ and Γ are smooth, then u in (1.2) gains 1 derivative from f and 0 derivatives (plus 1

p from

the extension to Ω) from g. Moreover, they showed that the gain of 0 from g was sharp,

but left open the sharpness of the gain from f . Subsequently, the question of completely

characterizing the gain from g was solved in the smooth case. In his book [4], Egorov showed

that u gains 1
k+1 derivatives (plus 1

p from the extension to Ω) from g in the Lp-Sobolev scale

of spaces, if and only if
→
ℓ is of type k on ∂Ω. As for the gain from f , Guan[6] and Smith[13]

showed in 1990 that u actually has the elliptic gain of 2 derivatives from f in Hölder and

Lp-Sobolev spaces respectively provided
→
ℓ is of finite type on ∂Ω. More recently, the elliptic

gain of 2 from f in Hölder spaces was extended to general smooth
→
ℓ by the first author (see

below where this is proved for less regular structures). The gain from f was characterized

completely in [7] in 1993. The result is that u gains 2-ϵ derivatives from f for every ϵ > 0,

and achieves the elliptic gain of 2 derivatives from f in the Lp Besov-Sobolev scale of spaces

if and only if
→
ℓ is of finite type in ∂Ω \Γ∗ and satisfies the A∓

p condition on Γ (see subsection

1.1 and Section 2 of in [8] below for precise definitions).

This paper is a sequel to [7], in which we considered (1.2) for smooth P , ∂Ω,
→
ℓ and Γ.

However, in dealing with nonlinear versions of this problem, it is necessary to consider the

case where P and
→
ℓ in (1.2) have limited smoothness. Thus the purpose of this paper is

to consider the same problem, but with nonsmooth structure, namely where P has leading

coefficients in Cλ, Ω has Cλ+3 boundary ∂Ω,
→
ℓ =

→
T+a

→
n is a Cλ+2 unit vector field, and

Γ is a Cλ+2 manifold. Of course, the methods used in [7] in the smooth case carry over for λ

sufficiently large depending on the dimension n, but we will obtain optimal results for λ > 0

in any dimension. Here Cd denotes the usual Lipschitz space of continuous functions whose

derivatives of order [d] are bounded (when d is an integer), or satisfy a Hölder condition of
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order d − [d] (when d is not an integer). See Theorems 1.4 and 1.5 below for applications

to the regularity and existence of a nonlinear problem. More general nonlinear oblique

derivative problems will be considered in a future paper.

In the case of limited smoothness, the techniques in [7] cannot be used for the reduction

to the boundary, nor for the pseudodifferential calculus. For example, in the reduction to

the boundary, we use here the solution to the Neumann problem to construct an approxi-

mate Poisson operator, and for the pseudodifferential calculus we use the method of symbol

splitting. Several new features arise that were not present in our previous paper [7]. For

example:

• The gain from f in the Lp Besov-Sobolev scale of spaces can be strictly less than 2,

and this is characterized by fractional variations on the A∓
p condition.

• The gain from g in the Lp Besov-Sobolev scale of spaces takes the form ν + 1
p , where

ν can be any number in
[
0, 13

]
∪
{

1
2

}
, and this is characterized by a generalized “type”

condition on ∂Ω.

• The gain from h in the Lp Besov-Sobolev scale of spaces, which had not been considered

at all in [7], takes the form γ
p + 1

p , where γ can be any number in
[
0, 13

]
∪
{

1
2

}
, and this is

characterized by a generalized “type” condition near Γ.

• In addition to the Lp Besov-Sobolev scale of spaces, we obtain analogous results for the

Hölder scale of spaces, Λs (Ω).

• In the elliptic setting, the solution u to (1.2) can be taken in Λs (Ω) for s all the way

up to λ + 2, and up to λ + 2 − ϵ in Hs
p (Ω) (recall the leading coefficients of P are only in

Cλ). This realization of the smoothness “cap” in the case of limited smoothness is achieved

with the aid of symbol smoothing.

• In this paper, we need to construct a left parametrix (in [7] we used the left parametrix

from [10]).

Our approach to solving (1.2) can be summed up as:

1. reduction of (1.2) to a pseudodifferential equation on ∂Ω.

2. construction of a parametrix for the boundary problem and reduction to the operators

K, K and T :

Kf(x, t) =
∫
Rn

eix·ξe−
∫ t
0
a(x,θ)Q(x,θ,ξ)dθf̂(ξ)dξ,

Kf(x, t) =

∫
Rn

eix·ξ
∫ t

0

e−
∫ t
t′ a(x,θ)Q(x,θ,ξ)dθf∼(ξ, t′)dt′dξ,

Tf(x, t) =

∫
Rn

eix·ξ
∫ t

0

a(x, t′)Q(x, t′, ξ)e−
∫ t
t′ a(x,θ)Q(x,θ,ξ)dθf∼(ξ, t′)dt′dξ,

(1.3)

for x ∈ Rn and t ∈ (−1, 1).

3. reduction of boundedness properties of T to weighted norm inequalities for the Hardy

operator, and corresponding estimates for K and K.

The first two points will be taken up in the next section, while the third point is part

of the subject matter of the adjoining paper [8], concerned with mapping properties of the

special classes of pseudodifferential operators that arise in the oblique derivative problem.

1.1. Statement of Theorems
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Let Hs
p(R

n+2), Bs,p
p (Rn+2) and Λs

(
Rn+2

)
be the Lp - Sobolev, Besov and Hölder spaces

respectively on Rn+2. Let Ω be a connected open set in Rn+2 with Cλ+3 boundary ∂ Ω = Σ.

Let

P (x,D) =

n+2∑
i,j=1

aij(x)
∂

∂xi

∂

∂xj
+

n∑
i=1

bi(x)
∂

∂xi
+ c(x)

be an elliptic second order real differential operator on Rn+2 with Cλ coefficients, i.e. there

are C, δ > 0 such that

C|ξ|2 ≥
n+2∑
i,j=1

aij(x)ξiξj ≥ δ|ξ|2, x, ξ ∈ Rn+2,

where aij , bi and c are Cλ on Rn+2. Let
→
ℓ (x) be a real Cλ+2 unit vector field in Rn+2 with

→
ℓ |Σ =

→
T+ a(x)

→
n,

where
→
n is the unit outward normal to Σ at x and

→
T is tangential to Σ. Finally let

N = {x ∈ Σ : a(x) = 0} ̸= ϕ. We assume throughout the following restriction (Rint) on
→
T :

No integral curve of
→
Tin Σ lies in N for an infinite interval of time. (1.4)

Furthermore, we suppose that ℓ⃗ satisfies one of the following two cases:

Case (I) a(x) ≥ 0 for all x ∈ Σ or a(x) ≤ 0 for all x ∈ Σ.

Case (II) a(x) takes on both positive and negative values and there is an n-dimensional

Cλ+2 submanifold Γ (possibly with several components) contained in N and open subsets

Σ+ and Σ− of Σ such that Σ is a disjoint union of Σ+, Σ− and Γ and

(i) a(x) ≥ 0 for x ∈ Σ+,

(ii) a(x) ≤ 0 for x ∈ Σ−,

(iii) ∂Σ+ = ∂Σ− = Γ,

(iv) ℓ⃗ is transversal to Γ and points in the direction of Σ+.

For case (I) we consider the problem{
Pu = f in Ω,
→
ℓ u = g on ∂Ω,

(1.5)

and for case (II) the problem is 
Pu = f in Ω,
→
ℓ u = g on ∂Ω,

u = h on Γ.

(1.6)

We always assume that either u ∈ Λs (Ω) for s > 1, or that u ∈ Hs
p (Ω) for s > 1 + 1

p , so

that the traces of
→
ℓ u on ∂Ω and u on Γ exist.

To define the Ap,α conditions, we will use the flow for T⃗ on Σ. Given x ∈ Σ, let γ⃗ (x, s)

denote the integral curve of T⃗ through x, i.e.
∂

∂s
γ⃗ (x, s) = T⃗ (γ⃗ (x, s)) , s real,

γ⃗ (x, 0) = x.
(1.7)
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We will also need some more notation. Let y ∈ N . Define Iy to be the largest closed

interval containing 0 (which may be {0} itself) such that γ⃗ (y, Iy) ⊂ N , i.e. a (γ⃗ (y, s)) = 0

for s ∈ Iy. Then Fy = γ⃗ (y, Iy) = {γ⃗ (y, s) : s ∈ Iy} is the longest segment of integral curve

of T⃗ through y that lies in N and is thus bounded by restriction (Rint) (see (1.4)). We refer

to Fy as the fibre of N at y. Set Γ∗ = ∪
y∈Γ

Fy.

Definition 1.1. The vector field ℓ⃗ (or equivalently a) satisfies the A∓
p,α condition at the

fibre Fy, y ∈ Γ, if there are constants r > 0, R− < 0 < R+, such that a (γ⃗ (x,R−)) ̸= 0 and

a (γ⃗ (x,R+)) ̸= 0 for x ∈ Γ, |x− y| < r and both of the following conditions hold:[
1∫ β

σ
a (γ⃗ (x, t)) dt

∫ β

σ

a (γ⃗ (x, t))
p′
dt

]p−1

≤ C
1

γ − β

[∫ γ

β

a (γ⃗ (x, t)) dt

]1−pα

(1.8)

for all x ∈ Γ, |x − y| < r and all 0 < σ < β < γ < R+ with
∫ β

σ
a (γ⃗ (x, t)) dt =∫ γ

β
a (γ⃗ (x, t)) dt, and also[

1∫ γ

β
|a (γ⃗ (x, t))| dt

∫ γ

β

|a (γ⃗ (x, t))|p
′
dt

]p−1

≤ C
1

β − σ

[∫ β

σ

|a (γ⃗ (x, t))| dt

]1−pα

(1.9)

for all x ∈ Γ, |x − y| < r and all R− < σ < β < γ < 0 with
∫ β

σ
|a (γ⃗ (x, t))| dt =∫ γ

β
|a (γ⃗ (x, t))| dt. If the above holds for all y ∈ Γ, we say that ℓ⃗ satisfies the A∓

p,α con-

dition on Γ.

Definition 1.2. The vector field ℓ⃗ (or equivalently a) satisfies the A=
p,α condition at

the fibre Fy, y ∈ (Σ+ ∩N ) \ Γ∗, if there are constants r > 0 , R− < 0 < R+, such that

a (γ⃗ (x,R−)) ̸= 0 and a (γ⃗ (x,R+)) ̸= 0 for x ∈ (Σ+ ∩N ) \ Γ∗, |x − y| < r and (1.8) holds

for all x ∈ (Σ+ ∩N ) \ Γ∗, |x− y| < r and all R− < σ < β < γ < R+ with
∫ β

σ
a (γ⃗ (x, t)) dt

=
∫ γ

β
a (γ⃗ (x, t)) dt. If the above holds for all y ∈ (Σ+ ∩N ) \ Γ∗, we say that ℓ⃗ satisfies the

A=
p,α condition on (Σ+ ∩N ) \ Γ∗.

Definition 1.3. The vector field ℓ⃗ (or equivalently a) satisfies the A‡
p,α condition at

the fibre Fy, y ∈ (Σ− ∩N ) \ Γ∗, if there are constants r > 0, R− < 0 < R+, such that

a (γ⃗ (x,R−)) ̸= 0 and a (γ⃗ (x,R+)) ̸= 0 for x ∈ (Σ− ∩N ) \ Γ∗, |x − y| < r and (1.9) holds

for all x ∈ (Σ− ∩N ) \ Γ∗, |x− y| < r and all R− < σ < β < γ < R+ with
∫ β

σ
|a (γ⃗ (x, t))| dt

=
∫ γ

β
|a (γ⃗ (x, t))| dt. If the above holds for all y ∈ (Σ− ∩N ) \ Γ∗, we say that ℓ⃗ satisfies the

A‡
p,α condition on (Σ− ∩N ) \ Γ∗.

Definition 1.4. The vector field ℓ⃗ (or equivalently a) satisfies the (Tν) condition on Σ if

β − α ≤ C

(∫ β

α

|a (γ⃗ (x, t))| dt

)ν

for all α < β, and x ∈ Σ.

Definition 1.5. The vector field ℓ⃗ (or equivalently a) satisfies the (Pγ) condition on Γ if

|β| ≤ C

∣∣∣∣∣
∫ β

0

a (γ⃗ (x, t)) dt

∣∣∣∣∣
γ

for all β ∈ R, and x ∈ Γ.

Remark 1.1. We remark that for the purposes of the above five definitions, the family of

integral curves γ⃗ (x, t) can be replaced by any smooth family γ⃗ (x, t) satisfying the following
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condition, weaker than (1.7):
∥∥∥∥ ∂∂s γ⃗ (x, t)− T⃗ (γ⃗ (x, t))

∥∥∥∥ ≤ C |a (x, t)| ,

γ⃗ (x, 0) = x.

(1.10)

This is a simple consequence of Lemma 6.38 of [7], which required only that the curves be

C1 and that the vector fields be Lipschitz.

We can now state our main theorems. Fix 0 < µ∞ < min
{
1− δ, λ+2

2(λ+3)

}
and set µp =

min
{
1− δ − 1

p(λ+3) ,
λ+2

2(λ+3)

}
for 1 < p < ∞ where δ = max

{
1
2 ,

1
λ+1

}
. We point out that

the choice of δ is dictated by (2.13) below, and that µp arises in Lemma 1.7 of [8].

Theorem 1.1. Suppose that P , Ω and ℓ⃗ are as at the beginning of this subsection with

λ > 0.

(i) If ℓ⃗ satisfies case (I) and the Tν condition on Σ for some ν ≥ 0, then for all 1 <

s ≤ λ+ 2, there is a subspace F of finite codimension in Λs−2(Ω)× Λs−ν(∂Ω) such that for

(f, g) ∈ F , there exists u satisfying (1.5) and u ∈ Λs(Ω). Moreover, if u ∈ Λs′(Ω) for some

s′ > 1 satisfies (1.5) with f, g as above, then u ∈ Λs(Ω), and there is Cs such that

∥u∥Λs(Ω) ≤ Cs

(
∥f∥Λs−2(Ω) + ∥g∥Λs−ν(∂Ω) + ∥u∥Λs−µ∞ (Ω)

)
.

Furthermore, if the zero order term c (x) in the operator P is negative, then for every

(f, g) ∈ Λs−2(Ω)× Λs−ν(∂Ω), there is a unique solution u ∈ Λs(Ω).

(ii) If ℓ⃗ satisfies case (II) and the Tν condition on Σ for some ν ≥ 0, then for all

1 < s ≤ λ+ 2, there is a subspace F of finite codimension in Λs−2(Ω)× Λs−ν(∂Ω)× Λs(Γ)

such that for (f, g, h) ∈ F , there exists u satisfying (1.6) and u ∈ Λs(Ω). Moreover, if

u ∈ Λs′(Ω) for some s′ > 1 satisfies (1.6) with f, g, h as above, then u ∈ Λs(Ω), and there

is Cs such that

∥u∥Λs(Ω) ≤ Cs

(
∥f∥Λs−2(Ω) + ∥g∥Λs−ν(∂Ω) + ∥h∥Λs(Γ) + ∥u∥Λs−µ∞ (Ω)

)
.

Furthermore, if the zero order term c (x) in the operator P is nonpositive, then for every

(f, g, h) ∈ Λs−2(Ω)× Λs−ν(∂Ω)× Λs(Γ), there is a unique solution u ∈ Λs(Ω).

At this point we could immediately obtain a regularity theorem for a semilinear oblique

derivative problem. However, in order to handle a fully nonlinear equation with semilinear

oblique derivative in the next subsection, we need the following result which establishes an

additional gain from g when it is multiplied by a tangential derivative of a.

Theorem 1.2. Suppose that P , Ω, and ℓ⃗ are as at the beginning of this subsection with

λ > 0, and let D =
n+2∑
k=1

bk (x)
∂

∂xk
∈ Cλ+2

(
Ω
)
be a vector field tangent to ∂Ω for x ∈ ∂Ω. If

for some s > 0, u ∈ Λs(Ω) and satisfies{
Pu = 0 in Ω,
→
ℓ u = (Da) g1 on ∂Ω

(1.11)

in case (I) and 
Pu = 0 in Ω,
→
ℓ u = (Da) g1, on ∂Ω,
u = 0 on Γ

(1.12)
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in case (II) with g1 ∈ Λλ− 1
4+1 (∂Ω) as above, then u ∈ Λλ+1(Ω), and there is Cλ such that

∥u∥Λλ+1(Ω) ≤ Cλ

(
∥g1∥

Λλ− 1
4
+1(∂Ω)

+ ∥u∥Λλ+1−µ∞ (Ω)

)
.

Now we state the Sobolev space analogue.

Theorem 1.3. Let 1 < p < ∞ and α, ν ≥ 0. Suppose that P , Ω, and ℓ⃗ are as at the

beginning of this subsection with λ
λ+1 > α.

(A) Suppose that ℓ⃗ satisfies the A∓
p,α condition on Γ, A=

p,α on (Σ+ ∩N ) \ Γ∗, A‡
p,α on

(Σ− ∩N ) \ Γ∗, and also the Tν condition on Σ. Then:

(i) Assume that ℓ⃗ satisfies case (I) above, and let 1 + 1
p < s < λ + 2 − α. There is a

subspace F of finite codimension in Hs−2+α
p (Ω)× Bs−ν− 1

p ,p
p (∂Ω) such that for (f, g) ∈ F ,

there exists u satisfying (1.5) and u ∈ Hs
p(Ω). Moreover, if u ∈ Hs′

p (Ω) for some s′ > 1 + 1
p

satisfies (1.5) with f, g as above, then u ∈ Hs
p(Ω), and there is Cs such that

∥u∥Hs
p(Ω) ≤ Cs

(
∥f∥Hs−2+α

p (Ω) + ∥g∥
B

s−ν− 1
p
,p

p (∂Ω)
+ ∥u∥

H
s−µp
p (Ω)

)
.

Furthermore, if the zero order term c (x) in the operator P is negative, then for every

(f, g) ∈ Hs−2+α
p (Ω)× Bs−ν− 1

p ,p
p (∂Ω), there is a unique solution u ∈ Λs(Ω).

(ii) Assume that ℓ⃗ satisfies case (II) above and, in addition, the Pγ condition on Γ for

some γ ≥ 0, and let 1 + 1
p < s < λ + 2 − α. There is a subspace F of finite codimension

in Hs−2+α
p (Ω)× Bs−ν− 1

p ,p
p (∂Ω)× Bs− γ

p− 1
p ,p

p (Γ) such that for (f, g, h) ∈ F , there exists u

satisfying (1.6) and u ∈ Hs
p(Ω). Moreover, if u ∈ Hs′

p (Ω) for some s′ > 1 + 1
p satisfies

(1.6) with f, g, h as above, then u ∈ Hs
p(Ω), and there is Cs,α such that

∥u∥Hs
p(Ω) ≤ Cs,α

(
∥f∥Hs−2+α

p (Ω) + ∥g∥
B

s−ν− 1
p
,p

p (∂Ω)
+ ∥h∥

B
s− γ

p
− 1

p
,p

p (Γ)
+ ∥u∥

H
s−µp
p (Ω)

)
.

Furthermore, if the zero order term c (x) in the operator P is nonpositive, then for every

(f, g, h) ∈ Hs−2+α
p (Ω)× Bs−ν− 1

p ,p
p (∂Ω)× Bs− γ

p− 1
p ,p

p (Γ), there is a unique solution u ∈ Λs(Ω).

Finally, the above statements are true when α = 1
p(λ+3) , since in this case the A∓

p,α, A=
p,α

and A‡
p,α conditions automatically follow from the smoothness of a.

(B) Conversely, suppose that ℓ⃗ satisfies case (I) or case (II) and λ > 0 satisfies µp > 0.

Then:

(i) If for some 1 + 1
p < s < λ+ 2− α, α ≥ 0, ϵ > 0 and for every f ∈ Hs−2+α

p (Ω), there

is an approximate solution u ∈ Hs
p(Ω) (with g = 0, h = 0), such that

∥Pu− f∥Hs−2+α+ϵ
p (Ω) ≤ Cs,ϵ∥f∥Hs−2+α

p (Ω),

∥ℓ⃗u∥
B

s− 1
p
,p

p (∂Ω)
≤ Cs

(
∥f∥Hs−2+α

p (Ω) + ∥u∥Hs−1
p (Ω)

)
,

∥u∥
B

s− 1
p
,p

p (Γ)
≤ Cs

(
∥f∥Hs−2+α

p (Ω) + ∥u∥Hs−1
p (Ω)

)
,

then ℓ⃗ satisfies the A∓
p,α condition on Γ, A=

p,α on (Σ+ ∩N )\Γ∗, and A‡
p,α on (Σ− ∩N )\Γ∗.

(ii) If for some 1 + 1
p < s < λ + 2 − α, ν ≥ 0, ϵ > 0 and for every g ∈ Bs−ν− 1

p ,p
p (∂Ω),
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there is an approximate solution u ∈ Hs
p(Ω) (with f = 0, h = 0), such that

∥Pu∥
H

s−2+ 1
p(λ+3)

p (Ω)
≤ Cs

(
∥g∥

B
s−ν− 1

p
,p

p (∂Ω)
+ ∥u∥Hs−1

p (Ω)

)
,

∥ℓ⃗u− g∥
B

s−ν− 1
p
+ϵ,p

p (∂Ω)
≤ Cs,ϵ∥g∥

B
s−ν− 1

p
,p

p (∂Ω)
,

∥u∥
B

s− 1
p
,p

p (Γ)
≤ Cs

(
∥g∥

B
s−ν− 1

p
,p

p (∂Ω)
+ ∥u∥Hs−1

p (Ω)

)
,

then ℓ⃗ satisfies the Tν condition on Σ.

(iii) If for some 1 + 1
p < s < λ + 2 − α, γ ≥ 0 , ϵ > 0 and for every h ∈ Bs− γ

p− 1
p ,p

p (Γ),

there is an approximate solution u ∈ Hs
p(Ω) (with f = 0, g = 0), such that

∥Pu∥
H

s−2+ 1
p(λ+3)

p (Ω)
≤ Cs

(
∥h∥

B
s− γ

p
− 1

p
,p

p (Γ)
+ ∥u∥Hs−1

p (Ω)

)
,

∥ℓ⃗u∥
B

s− 1
p
,p

p (∂Ω)
≤ Cs

(
∥h∥

B
s− γ

p
− 1

p
,p

p (Γ)
+ ∥u∥Hs−1

p (Ω)

)
,

∥u− h∥
B

s− γ
p

− 1
p
+ϵ,p

p (Γ)
≤ Cs,ϵ∥h∥

B
s− γ

p
− 1

p
,p

p (Γ)
,

then ℓ⃗ satisfies the Pγ condition on Γ.

Remark 1.2. In part (A) of Theorem 1.3, we can weaken the requirement µp > 0 to

simply 1− δ − α > 0 (see the remark following Lemma 1.7 in [8]).

Remark 1.3. In Theorems 1.1 and 1.3, the assumptions that ℓ⃗, Γ are Cλ+2 and ∂Ω is

Cλ+3 can all be relaxed somewhat. More precisely, if we assume that ℓ⃗, Γ and ∂Ω are Cλ′

with λ′ + 1
p ≤ λ + 2 − α, and assume that there is a Cλ′

flow for T⃗ in a neighbourhood of

N (the assumption above that ∂Ω be in Cλ+3 is used only to guarantee the existence of a

Cλ+2 flow), then Theorem 1.1 remains true for 1 < s ≤ λ′, and Theorem 1.3 remains true

for 1 + 1
p < s < λ′, but with the gain of 1

p(λ+3) from f replaced by 1
p(λ′+1) . The proofs are

the same. Furthermore, the above smoothness assumptions on ℓ⃗, Γ and g are needed merely

in a neighbourhod of N . Away from N , only the usual elliptic smoothness is required.

Remark 1.4. If ℓ⃗ satisfies the A∓
p condition on Γ, etc. as in part (A) of Theorem 1.3,

and if N = Γ, then the a priori inequalities in part (A) hold with s = 2, α = 0 and µp = 1
2

provided P ∈ C0, and ℓ⃗,Γ, ∂Ω ∈ C2. This can be proved by locally approximating P by

constant coefficient elliptic operators and using α = 0.

1.2. Applications to Nonlinear Problems

Here we give two nonlinear applications of Theorem 1.1 — first to the regularity of a fully

nonlinear elliptic equation with a semilinear oblique derivative. In particular, we show that

if the data and structures are all smooth, then so are the solutions.

Theorem 1.4. Let P (x, u, ξ, ζ) be a function of the variables (x, u, ξ, ζ) ∈ Rn+2 ×
R × Rn+2 × R(n+2)2 , g be a function on ∂Ω, and h (x, u) be a function of the variables

(x, u) ∈ Rn+2 × R. Suppose that P, ∂ζP ∈ Cλ and g, h ∈ Cλ+2 for some noninteger λ > 0.

Suppose further that u ∈ Λs
(
Ω
)
, s > 2, is such that both ∂ζP and ∂uh are elliptic, i.e. for
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some C, c > 0,

C|η|2 ≥
n+2∑
i,j=1

∂
∂ζij

P
(
x, u,∇u,∇2u

)
ηiηj ≥ c|η|2, x, η ∈ Rn+2,

C ≥ ∂uh (x, u) ≥ c, x ∈ Rn+2.

(i) If ℓ⃗ satisfies case (I) above, and if in addition u satisfies{
P
(
x, u,∇u,∇2u

)
= 0 in Ω,

→
ℓ u = g (x) on ∂Ω,

then u ∈ Λλ+2
(
Ω
)
.

(ii) If ℓ⃗ satisfies case (II) above, and if in addition u satisfies
P
(
x, u,∇u,∇2u

)
= 0 in Ω,

→
ℓ u = g (x) on ∂Ω,
h (x, u) = 0 on Γ,

then u ∈ Λλ+2
(
Ω
)
.

In particular, if the functions P , g, h and the manifolds Γ, ∂Ω and the vector field ℓ⃗ are

all smooth, and if u is a Λs solution to (i) or (ii) as above with s > 2, then u is also smooth.

Finally, if P is linear in the second order derivatives, i.e.

Pu =
n+2∑
i,j=1

aij (x, u,∇u)
∂2u

∂xi∂xj
+ c (x, u,∇u) ,

then the above conclusions follow from the weaker assumption u ∈ Λs
(
Ω
)
, s > 1.

Proof. We prove only case (II), the other case being similar but simpler. So suppose

u ∈ Λs
(
Ω
)
with 2 < s < s + 1

4 ≤ λ + 2. We will show that u ∈ Λs+ 1
4

(
Ω
)
. For this, let

D =
n+2∑
k=1

bk (x)
∂

∂xk
∈ Cλ+2

(
Ω
)
be a vector field tangent to ∂Ω for x ∈ ∂Ω, and commuting

with
→
T , i.e.

[
→
T ,D

]
= 0. Applying D to the nonlinear equation above we obtain

n+2∑
i,j=1

∂
∂ζij

P
(
x, u,∇u,∇2u

) ∂2(Du)
∂xi∂xj

= −DP
(
x, u,∇u,∇2u

)
− ∂uP

(
x, u,∇u,∇2u

)
Du

−
n+2∑
k=1

∂
∂ξk

P
(
x, u,∇u,∇2u

)
D
(

∂
∂xk

u
)

+
n+2∑
i,j=1

∂
∂ζij

P
(
x, u,∇u,∇2u

) [
∂2

∂xi∂xj
, D
]
u in Ω,

→
ℓ (Du) = g (x) +

[
→
ℓ ,D

]
u on ∂Ω,

∂uh (x, u) (Du) = −Dh (x, u) on Γ.

Since

[
→
ℓ ,D

]
u = [an⃗, D] = −Da (x) n⃗u, this can be rewritten as

n+2∑
i,j=1

aij (x)
∂2

∂xi∂xj
(Du) = f (x) in Ω,

→
ℓ (Du) = g (x) +Da (x) g1 (x) on ∂Ω,
Du = h (x) on Γ,
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where aij = ∂
∂ζij

P
(
x, u,∇u,∇2u

)
∈ Λs−2 (Ω), f ∈ Λs−2 (Ω), g ∈ Λλ+2 (∂Ω), g1 = n⃗u ∈

Λs−1 (∂Ω) and h = − Dh(x,u)
∂uh(x,u)

∈ Λmin{λ+1,s} ⊂ Λs−1+ 1
4 (Γ). By Theorem 1.1, there is

w ∈ Λs−1+ 1
4

(
Ω
)
such that

n+2∑
i,j=1

aij (x)
∂2

∂xi∂xj
w = f (x) in Ω,

→
ℓ w = g (x) on ∂Ω,
w = h (x) on Γ,

and by Theorem 1.2, Du − w ∈ Λs−1+ 1
4

(
Ω
)
. Thus Du ∈ Λs−1+ 1

4

(
Ω
)
. To obtain u ∈

Λs+ 1
4

(
Ω
)
, we note that we have proved ∇Du ∈ Λs−2+ 1

4

(
Ω
)
for any tangential derivative

D, and now using P
(
x, u,∇u,∇2u

)
= 0 together with the implicit function theorem, we

obtain ∇2u ∈ Λs−2+ 1
4

(
Ω
)
, and hence u ∈ Λs+ 1

4

(
Ω
)
as required. Finally, if P is linear in the

second order derivatives, we need not differentiate the problem, but can immediately apply

Theorem 1.1 provided s > 1.

Our second application of Theorem 1.1 is the following nonlinear existence theorem for

small data.

Theorem 1.5. Let Ω and
→
ℓ be as in Theorem 1.1. Suppose that λ > 0 is nonintegral

and that

P (x, u, ξ, ζ) ∈ Cλ
(
Ω×R×Rn+2 ×R(n+2)2

)
,

∂uP, ∂ξP, ∂ζP ∈ Cλ
(
Ω×R×Rn+2 ×R(n+2)2

)
.

Moreover, suppose P (x, 0, 0, 0) = 0 and that there is C > 0 such that

C|η|2 ≥
n+2∑
i,j=1

∂

∂ζij
P (x, 0, 0, 0) ηiηj ≥ C−1|η|2,

−C ≤ ∂uP (x, 0, 0, 0) ≤ −C−1, for all x ∈ Ω.

(i) If
→
ℓ satisfies case (I), then there is c0 > 0 such that if ∥f∥Λλ(Ω) and ∥g∥Λλ+2(∂Ω) ≤ c0,

then there is u ∈ Λλ+2 (Ω) satisfying{
P
(
x, u,∇u,∇2u

)
= f (x) in Ω,

→
ℓ u = g on ∂Ω.

(ii) If
→
ℓ satisfies case (II), then there is c0 > 0 such that if ∥f∥Λλ(Ω), ∥g∥Λλ+2(∂Ω) and

∥h∥Λλ+2(Γ) ≤ c0, then there is u ∈ Λλ+2 (Ω) satisfying
P
(
x, u,∇u,∇2u

)
= f (x) in Ω,

→
ℓ u = g on ∂Ω,
u = h on Γ.

Proof. We prove only part (ii), the first part being similar. Let

X =

{
w : w ∈ Λλ+2 (Ω) and

→
ℓ w ∈ Λλ+2 (∂Ω)

}
,

Y = Λλ (Ω)× Λλ+2 (∂Ω)× Λλ+2 (Γ) .

Then X and Y are Banach spaces with the obvious norms. Consider the map F : X → Y
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given by

F (w) =

(
P
(
x,w,∇w,∇2w

)
,
→
ℓ w,w |Γ

)
.

By our hypotheses, F (0) = 0 and F has continuous first Fréchet derivatives. Furthermore,

since ∂uP (x, 0, 0, 0) is negative, Theorem 1.1 implies that F ′ (0) is invertible. Thus the

implicit function theorem (see e.g. [12] ) shows that F is an open map near w = 0, and this

completes the proof of the theorem.

In the next section, we reduce (1.2) to a pseudodifferential equation on the boundary,

and then use our results on a special class of pseudodifferential operators (see the following

paper [8] in this journal) to prove Theorems 1.1 , 1.2 and 1.3.

§2. Transference of the Oblique Derivative
Problem to the Boundary and Proofs of Theorems

In this section we reduce the oblique derivative problem to the boundary using the solution

to the Neumann problem to consttruct an approximate Poisson operator. This is achieved

largely via the method of symbol splitting. For example, if σ ∈ CλSm
1,δ, then σ = σ♯ + σ♭

where σ♯ ∈ Sm
1,γ is smooth and σ♭ ∈ CλS

m−λ(γ−δ)
1,γ has better order. See Proposition 1.1 in

[8]. In particular, this applies to the operator of multiplication by the function a (x), and

we will repeatedly interchange a and a♯ whenever convenient. We will also make use of the

boundedness results for special operators in [8].

2.1. The Neumann Problem and a Change of Variables

We study the oblique derivative problem by reducing it to a pseudodifferential equation

on the boundary. In an earlier paper (see Section 3 of [7]), we dealt with this problem in the

case of smooth data, following the line of argument in [2]. In order to simplify the equation,

we straightened the normal direction with respect to (gi,j) (where P =
∑
i,j

gi,j
∂

∂xi

∂
∂xj

+ lower

order terms) and then the tangential direction
→
T to ∂

∂t (where
→
ℓ =

→
T+ a

→
n). We shall do

the same here, but since the structures are no longer smooth, the process must be modified.

First, in order to simplify the computation of
→
ℓ on the boundary, we pick a constant c

such that the Neumann problem {
PF + cF = f on Ω,
→
nF = 0 on ∂Ω

has a unique solution F , which we denote by F = Nf . Then, by the theory of elliptic

boundary value problems, N : Λs(Ω) → Λs+2(Ω) is bounded for 0 ≤ s ≤ λ, and N :

Hs
p(Ω) → Hs+2

p (Ω) is bounded for 0 ≤ s < λ. With v = u − Nf , the oblique derivative

problem reduces to {
Pv = cNf on Ω,
→
ℓ v = g + (Da) g1 −

→
TNf on ∂Ω,

(2.1)

or 
Pv = cNf on Ω,
→
ℓ v = g + (Da) g1 −

→
TNf on ∂Ω,

v = h−Nf on Γ.

(2.2)
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Since N : Λs(Ω) → Λs(Ω) is compact, our main theorem will follow if we can solve the

following equations with the appropriate estimates:{
Pv = 0 on Ω,
→
ℓ v = g + (Da) g1 −

→
TNf on ∂Ω

(2.3)

and 
Pv = 0 on Ω,
→
ℓ v = g + (Da) g1 −

→
TNf on ∂Ω,

v = h−Nf on Γ.

(2.4)

As in Section 3 of [7], we now change variables repeatedly to simplify calculations. As

indicated there, we want to choose the coordinate charts such that a(x, t) ̸= 0 on the top

and bottom of the t-interval (where ∂
∂t =

→
T) to ensure that singularities will not propagate

out of the local charts.

Now
→
ℓ =

→
T + a

→
n. If a ̸= 0 on the boundary, the problem is elliptic, so the result is

well-known. Suppose N = {a = 0} ̸= ϕ. Fix p ∈ N , and let γ be the integral curve of the

vector field
→
T through p with γ(0) = p. Then γ is Cλ+2 and, by the finite length restriction

(R), there are s1 < 0 < s2 such that | a(γ(s1)) |> 0, | a(γ(s2)) |> 0 and γ((s1, s2)) is not self-

intersecting. Here, s1, s2 can be chosen so that a(γ(s)) is as small as we wish for s1 <s < s2

and so that either γ((s1, s2)) ∩ Γ = ∅ or γ((s1, s2)) ∩ Γ consists of a single point q and the

segment of γ between p and q is completely in N . (Note that γ can’t intersect Γ in more

than one point since once γ is in
∑+

(resp.
∑−

), it must remain there for all future time by

assumptions (iii) and (iv) in case (II) of Subsection 1.1. Suppose γ((s1, s2))∩Γ = {q}. Now
→
T

is transversal to Γ at q, and so by the theory of ODE, there is a small neighborhood V of q in

∂Ω, and t1 < 0 < t2 and a Cλ+2 diffeomorphism Φ : In × (t1, t2) −→ V, such that Φ(x, ·) are
the integral curves of the vector field

→
T and Φ(0, 0) = q, Φ(·, 0) ⊂ Γ, | a(Φ(·, t1)) |> 0, | a((Φ

(·, t2)) |> 0. So, p ∈ V automatically as Φ(0, s) passes through p. On the other hand, if

γ((s1, s2)) ∩ Γ = ϕ, choose any hypersurface H of ∂Ω through p at which
→
T is transversal.

We can then find V and Φ as above with Φ(·, 0) ⊂ H, but V ∩ Γ = ∅.
By introducing geodesic normal coordinates with respect to ∂Ω, and denoting by r the

normal variable, then for any local coordinates y1, · · · , yn+1 in ∂Ω, in particular for the

charts (Φ, V ) constructed above, we have

P = α
∂2

∂r2
+

n+1∑
k=1

bk
∂

∂yk

∂

∂r
+

n+1∑
i,j=1

gij
∂

∂yi

∂

∂yj
+ lower order terms. (2.5)

In summary, for every p ∈ ∂Ω, if a(p) = 0, we can find a neighborhood U of p in the

boundary which has the following property:

U = In × I, I = (−1, 1), | a(x,−1) |̸= 0, | a(x, 1) |̸= 0, ∀x ∈ In,,

either U ∩ Γ = ∅ or U ∩ Γ = {t = 0}.

In the above coordinate chart, P satisfies (2.5) with α > 0, and
→
ℓ = ∂

∂t − a ∂
∂r . Fur-

thermore, the coefficients in P and
→
ℓ have the same degree of smoothness (Cλ and Cλ+2

respectively) as those in the original variables by the theory of ODE. By shrinking U if

necessary, we may assume that a is as small as we wish on U . For points p ∈ ∂Ω, a(p) ̸= 0,
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we simply choose a neighbourhood U such that a ̸= 0 on U . Since ∂Ω is compact, there

is finite collection U1, · · · , Uk of neighbourhoods as above covering ∂Ω such that each Uj

either has the property (∗) or a ̸= 0 on U j . Extend Ui to be an open set in Rn+2 such

that Uj = In × I × Iϵ, Iϵ = (−ϵ, ϵ), Uj ∩ ∂Ω = In × I × {0}, and Uj ∩ Ω = {r > 0}. Let

U0 = {r > δ}, so that if δ is small enough, then
k
∪

j=0
Uj ⊃ Ω.

2.2. Pseudodifferential Equations on the Boundary

On those U (we drop the index j for the convenience) with property (∗), equations (2.3)
and (2.4) now become {

Pv = 0 in r > 0,
→
ℓ v = g̃ + (Da) g1 −

→
TF on r = 0,

(2.6)

and 
Pv = 0 in r > 0,
→
ℓ v = g̃ + (Da) g1 −

→
TF on r = 0,

v = h− F on t = r = 0,

(2.7)

where

P =
∂2

∂r2
+

n+1∑
k=1

bk
∂

∂yk

∂

∂r
+

n+1∑
i,j=1

gij
∂

∂yi

∂

∂yj
+ lower order terms,

→
ℓ =

∂

∂t
− a

∂

∂r
.

Now, if w0 = w |r=0 and F ̸= f |∂Ω, then w is uniquely determined by w0 via the Poisson

operator Ẽ of P , namely w = Ẽw0. Therefore, to solve (2.6 ) and (2.7), we need only to

calculate
→
ℓ Ẽw0 and then solve for w0 on the boundary. The calculation is standard if the

coefficients of P are smooth (see e.g. [2]), but otherwise some care must be exercised. Here,

Ẽ is defined by the theory of the Dirichlet problem for elliptic operators (see e.g. [1]), but

we will instead use an approximate version E defined as follows.

Write

P =

(
∂2

∂r2
+ 2B(x,Dx)

∂

∂r
+ P1(x,Dx)

)
+B′(r, x,Dx)

∂

∂r
+ P ′

1(r, x,Dx) + lower order terms,

where B′(0, x,Dx) = P ′
1(0, x,Dx) = 0. Now set δ = max

{
1

λ+1 ,
1
2

}
. Using the symbol

splitting in Proposition 4 in [8], we define an approximate Poisson operator by

(Eu0) (r, x) =

∫
eix·ξe

−r
[√

−P ♯
1 (x,iξ)+B♯(x,iξ)2+B♯(x,iξ)

]
û0(ξ)dξ, (2.8)

where ξ = (ξ1, · · · , ξn+1) is the dual variable of x = (x1, · · · , xn+1), and

B = B♯ +B♭, P1 = P ♯
1 + P ♭, (2.9)

with

B♯ = i
n+1∑
k=1

b♯k (x, ξ) ξk, P ♯
1 = −

n+1∑
i,j=1

g♯i,j (x, ξ) ξiξj , (2.10)
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where

b♯k, g
♯
i,j ∈ S0

1,δ,

b♭k = bk − b♯k, g
♭
i,j = gi,j − g♯i,j ∈ CλS−λδ

1,δ ,

and where

g̃♯i,j = g♯i,j − b♯ib
♯
j (2.11)

is positive definite for |ξ| large.
Since E is a Poisson integral, we have that E : Λs(∂Ω) → Λs(Ω) for 0 < s ≤ λ and

E : B
s− 1

p ,p
p (∂Ω) → Hs

p(Ω) for 0 ≤ s < λ. We now compute PE:

PE =

(
∂2

∂r2
+ 2B(x,Dx)

∂

∂r
+ P1(x,Dx)

)
E

+B′(r, x,Dx)
∂

∂r
E+ P ′

1(r, x,Dx)E+ lower order terms

=

(
∂2

∂r2
+ 2B♯(x,Dx)

∂

∂r
+ P ♯

1(x,Dx)

)
E+B′(r, x,Dx)

∂

∂r
E+ P ′

1(r, x,Dx)E

+ 2

(
B♭(x,Dx)

∂

∂r
+ P ♭

1(x,Dx)

)
E+ lower order terms. (2.12)

Since B′(0, x,Dx) = P ′
1(0, x,Dx) = 0, the second, third and last terms in (2.12) are bounded

operators Λs(∂Ω) → Λs−min{λ,1}(Ω) for 0 < s ≤ λ + 1, B
s− 1

p ,p
p (∂Ω) → H

s−min{λ,1}
p (Ω) for

1
p < s < λ + 1. A direct calculation shows that the first term,

(
∂2

∂r2 + 2B♯ ∂
∂r + P ♯

1

)
E, is a

combination of bounded operators Λs+1+δ(∂Ω) → Λs(Ω) for 0 < s ≤ λ, B
s− 1

p+1+δ,p
p (∂Ω) →

Hs
p(Ω) for 0 ≤ s < λ. Also g♭i,j∂i∂j ◦ E maps Λs+2−δλ(∂Ω) → Λs(Ω), for 0 < s ≤ λ , and

B
s+2−δλ− 1

p
p (∂Ω) → Hs

p(Ω), for 0 ≤ s < λ, 1 < p < ∞ by Proposition 1.1 of [8]. Thus these

error terms have order 1 + δ and 2 − δλ respectively. Note that our choice of δ equalizes

these orders for λ ≤ 1. To summarize,

PE = B1, (2.13)

where

B1 : Λs+1+δ(∂Ω) → Λs(Ω), for 0 < s ≤ λ,

B1 : B
s+1+δ− 1

p
p (∂Ω) → Hs

p(Ω), for 0 ≤ s < λ, 1 < p <∞.

Now we compute
→
ℓE |∂Ω. We have

→
ℓE |∂Ω= L1

where

L1 =
→
T + a

√
P ♯
1(x,Dx)−B♯(x,Dx)2 + aB♯(x,Dx)

=
→
T + a

√√√√ n+1∑
i,j=1

g̃♯i,j (x, ξ) ξiξj + ia
n+1∑
k=1

b♯k (x, ξ) ξk, (2.14)

by (2.10) and (2.11).
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Thus we have reduced the solving of (2.6) and (2.7) to the solution of the pseudodifferential

equations

L1u = g̃ −
→
T F (2.15)

and  L1u = g̃ −
→
T F,

u |t=0 = h− F.
(2.16)

2.3. Microlocalization

Note that the pseudodifferential operator L1 is elliptic on the cone {| ξn+1 |> λ′ | ξ′ |} for

any λ′ > 0, and thus we can easily invert L1 in this cone. So it remains to investigate L1

on a cone {| ξn+1 |< λ | ξ′ |}. As in [7], our goal now is to eliminate ξn+1 from underneath

the root sign in (2.14). First we change notation. Set t = xn+1, τ = ξn+1, x = (x1, · · · , xn) ,
and ξ = (ξ1, · · · , ξn) (which used to be denoted by ξ′) so that on the cone {| τ |< λ | ξ |}
we have

L1(x, t, ξ, τ)

= iτ + a(t, x)

√√√√g̃♯n+1,n+1τ
2 +

n∑
j=1

g̃♯n+1,j (x, t, ξ, τ) ξiξj +

n+1∑
i,j=1

g̃♯i,j (x, t, ξ, τ) ξiξj

+ ia(t, x)
n+1∑
k=1

b♯k (x, t, ξ, τ) ξk + ia(t, x)b♯n+1 (x, t, ξ, τ) τ.

Now decompose

a (x, t, ξ, τ) = a# (x, t, ξ, τ) + a♭ (x, t, ξ, τ)

with a# ∈ S0
1,δ and a♭ ∈ Cλ+2S

−δ(λ+2)
1,δ where δ = max

{
1

λ+1 ,
1
2

}
, and let

L̃1(x, t, ξ, τ)

= iτ + a# (x, t, ξ, τ)

√√√√g̃#n+1,n+1τ
2 +

n∑
j=1

g̃#n+1,j (x, t, ξ, τ) ξiξj +
n+1∑
i,j=1

g̃#i,j (x, t, ξ, τ) ξiξj

+ ia# (x, t, ξ, τ)
n+1∑
k=1

b#k (x, t, ξ, τ) ξk + ia# (x, t, ξ, τ) b#n+1 (x, t, ξ, τ) τ.

Since a is small in U , we may assume that a# is also small there.

Lemma 2.1. L̃1(x, t, ξ, τ) = L̃0(x, t, ξ, τ)L̃ (x, t, ξ, τ) where

L̃ (x, t, ξ, τ) = iτ + ia♯Q
(
x, t, ξ, a♯

)
,

with Q,
(

∂
∂z

)k
Q (x, t, ξ, z) ∈ S1

1,δ, c |ξ| ≤ ReQ ≤ c−1 |ξ| for some c > 0; and

L̃0 (x, t, ξ, τ) = 1 + a♯Q0

(
x, t, ξ, a♯

)
,

with Q0 ∈ S1
1,δ.
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Proof. Let z = a♯ and write

L̃1(x, t, ξ, τ)

= iτ + z

√√√√g̃♯n+1,n+1τ
2 +

n∑
j=1

g̃♯n+1,jξiξj +
n+1∑
i,j=1

g̃♯i,jξiξj + iz
n+1∑
k=1

b♯kξk + ib♯n+1τ


= f

(
x, t, ξ̃, τ̃ , z

)
|ξ| ,

where ξ̃ = ξ
|ξ| , τ̃ = τ

|ξ| and
∣∣∣ ∂
∂τ̃ f

(
x, t, ξ̃, τ̃ , z

)
|τ̃=0

∣∣∣ ≥ 1− c |z| for some constant c > 0. Since

z is small, ∂
∂τ̃ f |τ̃=0 and so by the Malgrange preparation theorem,

f
(
x, t, ξ̃, τ̃ , z

)
= f0

(
x, t, ξ̃, τ̃ , z

)(
iτ̃ + g0

(
x, t, ξ̃, z

))
, f0 ̸= 0.

But f
(
x, t, ξ̃, τ̃ , z

)
= 0 and so g0

(
x, t, ξ̃, z

)
= zg1

(
x, t, ξ̃, z

)
and

∣∣∣( ∂
∂z

)k
g
∣∣∣ ≤ Ck. Now let

L̃ (x, t, ξ, τ) = |ξ|
(
iτ̃ + g0

(
x, t, ξ̃, a♯

))
= iτ + a♯ |ξ| g1

(
x, t, ξ̃, a♯

)
= iτ + a♯Q

and

L̃0 (x, t, ξ, τ) = f0

(
x, t, ξ̃, τ̃ , a♯

)
.

A simple computation shows that ReQ
|ξ| is bounded above and below by two positive constants

and that f0

(
x, t, ξ̃, τ̃ , 0

)
= 1. This completes the proof of Lemma 2.1.

We now give the corresponding operator decomposition.

Lemma 2.2. Let L and L0 denote the operators with symbols iτ + aQ (x, t, ξ, a) and

1 + a♯Q0

(
x, t, ξ, a♯

)
where Q and Q0 are as in Lemma 2.1 respectively. We have

L1 = L0 ◦ L+ aBδ +B−δ, (2.17)

where Bδ ∈ Oδ

(0,λ+2) and B−δ ∈ O−δ

(0,λ+2).

Proof. Since a♭ ∈ Cλ+2S−δ−1
1,δ , L1 − L̃1 ∈ O−δ

(0,λ+2). By Lemma 2.1 and Propostion 1.2

in [8],

L̃0 ◦ L̃− L̃1 =
(
a♯Q0

)
◦
(
a♯Q

)
− a♯Q0a

♯Q

= (aQ0) ◦
(
a♯Q

)
− aQ0a

♯Q+B−δ

= a
{
Q0 ◦

(
a♯Q

)
−Q0a

♯Q
}
+B−δ = aBδ +B−δ.

On the other hand,

L̃− L = a♯Q
(
x, t, ξ, a♯

)
− aQ (x, t, ξ, a) = a♭B1 = B−δ.

If we now write

L1 = L̃1 +
(
L1 − L̃1

)
= L̃0 ◦ L̃+

(
L̃1 − L̃0 ◦ L̃

)
+
(
L1 − L̃1

)
= L̃0 ◦ L+ L̃0 ◦

(
L̃− L

)
+
(
L̃1 − L̃0 ◦ L̃

)
+
(
L1 − L̃1

)
,

the lemma follows.

2.4. A Parametrix

An operator K is called a left (respectively right) parametrix of an operator L if KL =

I + S (respectively LK = I + S), where S is a smoothing operator. In this paper, however,

it will be more convenient to call K a left (or right) parametrix of L if KL (or LK) = I +S
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provided there is δ > 0 such that S is in O−δ

I for some appropriate interval I. As we shall

show, this definition is sufficient to carry out the estimates we need.

In our local setting, the conditions in cases (I) and (II) in §2 can be restated as follows:

(I) a(x, t) ≥ 0 for (x, t)ϵ In × I or a(x, t) ≤ 0 for (x, t)ϵ In × I; a(x,±1) ̸= 0 for x ∈ In.

(II) a(x, t) ≥ 0 for t ≥ 0, x ϵ In and a(x, t) ≤ 0 for t ≤ 0, x ϵ In; a(x,±1) ̸= 0 for x ∈ In.

First, we will construct a left parametrix K for L microlocally in the cone {|τ | < λ |ξ|}
in cases (I) and (II). Then we use this to obtain a parametrix for L1, and finally to obtain

a parametrix and a priori estimates for the original problem (2.1) and (2.2).

By the choice of the coordinate charts, there exist c > 0, 1 > c′ > 0 , such that |a(x, t)| ≥ c

for |t| ≥ c′. Since ρ = ρj in the previous section is compactly supported in In × I, we may

pick ρ∗ and ρ̃ ∈ C∞
c (In × I), ρ∗ = 1 on supp ρ, and ρ̃ = 1 on supp ρ∗. By making the

change of variable t → −t if necessary, we may assume that a(x, t) ≥ 0 in case (I). Recall

that L in Lemma 2.1 is given by

L(t, x, τ, ξ) = iτ + a(t, x)Q(x, t, ξ, a),

where c |ξ| ≤ |ReQ| ≤ c−1 |ξ|. Now, let

Ã(x, t, t′, ξ) =

∫ t

t′
a(x, θ)Q(x, θ, ξ, a)dθ,

A(x, t, t′) =

∫ t

t′
a(x, θ)dθ,

K(x, t, t′, ξ) = ρ̃(x, t)e−Ã(x,t,t′,ξ).

Define

Ku(x, t) = (2π)−
n
2

∫ t

t0

∫
|ξ|≥1

eix·ξK(x, t, t′, ξ)ũ∗ (ξ, t′)dξdt′,

Tu(x, t) = (2π)−
n
2

∫ t

t0

∫
|ξ|≥1

eix·ξK(x, t, t′, ξ)a(x, t′)Q (x, t′, ξ, a (x, t′)) ũ∗ (ξ, t′)dξdt′,

Ku0(x, t) = −(2π)−
n
2

∫
|ξ|≥1

eix·ξρ̃(x, t0)e
−Ã(x,t,t0,ξ)ũ∗0 (ξ)dξ, (2.18)

where u∗ = ρ∗u , ũ∗ (ξ, t′) =
∫
Rn e

−ix·ξu∗(x, t′)dx, u∗0 (x) = ρ∗ (x, 0)u0 (x) , ũ∗0 (ξ) =∫
Rn e

−ix·ξu∗0(x)dx, and t0 = −1 if a satisfies case (I), while t0 = 0 if a satisfies case (II).

Remark 2.1. The choice of t0 is crucial. With the above choice, a(x, θ) keeps the same

sign in (t′, t) for t′ ∈ (t0, t), and Re
(
Ã(x, t, t′, ξ)

)
≥ 0 and A(x, t, t′) ≥ 0 for t′ ∈ (t0, t).

Claim 2.1. If µp = min
{
1− δ − 1

p(λ+3) ,
λ+2

2(λ+3)

}
> 0, then the operator K is a left

parametrix for L in Case (I), and a left parametrix for L in Case (II) for functions u with

u vanishing at t = 0 (i.e., KLu = u+ Su if u |t=0= 0).

Proof. We have

KL = K ◦ ∂t +K ◦ aQ.

Performing integration by parts in K ◦ ∂t we get

KLu = u−Ru−Ku0 +O−∞
(−1,λ+2),
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where u0 = u (t0, x) and

Ru = −
∫ ∫

eix·ξa (t′, x)Q (t′, x, ξ, a) e−Ã(x,t,t′,ξ)ũ∗ (t′, ξ)dξdt′ +K ◦ aQ.

By Lemma 1.7 in [8] we have that R is in O−µp

(−1,λ+2). We get

KLu = u+ S′u−K ◦ u0,

where S′ is in O−µp

(−1,λ+2) . In Case I, u0 = u (x,−1) = 0 since suppu is compact. This

completes the proof of the claim.

Now we turn to constructing a left parametrix for L1. Since L0 ∈ Cλ+2S0
1,δ is elliptic,

there is L−1
0 ∈ Cλ+2S0

1,δ such that L−1
0 ◦ L0 = I + J where J is in O−2

(0,λ+2). Now set

K̃ = K ◦ L−1
0 . By the rough ψdo calculus and Lemma 2.2 (since a ∈ Cλ+2), we have

K̃ ◦ L1u = K ◦ Lu+K ◦ aBδu+O−δ

(0,λ+2)u

= K ◦ Lu+ (K ◦ a)Bδu+O−δ

(0,λ+2)u

= u−Ru−Ku0 +O−µp

(0,λ+2)u,

where u0 = u |t=t0 , since K ◦ a ∈ O
1

(λ+3)p
−1

(0,λ+2) and µp > 0 . By Lemma 1.7 in [8],

K̃ ◦ L1u = u−Ku0 + S̃u,

with S̃ ∈ O−µp

(0,λ+2). Note that in case (I), u0 is smooth and so K̃ ◦ L1 = I + S̃.

Up to this point we have only worked on the cone {|τ | < |ξ′|} for L1 microlocally. We are

now ready to obtain a left parametrix for the model problem in the coordinate chart:

L1u = g − ∂tF + (Da) g1 + aw (2.19)

or {
L1u = g − ∂tF + (Da) g1 + aw,

u |t=0 = h− F.
(2.20)

Proposition 2.1. If u satisfies either (2.19) or (2.20) above with the assumption that

g, F, g1, u and w are smooth at t = −1 and t = 1, then

u = K̃ (φg) + K̃ ◦ (Da)φg + T ◦ L−1
0 (F ) + K̃ ◦ aw

+O0

(0,λ+2) (F ) +O−µp

(0,λ+2) (u) +O−1

(0,λ+2) (w) +O−1

(0,λ+1) (g1) +O−1

(0,λ+2) (g) ,

in case (I), and

ρub = K̃ (φg) + K̃ ◦ (Da)φg + T ◦ L−1
0 (F ) + K̃ ◦ aw

+K{h+B1 (g) |t=0 +B2 (g1) |t=0}+O0

(0,λ+2) (F )

+O−µp

(0,λ+2) (u) +O−1

(0,λ+2) (w) +O−1

(0,λ+1) (g1) +O−1

(0,λ+2) (g) ,

in case (II), where B1, B2 ∈ O−1

(0,λ) (∂Ω).

Proof. Let ψ̃ ∈ C∞ (Rn) be homogeneous of degree zero on |ξ| ≥ 1, with supp ψ̃

⊂ {|ξn+1| > λ′ |ξ′|}. If we apply ψ̃ to the above equations and commute ψ̃ with L1 we get

L1ψ̃u = ψ̃g − ∂tψ̃F + ψ̃ (Da) g1 + ψ̃aw +O0

(0,λ+2)u.

Since L1 is elliptic on {|ξn+1| > λ′ |ξ′|}, there is L−1
1 ∈ O−1

(0,λ+1) such that L−1
1 ◦ L1 =

I +O−1

(−1,λ+2) and L1 ◦L−1
1 = I +O−1

(−1,λ+1) (again by the rough ψdo calculus). Apply L−1
1
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to this equation to obtain

ψ̃u = L−1
1 ψ̃g − L−1

1 ∂tψ̃F + L−1
1 ψ̃ (Da) g1 + L−1

1 ψ̃aw +O−1

(0,λ+2)u. (2.21)

Now pick ψ,φ ∈ C∞ (Rn) homogeneous of degree zero on |ξ| ≥ 1, with

suppψ ⊂ {|ξn+1| > λ′ |ξ′|}

and ψ + φ = 1 on |ξ| ≥ 1. Replacing ψ̃ by ψ in (2.21) we obtain

ψu = L−1
1 ψg − L−1

1 ∂tψF + L−1
1 ψ (Da) g1 + L−1

1 ψaw +O−1

(0,λ+2)u.

Now we wish to identify ψu |t=0 in case (II). If we use the equation

∂tψu = −ψaQ̃u+ ψg − ∂tψF + ψ (Da) g1 + ψaw,

integrate in the t variable from −1 to 0, and use the fact that evaluation of ψu, ψg, etc. at

t = −1 is smoothing, we obtain

ψu |t=0 =

∫ 0

−1

ψaQ̃u+

∫ 0

−1

ψg − ψF |t=0 +

∫ 0

−1

ψ (Da) g1 +

∫ 0

−1

ψaw +O−∞
(0,λ+2)F

= −
∫ 0

−1

∂t ◦ ∂−1
t ψaQ̃u+

∫ 0

−1

∂t ◦ ∂−1
t ψg − ψF |t=0 +

∫ 0

−1

∂t ◦ ∂−1
t ψ (Da) g1

+

∫ 0

−1

∂t ◦ ∂−1
t ψaw +O−∞

(0,λ+2)F

= −ψF |t=0 +O−1

(0,λ+1) (g1) |t=0 +O−1

(0,λ+2) (g) |t=0

−
∫ 0

−1

∂t ◦ a
(
∂−1
t ◦ ψQ̃

)
u−

∫ 0

−1

∂t ◦
[
∂−1
t ψ, a

]
◦ Q̃ ◦ ψ̃u

+

∫ 0

−1

∂t ◦ a∂−1
t ◦ ψw +

∫ 0

−1

∂t ◦
[
∂−1
t ψ, a

]
w +O−∞

(0,λ+2) (F, u, g, g1) ,

where ψ̃ = 1 on suppψ, supp ψ̃ ⊂ {|ξn+1| > λ′ |ξ′|}.
Now if we substitute (2.21) for ψ̃u in the above equation, and note that a (x, 0) = 0, we

get

ψu |t=0 = −ψF |t=0 +O−1

(0,λ+1) (g1) |t=0 +O−1

(0,λ+2) (g) |t=0

+O−1

(0,λ+2) (F ) |t=0 +O−2

(0,λ+2) (g, g1, w, u) |t=0 . (2.22)

On the other hand, applying φ to the equations yields

L1φu = φg − ∂tφF + φ (Da) g1 + φaw + [φ,L1]u

= φg − ∂tφF + φ (Da) g1 + φaw +
[
φ, aQ̃

]
u

= φg − ∂tφF + φ (Da) g1 + φaw + [φ, a] ◦ Q̃u+ a
[
φ, Q̃

]
u.

By the rough ψdo calculus Proposition 1.2 in [8],
[
φ, Q̃

]
∈ Oδ

(0,λ+2). Now apply K̃ to the

above to obtain

φu = K (φu |t=t0) + S̃u+ K̃φg − K̃ ◦ ∂tφF + K̃φ (Da) g1 + K̃φaw

+ K̃ ◦ [φ, a] ◦ Q̃u+ K̃ ◦ a ◦ Oδ

(0,λ+2) (u) +O−1

(0,λ+2) (u) .

Next we commute ∂t with L−1
0 , use integration by parts in K̃ ◦ ∂tφF , commute Da with

φ, commute a with L−1
0 , and by Proposition 1.4 in [8] use the fact that Ka ∈ O

1− 1
p(λ+3)

(0,λ) to
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arrive at

φu = K (φu |t=t0) + K̃ψg − φF + T ◦ L−1
0 φF +K

(
L−1
0 φF |t=t0

)
+ K̃aφw

+ K̃ ◦ [φ, a] ◦ Q̃u+ K̃ ◦ [φ, a]w + K̃ ◦ (Da)ψg1 +O−µp

(0,λ+2) (u) +O0

(0,λ+2) (F )

+O−1

(0,λ+1) (g1) +O−1

(0,λ+2) (w) .

In case (I), L−1
0 φF |t=t0 is smoothing, while in case (II),

L−1
0 φF |t=0= φF |t=0 +O−1

(0,λ+2) (F ) |t=0 .

Claim. 2.2. K̃ ◦ [φ, a] ∈ O− δ
4−1

(0,λ+2).

Proof. To begin with, note that [φ, a] = φ ◦
(
a♯ + a♭

)
− aφ =

(
a♯
)
x
φξ + O− δ

4−1

(0,λ+2). We

need to show that K̃ ◦
(
a♯
)
x
∈ O− δ

4

(0,λ+2), and for this we write K̃ ◦
(
a♯
)
x
= K̃ ◦ax−K̃ ◦

(
a♭
)
x
,

where K̃ ◦ ax ∈ O− δ
4

(0,λ+1) by Proposition 1.4 in [8] and by commuting ax with L−1
0 . We thus

get K̃ ◦
(
a♯
)
x
∈ O− δ

4

(0,λ+1) since a♭ ∈ O−1−δ

(0,λ+2). To show K̃ ◦
(
a♯
)
x
∈ O− δ

4

(0,λ+2), we apply Dx

or Dt to K̃ ◦
(
a♯
)
x
to get

Dx ◦ K̃ ◦
(
a♯
)
x
= K̃ ◦

(
a♯
)
x
◦Dx +O

1
2

(0,λ+1),

Dt ◦ K̃ ◦
(
a♯
)
x
= −KaQ ◦ L−1

0 ◦
(
a♯
)
x
+ L−1

0 ◦
(
a♯
)
x
∈ O

1
2

(0,λ+1),

and this completes the proof of the claim.

Thus we have

φu = K̃ψg − φF + T ◦ L−1
0 φF + K̃ (Da)φg1 + K̃aφw

+O−µp

(0,λ+2) (u) +O0

(0,λ+2) (F ) +O−1

(0,λ+1) (g1) +O−1

(0,λ+2) (w) ,

in case (I), and

φu = K̃ψg − φF +K (Da)φg1 +K (φu |t=0 +φF |t=0) + K̃aφw

+O−µp

(0,λ+2) (u) +O0

(0,λ+2) (F ) +O−1

(0,λ+1) (g1) +O−1

(0,λ+2) (w) ,

in case (II). By (2.22),

(φu+ φF ) |t=0 = (u− ψu) |t=0 +φF |t=0 +smoothing term

= h− ψF |t=0 −ψu |t=0 +smoothing term

= h+O−1

(0,λ+2) (g) |t=0 +O−1

(0,λ+1) (g1) |t=0

+O−1

(0,λ+2) (F ) |t=0 +O−2

(0,λ+2) (g, g1u,w) |t=0 .

The proposition now follows since K◦O−1

(0,λ+2) |t=0∈ O0

(0,λ+2− 1
p ) (∂Ω) by Proposition 1.4 in

[8].

Now we return to the original equations (2.1) and (2.2) and obtain a left parametrix for

them. As in Subsection 2.1, Ω ⊂ ∪k
j=0Uj and ∂Ω ⊂ ∪k

j=1Uj . Let ρ ∈ Cλ+2 (Ω) ∩C∞
c (Uj) for

some j ≥ 1 (elliptic theory handles the case j = 0) . Let U = Uj .

Proposition 2.2. Suppose that either u ∈ Λs (Ω) for some s > 1, or u ∈ Hs
p (Ω) for

some s > 1 + 1
p , where 1 < p <∞. Let ρ, ρ̃ ∈ C∞

c (U) with ρ̃ = 1 in a rectangular (relative
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to the coordinate system) subdomain Ũ of U with Ũ ⊃ supp ρ. If u satisfies (2.1), then

ρub = ρK̃ (ρ̃g) + ρK̃ ◦ (Da) ρ̃g + ρT ◦ L−1
0 (ρ̃Nf |∂Ω) +O0

(0,λ+2) (ρ̃Nf |∂Ω)

+O−µp

(0,λ+2) (ρ̃ub, ρ
∗ub) +O−1

(0,λ+1) (ρ̃g1) +O−1

(0,λ+2) (ρ̃g) , (2.23)

while if u satisfies (2.2), then

ρub = ρK̃ (ρ̃g) + ρK̃ ◦ (Da) ρ̃g + ρT ◦ L−1
0 (ρ̃Nf |∂Ω)

− ρK
{
ρ̃h+B1 (ρ̃g) |Γ +B2 (ρ̃g1) |Γ

}
+O0

(0,λ+2) (ρ̃Nf |∂Ω) +O−µp

(0,λ+2) (ρ̃ub, ρ
∗ub) +O−1

(0,λ+1) (ρ̃g1) +O−1

(0,λ+2) (ρ̃g) ,
(2.24)

where ub = u |∂Ω, Bj ∈ O−1

(0,λ+2), j = 1, 2.

Proof. We prove (2.24), the proof for (2.23) being similar but easier. Let v = u −Nf ,

where N denotes the Neumann operator. We have
Pv = 0 on Ω,
→
ℓ v = g + (Da) g1 −

→
TNf |∂Ω on ∂Ω,

v = h−Nf on Γ.

We must prove (2.24) for v. Choose ρ∗ ∈ C∞
c (U) with ρ∗ = 1 on a rectangular subdomain

U∗ where U∗ ⊃ supp ρ, a ̸= 0 on the top and bottom of U∗ , and ρ̃ = 1 on supp ρ∗. Then

ρ∗v satisfies 
P (ρ∗v) = 0 on Ω,
→
ℓ (ρ∗v) = ρ∗g + (Da) ρ∗g1 − ρ∗

→
TNf |∂Ω −

(
→
ℓ ρ∗

)
v on ∂Ω,

ρ∗v = ρ∗h− ρ∗Nf on Γ.

Now set ṽ = Eρ∗vb so that
→
ℓ ṽ |∂Ω= L1 (ρ

∗vb) by the construction of E.

Meanwhile,

P (ρ∗v − ṽ) = [ρ∗, P ] v −B1 (ρ
∗vb) on Ω,

ρ∗v − ṽ = 0 on ∂Ω,
(2.25)

where B1 is as in (2.13). Solving the Dirichlet problem (2.25), we obtain

ρ∗v − ṽ = G {[ρ∗, P ] v −B1 (ρ
∗vb)} ,

where G ∈ O−2

(1,λ+2) (Ω), PG = I, and G |∂Ω= 0. Since
→
T (ρ∗v − ṽ) = 0 on ∂Ω, we conclude

that
→
ℓ (ρ∗v − ṽ) |∂Ω= a−→n G [ρ∗, P ] v − aB′

0 (ρ
∗vb) ,

where B′
0 =

(−→n GB1

)
|∂Ω. So B′

0 : Λs+1−δλ (∂Ω) → Λs (∂Ω) for 0 < s ≤ λ + 1 and

B′
0 : Bs− 1

p+1−δλ,p
p (∂Ω) → Bs− 1

p ,p
p (∂Ω) for 0 ≤ s < λ + 1. But, for any ρ̃ ∈ C∞

c (Ω) with

ρ̃ = 1 on the support of ρ∗, we get

ρ∗g + (Da) ρ∗g1 − ρ∗
→
TNf |∂Ω −

(
→
ℓ ρ∗

)
vb − L1vb

= −aB′
0 (ρ

∗vb) + aB̃0 (ρ̃vb) ,

and

−→n G [ρ∗, P ] ρ̃v |∂Ω= B̃0 (ρ̃vb)
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with B̃0 ∈ O0

(0,λ+1) (∂Ω). By Proposition 2.1, with w = B′
0 (ρ

∗vb) + B̃0 (ρ
∗vb),

ρ∗vb = K̃ (ρ∗g) + K̃ ◦ (Da) ρ∗g + T ◦ L−1
0 (ρ∗Nf |∂Ω)− K̃

(
→
ℓ ρ∗

)
vb +

(
K̃ ◦ a

)
B̃0ρ̃vb

+ K̃ ◦ a ◦B′
0 (ρ

∗vb)−K
{
ρ∗h+B1 (ρ

∗g) |Γ +B2 (ρ
∗g1) |Γ +B1

((
→
ℓ ρ∗

)
vb

)
|Γ
}

+O0

(0,λ+2) (ρ̃Nf |∂Ω) +O−µp

(0,λ+2) (ρ
∗vb) +O−1

(0,λ+1) (ρ̃g1) +O−1

(0,λ+2) (ρ̃g) .

If we now multiply the above identity by ρ, commute a with L−1
0 , and note that K̃ ◦ a ∈

O
−1+ 1

p(λ+3)

(0,λ+2) (∂Ω), we have K̃ ◦ a ◦ B̃0, K̃ ◦ a ◦B′
0 ∈ O−µp

(0,λ+2) (∂Ω) and

|x− y| ≥ δ0 > 0,

∫ t

t′
a (x, θ) dθ ≥ δ0 > 0,

for (x, t) ∈ supp ρ, (y, t′) ∈ supp

(
→
ℓ ρ∗

)
∪ supp (ρ̃− ρ∗). We finally conclude that

ρK̃ (ρ̃− ρ∗) , ρK ◦
→
ℓ ρ∗, ρK ◦

(
B1

→
ℓ ρ∗

)
|Γ, ρK ◦ (ρ̃− ρ∗) ∈ O−1

(0,λ+2) (∂Ω) ,

ρT ◦ L−1
0 (ρ̃− ρ∗) ∈ O0

(0,λ+2) (∂Ω) ,

and (2.24) now follows easily.

We now consider a priori estimates for the original equations (2.1) and (2.2). Suppose

that P , Ω, and
−→
ℓ =

−→
T +a−→n are as at the beginning of Subsection 1.1 with λ > 0. Consider

the following problems: {
Pu = f in Ω,
→
ℓ u = g + (Da) g1 on ∂Ω,

(2.26)

and 
Pu = f in Ω,
→
ℓ u = g + (Da) g1 on ∂Ω,
u = h on Γ.

(2.27)

Proposition 2.3. Suppose that P , Ω, and ℓ⃗ are as at the beginning of Subsection

1.1 with λ > 0, let µp = min
{
1− δ + 1

p(λ+3) ,
λ+2

2(λ+3)

}
for 1 < p < ∞ and 0 < µ∞ <

min
{
1− δ, λ+2

2(λ+3)

}
, and let D =

n+2∑
k=1

bk (x)
∂

∂xk
∈ Cλ+2

(
Ω
)
be a vector field tangent to ∂Ω

for x ∈ ∂Ω.

(i) Let 1 < s ≤ λ + 2. If ℓ⃗ satisfies case (I) and the Tδ condition for some δ ≥ 0, and if

u ∈ Λs′(Ω) for some s′ > 1 satisfies (2.27), then u ∈ Λs(Ω), and there is Cs such that

∥u∥Λs(Ω) ≤ Cs

(
∥u∥Λs−µ∞ (Ω) + ∥f∥Λs−2(Ω) + ∥g∥Λs−δ(∂Ω) + ∥g1∥

Λs− 1
4 (∂Ω)

)
. (2.28)

(ii) Let 1 < s ≤ λ+ 2. If ℓ⃗ satisfies case (II) and the Tδ condition for some δ ≥ 0, and if

u ∈ Λs′(Ω) for some s′ > 1 satisfies (2.27), then u ∈ Λs(Ω), and there is Cs such that

∥u∥Λs(Ω) ≤ Cs

(
∥u∥Λs−µ∞ (Ω) + ∥f∥Λs−2(Ω) + ∥g∥Λs−δ(∂Ω) + ∥g1∥

Λs− 1
4 (∂Ω)

+ ∥h∥Λs(Γ)

)
.

(2.29)

(iii) Let α ≥ 0, 1 + 1
p < s < λ + 2 − α. Suppose that ℓ⃗ satisfies case (I) above, and in

addition satisfies the A∓
p,α condition on Γ, A=

p,α on (Σ+ ∩N ) \ Γ∗, A‡
p,α on (Σ− ∩N ) \ Γ∗
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for some α ≥ 0 and 1 < p <∞. Assume moreover that δλ−α > 0. If u ∈ Hs′

p (Ω) for some

s′ > 1 + 1
p satisfies (2.26), then u ∈ Hs

p(Ω), and there is Cs such that

∥u∥Hs
p(Ω) ≤ Cs

(
∥u∥

H
s−µp
p (Ω)

+ ∥f∥Hs−2+σ
p (Ω) + ∥g∥

B
s−δ− 1

p
,p

p (∂Ω)
+ ∥g1∥

B
s− 1

4
− 1

p
,p

p (∂Ω)

)
.

(2.30)

(iv) Let α ≥ 0, 1 + 1
p < s < λ + 2 − α. Suppose that ℓ⃗ satisfies case (II) above, and in

addition satisfies the A∓
p,α condition on Γ, A=

p,α on (Σ+ ∩N ) \ Γ∗, A‡
p,α on (Σ− ∩N ) \ Γ∗

for some α ≥ 0 and 1 < p < ∞, and also the Pγ condition for some γ ≥ 0. If u ∈ Hs′

p (Ω)

for some s′ > 1 + 1
p satisfies (2.27), then u ∈ Hs

p(Ω), and there is Cs such that

∥u∥Hs
p(Ω) ≤ Cs

(
∥u∥

H
s−µp
p (Ω)

+ ∥f∥Hs−2+α
p (Ω) + ∥g∥

B
s−δ− 1

p
,p

p (∂Ω)

+ ∥g1∥
B

s− 1
4
− 1

p
,p

p (∂Ω)
+ ∥h∥

B
s− γ

p
− 1

p
,p

p (Γ)

)
. (2.31)

Proof. Note that

K̃a = K ◦ L−1
0 ◦ a = K ◦ a+K ◦

[
L−1
0 , a

]
,[

L−1
0 , a

]
= L−1

0 ◦ a− aL−1
0 = L−1

0 ◦ a♯ − a♯L−1
0 + L−1

0 ◦ a♭ − a♭L−1
0

=
(
L−1
0

)
ξ
◦
(
a♯
)
x
+O−1−δ

(0,λ+2) ∈ O−1

(0,λ+2),

by the improved estimates in Propostion 1.1 in [8]. The Proposition now follows from

Proposition 2.2, Theorems 2.1, 2.3, 2.5, 2.6 and Lemmas 1.11, 1.12 in [8], and the fact that

the Tδ condition implies the Pδ condition.

Note that Theorem 2.2 follows from the above proposition.

Proposition 2.4. If the zero order term c (x) in the differential operator P is negative

(respectively nonnegative) and µp > 0, then the solution u to (2.26 ) (respectively (2.27)) is

unique.

Proof. Suppose u1 and u2 are solutions inH
s′

p (Ω) for some s′ > 1+ 1
p , and set u = u1−u2.

Then u satisfies (2.26) or (2.27) with f = g = h = 0. Let 1 < s < min {λ+ 2, s′ + µp}. From
the a priori estimates in Proposition 2.3 we have u ∈ Hs

p(Ω) . By the Sobolev embedding

theorem, we now obtain u ∈ H
s−µp
q (Ω) for 1

q ≥ 1
p − µp

n . Applying the a priori estimates

in Proposition 2.3 again, but for q in place of p, we conclude that u ∈ Hs
q (Ω). Alternating

applications of the Sobolev embedding theorem and the a priori estimates a finite number

of times leads to u ∈ Λs(Ω). Since s > 1, the standard argument using the Hopf lemma as

in [7] shows that u ≡ 0, so u1 = u2.

Proposition 2.5. Suppose s > 1 + 1
p and that P =

n+2∑
i,j

aij∂i∂j +
n+2∑
k

bk∂k + c where

c (x) ≤ c0 < 0 for some constant c0. Let ∥P∥Λλ ≡
n+2∑
i,j

∥aij∥Λλ +
n+2∑
k

∥bk∥Λλ + ∥c∥Λλ and

suppose that
n+2∑
i,j=1

aijξiξj ≥ c1 |ξ|2 for all ξ ∈ Rn+2.

If u satisfies (2.26) or (2.27), then the terms

∥u∥Λs−µ∞ (Ω) and ∥u∥
H

s−µp
p (Ω)
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can be omitted from the inequalities (2.28) to (2.31) in Proposition 2.3 if we replace Cs by

C

(
c0, c1, ∥P∥Λλ ,Ω,

−→
ℓ

)
.

Proof. If for example

∥u∥Hs
p(Ω) ≤ C

(
∥f∥Hs−2+α

p (Ω) + ∥g∥
B

s−δ− 1
p
,p

p (∂Ω)
+ ∥h∥

B
s− γ

p
− 1

p
,p

p (Γ)

)
(2.32)

fails, then there are sequences {Pk}, {uk}, {fk}, {gk}, and {hk} such that

∥Pk∥Λλ(Ω) ≤ C ′ and Pk is uniformly elliptic for all k,

∥uk∥Hs−µp
p (Ω)

= 1 for all k,

∥fk∥Hs−2+α
p (Ω) + ∥gk∥

B
s−δ− 1

p
,p

p (∂Ω)
+ ∥hk∥

B
s− γ

p
− 1

p
,p

p (Γ)
→ 0 as k → ∞.

From (2.31) we obtain that ∥uk∥Hs
p(Ω) ≤ C for all k, and so by compactness there is a

subsequence, which we continue to denote by {uk}, such that uk converges in Hs−ϵ
p (Ω) to

some function u ∈ Hs−ϵ
p (Ω). Also, there is an elliptic operator P such that Pk → P in

Λλ−ϵ. However since Pk ∈ Λλ, a straightforward computation with a difference operator

shows that P ∈ Λλ. Now Pkuk → Pu in Hs−ϵ−2
p (Ω), ℓ⃗uk |∂Ω→ ℓ⃗u |∂Ω in Bs−ϵ−1− 1

p ,p
p (∂Ω)

and uk |Γ→ u |Γ in Bs−ϵ− 2
p ,p

p (Γ). Thus u satisfies (1.6) with f = g = gjk = h ≡ 0

and ∥u∥
H

s−µp
p (Ω)

= 1, contradicting Proposition 2.4. Thus (2.32) holds and the proof is

complete.

Now we can give the proof of Theorems 1.1 and 1.3.

Proof (of Theorems 1.1 and 1.3). The proof of Theorem 1.1 is similar to the proof

of part (A) of Theorem 1.3 given below. First suppose that P (x, 0) < 0. Fix 1 + 1
p < s <

λ+2−α and f ∈ Hs−2+α
p (Ω), g ∈ Bs−δ− 1

p ,p
p (∂Ω) and h ∈ Bs− γ

p− 1
p ,p

p (Γ) (again, we consider

only case (II)). Choose fk ∈ C∞(Ω), gk ∈ C∞(∂Ω), hk ∈ C∞(Γ) and Pk ∈ C∞ (Ω) such that

∥f − fk∥Hs−2+α
p (Ω) + ∥g − gk∥

B
s−δ− 1

p
,p

p (∂Ω)
+ ∥h− hk∥

B
s− γ

p
− 1

p
,p

p (Γ)
→ 0 as k → ∞,

∥P − Pk∥Λλ(Ω) → 0 as k → ∞.

Then by a theorem in [15], there is uk ∈ Λλ+1 (Ω) satisfying
Pkuk = fk in Ω,
→
ℓ uk = gk on ∂Ω,
uk = hk on Γ.

But the two earlier propositions, together with the a priori estimates in Proposition 2.3,

show that

∥uk∥Hs
p(Ω) ≤ C, for all k. (2.33)

Thus given ϵ > 0 with 1 + 1
p < s − ϵ, there is a subsequence, which we continue to denote

by {uk}, that converges to u in Hs−ϵ
p (Ω). It follows upon letting k → ∞ that

Pu = f in Ω,
→
ℓ u = g on ∂Ω,
u = h on Γ.

Finally, by (2.33), we obtain ∥u∥Hs
p(Ω) ≤ C also.
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For general P , choose a constant c sufficiently negative that the coefficient of the zero

order term of P + c < 0. By the result just proved, we can solve the problem
(P + c)u = f in Ω,
→
ℓ u = g on ∂Ω,
u = h on Γ

for u ∈ Hs
p (Ω) given that

f ∈ Hs−2+α
p (Ω), g ∈ Bs−δ− 1

p ,p
p (∂Ω) and h ∈ Bs− γ

p− 1
p ,p

p (Γ).

But then Pu = f − cu where cu is smoother than f and functional analysis now completes

the proof.

Finally, we consider the necessary assertions in part (B) of Theorem 1.3 . If for some

ϵ > 0 there is, for every f ∈ Hs−2+α
p (Ω), a function u ∈ Hs

p (Ω) with Pu− f ∈ Hs+ϵ
p (Ω) ,(

→
ℓ + b

)
u |∂Ω≡ g ∈ Bs− 1

p ,p
p (∂Ω)

and

u |Γ≡ h ∈ Bs− 1
p ,p

p (∂Ω) ,

then for any c ∈ R, we have
(P + c)u = f + cu+ (Pu− f) in Ω,
→
ℓ u = g on ∂Ω,
u = h on Γ.

Now choose c sufficiently negative and let N denote the Neumann operator for P + c. Then

by Proposition 2.2,

ρT ◦ L−1
0 (ρ̃N (f + cu+ (Pu− f))) ∈ Bs− 1

p ,p
p (∂Ω) ,

since the remaining terms in (2.24) are automatically in this Besov space. Since T maps

Bt,p
p (∂Ω) to B

t− 1
(3+λ)p

,p
p (∂Ω) by Theorem 2.1 in [8], we conclude that

ρT ◦ L−1
0 (ρ̃Nf) ∈ B

s+ϵ− 1
(3+λ)p

− 1
p ,p

p (∂Ω)

if ϵ ≤ 1
(3+λ)p − α since both u and Pu− f are smoother than f by order ϵ. Thus, since the

Neumann operator is surjective (for c sufficiently negative), and L−1
0 is elliptic on the cone

{|τ | < λ |ξ|}, we see that ρφ ◦T ◦φρ̃ is bounded from Bs− 1
p ,p

p (U) to B
s+ϵ− 1

(3+λ)p
− 1

p ,p
p (∂Ω) if

ϵ ≤ 1
(3+λ)p − α. So by Theorem 2.1 and Lemma 1.11 in [8],

→
ℓ satisfiesA∓

p,β on Γ,

A=
p,β on

(
Σ+ ∩N

)
\ Γ∗,

A‡
p,β on

(
Σ− ∩N

)
\ Γ∗, (2.34)

with β = 1
(3+λ)p − ϵ. Now repeat this argument to obtain that

→
ℓ satisfies (2.34) with

β = 1
(3+λ)p − 2ϵ (provided of course that β ≤ α). In this way we finally see that

→
ℓ satisfies

(2.34) with β = α. This completes the proof of part (B)(i) of Theorem 1.3. The proofs of

the two other assertions in part (B) are similar if we make use of Theorems 2.3 and 2.5 in

[8] in place of Theorem 2.1. We do not repeat the details.
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