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ON SOME CONSTANTS OF QUASICONFORMAL
DEFORMATION AND ZYGMUND CLASS
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Abstract

A real-valued function f(z) on R belongs to Zygmund class A«(R) if its Zygmund norm
£z = ing f(x+t)_2ft($)+f(w_t) is finite. It is proved that when f € A, (R), there exists an
T,
extension F(z) of f to H = {Imz > 0} such that

V1 + 532
72

10F|loo < £l

It is also proved that if f(0) = f(1) = 0, then

1
<- z.
ma [£(@) < 1]
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¢1. Introduction

Let f(z) be a continous real-valued function on R. If it satisfies

[f(x+1t) = 2f(z) + f(x - 1) < Clt]

(1.1)

for all z,t € R and some constant C, we say it belongs to Zygmund class A, (R). If f(z) €

A,(R), we denote the infimum of the values C in (1.1) by ||f|l.. A continous complex-

valued function F'(z) is called a quasiconformal deformation in the terminology of [1] if it
has generalized derivative OF and ||0F || < +00. Let Q.(H) be the class of quasiconformal
deformations on the upper half plane H. It was proved independently by Gardiner and
Sullivan in [3] and Reich and the first author of this paper in [4] that the necessary and
sufficient condition for a real-valued function f(z) on R to have an extension F(z) € Q.(H)
is f(z) € Ax(R). In [3], Gardiner and Sullivan proved that when f(x) € A.(R), the Beuling-

Ahlfors extension Fpa(z) = u(x,y) + iv(z,y), where

T+y
ue) =5 [ o

2y Jo—y
v = ([ ™ oy - / f(oar)
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is a quasiconformal deformation on H. From their proof, it is not difficult to know that

= V5
[0F Al < 171 (13)
Define mo(f) = inf{ | OF| = : Flp = f and F € Q.(H) }. Reich discussed in [5] the
following two constants:
= sup{mo(f)}, (1.4)
£Vl
and
OFB Al
pa = sup{ 1202l (15)
f 1£1l=
where Fg 4 is the Beuling-Ahlfors extension of f. He pointed out that
5
028 < p < upa < 2. (1.6)

2

We know well from [6] that quasiconformal mappings of H onto itself are closely related to
quasiconformal deformations on H. Let F(z) be a quasiconformal deformation on H. Then
the solution f(z,t) of the differential equation % = F(w) with initial conditiobn w(0) = =
are quasiconformal mappings of H onto itself, and their dilatations K(z,t) are bounded by
exp{2||0F||oot}. So for a given f € A,(R), it is of interest and importance to find how small
the L>°-norm of the O-derivative of its extension of quasiconformal deformation can be. In
§2 we will improve the upper bound in (1.6), and obtain

Theorem 1.1. Suppose f(x) € A.(R). Then

V1 + 532
1< ppa < :72 = 0.736. (1.7)

We are also interesed in the problem of the estimation of max {|f(x)|: 0 < x < 1} when
f € A.(R) is normalized by f(0) = f(1) =0.
Gardiner and Sullivan proved in [3] that

M = max{|f(@)] : 0< v <1} < L] f].- (18)

In §3, we will improve the estimation and prove
Theorem 1.2. Suppose f(x) € A.(R), and f(0) = f(1) =0. Then

M = max{| ()| :0 < & < 1} < S ] (1.9)

§2. 8-Derivative of Beurling-Ahlfors Extension

Let f € Au(R), and Fpa(x,y) = u(z,y) +iv(x,y) is the Beurling-Ahlfors Extension of f.
By (1.2) we have
1
Uy = @[f(ery)—f(x—y)L
I

1
=g [ IO g )~ S =)

vy = imz ) —2f () + fa - ),

Tty T
Pl s [ s+ Jise ) — o)

Uy = —
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First we notice the fact that if f(z) € A.(R), then f.(z) = L f(ax+b)+cx+d € A (R) and
I7<ll= = I f]l- So without loss of generality, we assume f(0) = f(1) = 0. Furthermore,

|0F B4l |0Fpa(z,y)]
UBA =8SUPy ————— ¢ = SUpy ——————
b f{ 1711- J f,x,y{ I71I- J

_ 2.2
aup{ 22311 .
f 1£1l=
It follows that
= 11
|8FBA(§, 5) P=H(X,Y,Z)=4(X - V) + (X + Y +22), (2.3)
where
X = / F(t)dt,
0
1
Yy = / (t)dt, (2.4)
1
Z = f(=).
1(3)
Now we have the following lemmas.
Lemma 2.1. Let f € A.(R), and f(0) = f(1) =0. Then
1 1
- z <Z< - Z 2.
<2< 7l (25)
1 1
i<y —sx < g (2.6
1 1
L < x -y < A 27)

where X, Y, and Z are defined by (2.4).
Proof. Inequality (2.5) is obvious.
Let z € (0, 3). Then

—z||fll- < f(22) = 2f(2) + f(0) < z| f].
Inequality (2.6) follows from integrating the above inequality with respect to z from 0 to %
Let € (3,1). Then

—(I=)|Ifllz < (1) = 2f(2) + f(2x — 1) < (1 = )| f]]--
Inequality (2.7) follows from integrating the above inequality with respect to z from % to 1.
Lemma 2.2. Let f € A,(R), and f(0) = f(1) =0. Then

17 17
Sl S X 4+Y < =L £l 2.8
Slfle < X4Y <) (28)
Proof. Let z € (0, §). Then
1 1 1
ol < (5 +2) ~2f(G) + £ — o) <zl -
Integrating the above inequality with respect to x from 0 to é leads to

1 8 1,11
“gglfl< [ 0= 35G) < 25111
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By (2.5), we get

7 fll. < ' f(t)dt < T f 2.9
Now let z € (0, %) Then

—z|[fllz < f(2z) = 2f(x) + £(0) < x| f]..

Integrating the above inequlity with respect to = from 0 to % leads to

1 5 s 1
g7 < [ swai=s [ sy < gisi

so we obtain

5 5 5
S5l < [ e < 1. (210)

For the same reason, we can obtain

1
~glfl< [, o< il (211)

The lemma is proved by combining (2.9), (2.10) and (2.11).

Proof of Theorem 1.1. We are going to find the maximum value of expression (2.3)
with fixed ||f|l.. By Lemmas 2.1 and 2.2, we know that the point (X,Y,Z), where X, Y
and Z are defined by (2.4), lies in the closed domain D bounded by planes

1 1
X =3y =20/l Y =3X = Ifl-,

17 1
X+Y=4— Z =4- .
+Y =2 Ifll, 2171
It is easy to know that the quadratic form
Hx2AX?+ Hy2AY? + Hyp2AZ? + 2Hxy AXAY 4+ 2Hy zAYAZ + 2H,x AZAX

is positive definite. So H(X,Y, Z) is convex and reaches its maximum at one of the twelve
vertexes of domain D.
With some computation, we obtain

35 33 1 1+ 532
H(X,Y,Z <H(— gy s ) = 2.
(X.Y.2) < H (ool flles sg Il 5 1711) = 55— 1£112
Hence
|0Fpa(%,3)] V1+ 532
UBA = sup < = 0.736.
f { 1£11- } 72

The proof of Theorem 1.1 is complete.

In order to obtain an estimation of pup4 from below, we construct a piecewise linear
function f,(z) which equals zero when < 0 and = > 1. The dividing points in [0,1] and
the values of f, at the dividing points are listed below:

0, z=0,1,
1 113
f@)=q¢ & *Tpyy (2.12)
5 35
16 TRy
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It is not difficult to check that ||f.||, = 1. Let F.(z) be the Beurling-Ahlfors Extension
of f.. After some computation, we obtain

=11 45
0F.(=,=)| = — =0.703,
which implies
0.703 < upa < 0.736. (2.13)

We do not know whether the estimation in Theorem 1.1 is sharp. So what is the exact value
of pupa is still open.

§3. Maximum Value in [0,1]

We still assume f € A.(R) and f(0) = f(1) = 0. For the proof of Theorem 1.2, we need
the following lemma.
Lemma 3.1. Let f € A.(R),and max {|f(a)|,|f(b)|} < A. Then we have

(30 < A+ 22000,

2 4
(3.1)
3a+b b—a
<
F(Z)] < 4+ 22050
and
b—a
max [f(z)] < A+ 1/l (3.2)
z€Ja,b] 2
Proof. Inequalities (3.1) can be obtained from
a+b b—a
— <
1) =27 (%52 + 1@ < 2520
and
a+b 3a+0b b—a
1(557) — 2 (227 + @] < 2200
Because of symmetry, we may as well assume | f(a+to)| = m[ax | f(z)], where to € [0, 252].
From 7
/(@) =2f(a+to) + f(a+2to)| < to]l f]]-
we obtain
b—a
s [7(0)] = |f(a-+ t0)] < 2o +t0)| — o+ 210)] < A+ 32 ]

Proof of Theorem 1.2. Now we set ag = 0, bp = 1, and Ag = 0. Denote by Ag the
Zygmund class on the interval [ag, by] with f(ag) = f(by) = Ao and || f]|. < B. By Lemma
3.1, we have

2
()<
and
swp (@) < 5 = Mo

z€lag,bo],fEAo
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Denote by A; the Zygmund class on the interval

_ 3ag + bg ag + bg
[alybl] - |: 4 ) 2
with max{|f(a1)l,|f(b1)|} < A1 and ||f]|. < B. Then
sup [f(z)[ < sup [f(2)]. (3.3)
.’Ee[ao,bo],fél\o Ie[al,bl],fel\l
By Lemma 3.1, we have for f € Ay,
a1 + by B Bi 3a1 + by B B,
ETNTrg -4 P T4
and
B B
sup |f(33)|§2+§=M1~

z€lay,b1],feEM

Again we denote by As the Zygmund class on the interval [ag, bo] = [321Ebr @1h1] with

max {|f(az2)|,|f(b2)|} < Ay and ||f||. < B . With the same discussion as above, we have
sup  |f(@)| < sup  [f(@)[ < sup  [f(x)]. (3.4)
Ie[ag,bo],fef\o IG[al,bl],fEAl IG[ag,bz],fGAz

By Lemma 3.1, we have again

B B B
wp f@) < Dt =M
w€laz;ba],fEA2 16 32
This procedure can be continued for any times. So we have
sup | f(2)] < M, = ( )B+ b (3.5)
z€[0,1],fEAo 52222k+2 92142

Since M,, is decreasing and (3.5) holds for any n and any B > ||f|., we obtain for

f e AR) and f(0) = f(1) =0,

< T =3
g 1) < (32 sz 141 = 511

which completes the proof of Theorem 1.2.
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