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Abstract

The average σ − K width of the Sobolev-Wiener class W r
pq(R

n) in Lq(Rn) is studied for
1 ≤ q ≤ p ≤ ∞, and the asymptotic behaviour of this quantity is determined. The exact value

of average σ −K width of some class of smooth functions in L2(Rn) is obtained.
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§1. Introduction

1.1. The Amalgams of Lp and lq

Let 1 ≤ q, p ≤ ∞ , n ∈ Z+ =: {1, 2, · · · }. Denote by Lpq(R
n) the normed linear space of

functions defined on the Euclidean space Rn (R1 = R) in which each function f is locally

Lp-integrable and satisfies ∥f∥pq < ∞. Here the norm ∥ · ∥pq is defined by

∥f∥pq =


{ ∑
v∈Zn

∥f(·+ v)∥qLp([0,1]n)

} 1
q

, for 1 ≤ q ≤ ∞,

sup
v∈Zn

∥f(·+ v)∥Lp([0,1]n), for q = ∞,

where Zn denotes the set of all points in Rn having integral coordinates, and ∥ · ∥Lp(D) the

usual Lp-norm on the subset D of Rn. Lpq(R
n) is a Banach space with norm ∥ · ∥pq . When

p = q, Lqq(R
n) = Lq(R

n) is the usual Lq(R
n)-space. When n = 1, these notions may be

seen in [3]. For convenience, we write ∥ · ∥p instead of ∥ · ∥pp.
1.2. Definition of Average σ−K Width

Let X be a normed linear space with norm ∥ · ∥X and L any subspace of X. For each

f ∈ X,

E(f, L,X) =: inf{∥f − g∥X : g ∈ L}

is the distance of the subspace L from f . For a subset M of X, the quantity

E(M, L,X) =: sup{E(f, L,X) : f ∈ M}

is the deviation of M from L.
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Let L be a subspace Lq(R
n). For any a > 0 and ε > 0, set Ina =: [−a, a]n,

B(L) =: {f ∈ L : ∥f∥q ≤ 1},
(BL)(Ina ) =: {f |In

a
: f ∈ B(L)},

kε(a, L, Lq(R
n)) =: min{m : there exists a linear subspace B of dimension m

of Lq(I
n
a ) such that E((BL)(Ina ), B, Lq(I

n
a )) < ε},

where f |In
a
(x) = f(x) or 0 according as whether x ∈ Ina or not. It is easy to see that

kε(a, L, Lq(R
n)) is non-decreasing in a and non-increasing in ε.

Let σ be a positive number. A linear subspace L of Lq(R
n) is said to be of average

dimension σ if

dim(L,Lq(R
n)) =: lim

ε→0+
lim
a→∞

kε(a, L, Lq(R
n))

(2a)n
= σ.

Let M be a centrally symmetric subset of Lq(R
n). The quantity

dσ(M, Lq(R
n)) =: inf{E(M, L, Lq(R

n)) : dim(L,Lq(R
n)) ≤ σ}

is called the average σ-width of M in Lq(R
n) in the sense of Kolmogorov (shortly, average

σ −K width). A subspace L∗
σ of Lq(R

n) of average dimension at most σ for which

dσ(M, Lq(R
n)) = E(M, L∗

σ, Lq(R
n))

is called an optimal subspace for dσ(M, Lq(R
n)). When n = 1, the notion of average width

was first proposed by Tikhomirov[12] in order to consider problems of optimal approximation

methods on a non-compact Sobolev class W r
p (R).

1.3. Classes of Smooth Functions

Let S = S(Rn) (see [9]) be the space of rapidly decreasing functions on Rn. The Fourier

transform of a function φ ∈ S will be denoted as follows

(Fφ)(x) = (2π)−
n
2

∫
Rn

φ(t)e−itxdt, tx =

n∑
j=1

tjxj ,

and the transformation inverse to it as follows(
F−1φ

)
(x) = (2π)−

n
2

∫
Rn

φ(t)eitxdt.

The set of all generalized (over S) functionals is denoted by S′ = S′(Rn). The Fourier

transforms (direct and inverse) for f ∈ S′ are defined respectively by the equations

(Ff, φ) = (f, Fφ) and (F−1f, φ) = (f, F−1φ),

for any φ ∈ S, where (g, φ) =
∫
Rn g(x)φ(x)dx, g ∈ S′, φ ∈ S.

For any α ∈ R,Kα : S′ → S′ denotes the operator (Kαf)(x) = (1 + |x|2)α/2f(x),
x = (x1, · · · , xn) ∈ Rn, |x|2 = x2

1 + · · ·+ x2
n. Define Iα =: F−1KαF. Set

Kα
q (R

n) = {f ∈ S′ ∈ (Rn) : Iα ∈ Lq(R
n)},

which is a Banach space (of Bessel petentials) with norm ∥f∥Kα
q (Rn) =: ∥Iαf∥q for any

f ∈ Kα
q (R

n).

When 1 < q < ∞, α = r ∈ Z+, denote the Sobolev space by

Lr
q(R

n) = {f ∈ Lq(R
n) : Dαf ∈ Lq(R

n), |α|1 ≤ r},
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where Dαf = ∂|α|1f
∂x

α1
1 ···∂xαn

n
, αj ∈ Z+ ∪ {0}, j = 1, 2, · · · , n, |α|1 = α1 + · · · + αn (see [11]).

For 1 ≤ p, q ≤ ∞, the set

W r
pq(R

n) =
{
f ∈ Lq(R

n) :
∑

|α|1=r

||Dαf ||pq ≤ 1
}

is called the Sobolev -Wiener class. When p = q,Wqq(R
n) is the usual Sobolev class . When

1 ≤ q ≤ p ≤ ∞, it is easy to verify that W r
pq(R

n) ⊂ W r
q (R

n).

For n = 1, the exact values of the average σ − K width d̄σ(W
r
pq(R), Lq(R)) have been

obtained for the case 1 ≤ q < p ≤ ∞ and σ ∈ Z+ (see [2, 5]), and the case 1 ≤ p = q ≤ ∞
and σ ∈ (0,∞) (see [6]).

Let Rα
2 (α > 0) denote the space of Riesz-Potentials, defined by

Rα
2 = {f ∈ L2(R

n) : |y|α(Ff)(y) ∈ L2(R
n)},

B(Rα
2 ) = {f ∈ Rα

2 : ∥| · |αFf∥2 ≤ 1}.

Here |x|2 = x2
1 + · · ·+ x2

n, for any x = (x1, · · · , xn) ∈ Rn.

Denote by SBp
σ(R

n) the collection of all functions of the spherical exponential type σ ≥ 0

(see [7]).

1.4. Our Main Results

In this paper, we obtain the following results.

Theorem 1.1. Let 1 ≤ q ≤ p ≤ ∞, r ∈ Z+. Then

(1) dσ(W
r
pq(R

n), Lq(R
n)) ≍ σ− r

n , σ −→ ∞, where the notation “f(σ) ≍ g(σ)” means that

there exist c1 > 0 and c2 > 0 (c1 < c2) such that the inequalities c1|g(σ)| ≤ |f(σ)| ≤ c2|g(σ)|
hold for sufficiently large σ.

(2) SBq
ρ(σ)(R

n) is a weakly asymptotic optimal subspace of average dimenstion σ for

dσ(W
r
pq(R

n), Lq(R
n)), where ρ(σ) ≥ 0 is defined by the equation ρnmesBn(0, 1) = (2π)nσ,

while Bn(0, 1) = {x ∈ Rn : |x| ≤ 1} is the unit ball of the Euclidean space Rn.

Theorem 1.2. Let α > 0. Then

dσ(B(Rα
2 ), L2(R

n)) = E(B(Rα
2 ), SB

2
ρ(σ)(R

n), L2(R
n)) = Cn,ασ

−α
n ,

where ρ(σ) is defined as in Theorem 1.1 and Cn,α =: {mesBn(0, 1)}α/n(2π)−α.

§2. Proof of Theorem 1.1

To prove the Theorem 1.1, we first give some lemmas as follows.

Lemma 2.1 (cf. [1]). Let ρ > 0. Then

dim(SBp
ρ(R

n), Lp(R
n)) =

ρnmesBn(0, 1)

(2π)n
.

Lemma 2.2. Let 1 ≤ q ≤ ∞. Then

E(W r
q (R

n), SBq
ρ(σ)(R

n), Lq(R
n)) ≤ Cσ− r

n , (2.1)

where C is a constant independent of σ.

Proof. For any real number ρ > 0, let

kρ,s(t) =
{ sin tρ

t

}2s

(t ∈ R, 2s > n) (2.2)
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be an even entire function of one variable of exponential type 2sρ. Then, by [7], the function

kρ,s(|x|), x = (x1, · · · , xn) ∈ Rn, is an entire function of n variable of spherical exponential

type 2sρ. We write

Kρ,s(x) = λ−1
ρ,skρ,s(|x|), x ∈ Rn,

where

λρ,s =

∫
Rn

kρ,s(|x|)dx ≍ ρ2s−n, ρ → ∞.

If α > 0 and 2s > n+ α, then it is easy to verify that∫
Rn

Kρ,s(x)|x|αdx ≍ ρ−α, ρ → ∞.

For each f ∈ Lq(R
n), set

(∆r
tf)(x) =

r∑
j=0

(rj)(−1)jf(x− jt), (2.3)

(Tρf)(x) = −
∫
Rn

r∑
j=1

(rj)(−1)jf(x− jt)Kρ,s(t)dt. (2.4)

By [7], Tρf ∈ SBq
2sρ(R

n). For 1 ≤ q ≤ ∞, if f ∈ W r
q (R

n), then by a proper calculation we

have

∥∆r
tf∥q ≤ |t|r

∑
|α|1=r

∥Dαf∥q ≤ |t|r, t ∈ Rn. (2.5)

Hence, when 1 ≤ q < ∞ and 2s > n+ r, by (2.5) and Minkowski’s inequality for integral,

we have

∥f − Tρf∥q =
{∫

Rn

∣∣∣∫
Rn

(∆r
tf)(x)Kρ,s(t)dt

∣∣∣qdx} 1
q

≤
∫
Rn

(∫
Rn

|(∆r
t )(x)|qdx

) 1
q

Kρ,s(t)dt

≤
∫
Rn

|t|rKρ,s(t)dt

≤ Cρ−r, (2.6)

where the constant C is only dependent on r, q, s, and n.

Similarly, we have

∥f − Tσf∥∞ ≤ Cρ−r, (2.7)

for any f ∈ W r
∞(Rn).

Let ρ = ρ(σ)/2s and 2s > n+ r in (2.2). Then (2.1) follows (2.6) and (2.7).

Let B(lNp ) denote the unit ball of the space lNp .

Lemma 2.3 (see [8]). If 1 ≤ q ≤ p ≤ ∞, 1 ≤ k < N, then

dk(B(lNp ), lNq ) = (N − k)
1
q−

1
p , (2.8)

where dk(A,X) denotes the usual k−K width of A in X, while X is a normed linear space

and A one of its subsets.
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Proof of Theorem 1.1. First, by Lemma 2.1 and Lemma 2.2 , we see

dσ(W
r
pq(R

n), Lq(R
n)) ≤ E(W r

pq(R
n), SBq

ρ(σ)(R
n), Lq(R

n))

≤ E(W r
q (R

n), SBq
ρ(σ)(R

n), Lq(R
n))

≤ Cσ− r
n . (2.9)

Next, we shall prove that

dσ(W
r
pq(R

n), Lq(R
n)) ≥ Cσ− r

n (2.10)

holds for 1 ≤ q ≤ p ≤ ∞, σ > 0, where C is a constant only dependent on r, n and q.

The proof of (2.10) is divided into the following two steps.

(I) Locallization. Let L be a linear subspace of average dimension σ of Lq(R
n). By

definition, for any a > 0 there exists a linear subspace M = M(ε, a, L) of finite dimension

of Lq(I
n
a ), I

n
a = [−a, a]n, such that

dim(M) = kε(a, L, Lq(R
n)),

and

E((BL)(Ina ),M,Lq(I
n
a )) < ε.

For any a > 0, set

W r,0
p (Ina ) =: {f ∈ W r

p (R
n) : suppf ⊆ Ina }.

If f ∈ W r,0
p (Ina ), then for each g ∈ L we have

E(f,M,Lq(I
n
a )) ≤ ∥f − g∥q + ε∥g∥q

≤ (1 + ε)∥f − g∥q + ε∥f∥q. (2.11)

For any N ∈ Z+, it is easy to verify that

W r,0
p (InN ) ⊆ (2N)n(

1
q−

1
p )W r

pq(R
n), 1 ≤ q ≤ p ≤ ∞. (2.12)

In fact, for any f ∈ W r,0
p (InN ), since supp f ⊆ InN , by Hölder inequality for integral we have

∥Dαf∥pq =
{ N−1∑
j1=−N

· · ·
N−1∑

jn=−N

∥Dαf(·+ j)∥qLp([0,1]n)

} 1
q

≤ (2N)
n
q −n

p ∥Dαf∥Lp(In
a )

for 1 ≤ q ≤ p < ∞, where j = (j1, j2, · · · , jn) ∈ Zn.

Similarly, for the case 1 ≤ q ≤ p = ∞, (2.12) also is valid.

Hence, by (2.11) and (2.12), we have

(1 + ε)E(W r
pq(R

n), L, Lq(R
n))

≥ (1 + ε)(2N)n(
1
p−

1
q )E(W r,0

p (InN ), L, Lq(R
n))

≥ (2N)n(
1
p−

1
q ){E(f,M,Lq(I

n
N ))− ε∥f∥q} (2.13)

for any f ∈ W r,0
p (InN ).

For any f ∈ Lq(R
n), set

(δNf)(x) =: (2N)−r+n
p f(2Nx1 −N, .., 2Nxn −N).
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Then, for f ∈ W r,0
p (InN ), we have∑

|α|1=r

∥Dα(δNf)∥Lp([0,1]n) =
∑

|α|1=r

∥Dαf∥Lp(In
N ) ≤ 1,

which implies δNf ∈ W r,0
p ([0, 1]n). Thus, by (2.13) and a change of scale, we have

(1 + ε)E(W r
pq(R

n), L, Lq(R
n))

≥ (2N)r{E(f, δN (M), Lq([0, 1]
n))− ε∥f∥Lq([0,1]n)} (2.14)

for any f ∈ W r,0
p ([0, 1]n).

(II) Discretization. Let m ∈ Z+ such that

mn > kε(N) =: kε(N,L,Lq(R
n))

and ϕ be any non-zero function in C∞(R) with support in [0, 1], i.e., sup(ϕ) ⊆ [0, 1]. Set

ϕk(x) =: ϕ(xm− (k − 1)), k = 1, 2, · · · ,m.

Thus,

supp(ϕk) ⊆ [
k − 1

m
,
k

m
] =: ∆k, k = 1, 2, · · · ,m.

Set

ϕk1,k2,··· ,kn(x) =: ϕk1(x1)ϕk2(x2) · · ·ϕkn(xn), x = (x1, x2, · · · , xn) ∈ Rn.

It is easy to see that these ϕk1,k2,··· ,kn have the following properties: for 1 ≤ s ≤ ∞,

(i) supp(ϕk1,··· ,kn) ⊆ ∆k1 ×· · ·×∆kn =: ∆k1,··· ,kn ; (2.15)

(ii)
∥∥∥ m∑
k1=1

· · ·
m∑

kn=1

ak1,··· ,knϕk1,··· ,kn

∥∥∥
s
= m−n

s ∥a∥
l
m(n)
s

∥ϕ∥nLs(R), (2.16)

where ∥ · ∥
l
m(n)
s

is the usual l
m(n)
s -norm, while m(n) =: mn and a =: (ak1,··· ,kn)

m
k1=1,

· · · ,mkn=1 .

(iii)
∑

|α|1=r

∥∥∥ m∑
k1=1

· · ·
m∑

kn=1

ak1,··· ,kn
Dαϕk1,··· ,kn

∥∥∥
s
= mr−n

s ∥a∥
l
m(n)
s

Cs(ϕ), (2.17)

where

Cs(ϕ) =:
∑

|α|1=r

∥ϕ(α1)∥Ls(R) · · · ∥ϕ(αn)∥Ls(R), α = (α1, · · · , αn).

For m ∈ Z+(m
n > kε(N)), set

Qp(m) =
{ m∑
k1=1

· · ·
m∑

kn=1

ak1,··· ,knϕk1,··· ,kn : ∥a∥
l
m(n)
p

≤ C−1
p (ϕ)m−r+n

p

}
, (2.18)

where Cp(ϕ) is defined as in (2.17) for s = p.

By (2.17), we have Qp(m) ⊆ W r,0
p ([0, 1]n). For any f ∈ Qp(m), by the inequality

∥a∥
l
m(n)
q

≤ mn( 1
q−

1
p )∥a∥

l
m(n)
p
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for 1 ≤ q ≤ p ≤ ∞, we have

∥f∥Lq([0,1]n) = m−n
q ∥a∥

l
m(n)
q

∥ϕ∥nLq(R)

≤ m−n
p ∥a∥

l
m(n)
p

∥ϕ∥nLq(R)

≤ C−1
p (ϕ)∥ϕ∥nLq(Rn)m

−r

=: C∗m−r. (2.19)

Hence, by (2.19), we have

sup
f∈Qp(m)

{E(f, δN (M), Lq(R
n))− ε∥f∥Lq([0,1]n)}

≥ E(Qp(m), δN (M), Lq([0, 1]
n))− C∗εm−r. (2.20)

Similar to the case of one variable (see [8]), by a proper calculation, we have

E(Qp(m), δN (M), Lq([0, 1]
n))

≥ dk(N)(Qp(m), Lq([0, 1]
n))

≥ C0dk(N)(B(lm(n)
p ), lm(n)

q )m−r+n( 1
p−

1
q ), (2.21)

where k(N) =: dim(δN (M)) = kε(N) and

C0 =: (Cp(ϕ)∥ϕ∥nLq′ (R))
−1∥ϕ∥2nL2(R),

1

q
+

1

q′
= 1.

Since Qp(m) ⊆ W r,0
p ([0, 1]n), by (2.14), (2.20) and (2.21) we have

(1 + ε)dσ(W
r
pq(R

n), Lq(R
n)

≥ (2N)r
{
dk(N)(Qp(m), Lq([0, 1]

n))− C∗εM−r
}

≥ (2N)r
{
m−r+n( 1

p−
1
q )C0dk(N)(Blm(n)

p , lm(n)
q )− C∗εm−r

}
= (2N)rm−r

{
C0m

n( 1
p−

1
q )(mn − k(N))

1
q−

1
p − C∗ε

}
=

(2N
m

)r{
C0

(
1− k(N)

mn

) 1
q−

1
p − C∗ε

}
. (2.22)

Since kε(a, L, Lq(R
n)) is non-decreasing in a > 0 and k(N) = kε(N,L,Lq(R

n)), it is easy

to see that

lim
ε→0+

lim
N→∞

k(N)

(2N)n
= lim

ε→0+
lim
a→∞

kε(a, L, Lq(R
n))

(2a)n
= σ.

Let {m
N
}∞N=1 be a sequence such that

lim
N→∞

( 2N

m
N

)n

=
r

r + n

1

σ
. (2.23)

Then, by (2.22), we have

(1 + ε)dσ(W
r
pq(R

n), Lq(R
n)) ≥

( r

σ(r + n)

) r
n
{
C0(1−

r

r + n
)

1
q−

1
p − C∗ε

}
. (2.24)

Letting ε → 0+ in (2.24), we have

dσ(W
r
pq(R

n), Lq(R
n)) ≥ σ− r

nC0

( r

r + n

) r
n
( n

r + n

) 1
q−

1
p

, (2.25)

which is (2.9). Theorem 1.1 follows (2.8) and (2.25).
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§3. Proof of Theorem 1.2

To prove Theorem 1.2, we first give

Lemma 3.1 (cf. [8]). Let Xk+1 be any (k + 1)-dimensional subspace of a normed linear

space X, and let B(Xk+1) denote the unit ball of Xk+1. Then

dj(B(Xk+1), X) = 1, j = 0, 1, · · · , k.

Lemma 3.2. Let ρ > ρ(σ). Then

dσ(SB
q
ρ(R

n) ∩BLq(R
n), Lq(R

n)) = 1, 1 ≤ q ≤ ∞, (3.1)

where BLq(R
n) is the unit ball of Lq(R

n).

Proof. First, it is obvious that

dσ(SB
q
ρ(R

n) ∩BLq(R
n), Lq(R

n)) ≤ 1 (3.2)

for any ρ > ρ(σ).

Next, we shall prove that

dσ(SB
q
ρ(R

n) ∩BLq(R
n), Lq(R

n)) ≥ 1, ∀ρ > ρ(σ). (3.3)

For any ρ > ρ(σ), there exist N elements ξj ∈ Rn and a set

∆δ =: {t = (t1, · · · , tn) ∈ Rn : |tj | ≤ δ, j = 1, · · · , n}(δ > 0)

such that

int(ξi +∆δ) ∩ int(ξj +∆δ) = ∅, i ̸= j,
N∪
s=1

(ξs +∆δ) ⊂ Bn(0, ρ),

and {
mes

( N∪
s=1

(ξs +∆δ

)}/
(2π)n = {N(2δ)n}/(2π)n > σ.

Let η1 ∈ (0, δ) satisfy N(2(δ − η1))
n > (2π)nσ. For any η ∈ (0, η1), k = (k1, · · · , kn)

∈ Zn, set

ϕk,δ(t1, · · · , tn) =:
n∏

j=1

sin(δ − η)(tj − kjπ
δ−η ) sin η(tj −

kjπ
δ−η )

η(δ − η)
(
tj − kjπ

δ−η

)2 .

It is easy to verify that (Fϕk,δ)(y) = 0 for any y /∈ ∆δ.

For any a > 0, set

Q(a) = span
{
ϕk,δ(t)e

iξst : |kj | ≤
[a(δ − η1)

π

]
, s = 1, · · · , N, j = 1, · · · , n

}
.

If ϕ ∈ Q(a), then (Fϕ)(y) = 0, a.e. y ∈ Rn \
N∪
s=1

(ξs + ∆δ). This shows that Q(a) ⊆

SBq
ρ(R

n). By [1], when 1 < q < ∞, there exists a0 > 0 such that the inequality

∥f∥q ≤ η(a)∥f∥Lq(In
a ) (3.4)

holds for any a ≥ a0 and any f ∈ Q(a). It is easy to see that (3.4) is also valid for q = 1

and q = ∞.

Set S(a) =: {f |In
a
: f ∈ Q(a)}. If f ∈ Q(a) such that f |In

a
∈ S(a) ∩ 1

η(a)BLq(I
n
a ), then

∥f∥q ≤ 1. Let L be a subspace of average dimension ≤ σ of Lq(R). By an argument similar
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to Theorem 1.1 (see (2.12)), we have

(1 + ε)E(SBq
ρ(R

n) ∩BLq(R
n), L, Lq(R

n))

≥ 1

η(a)
E(S(a) ∩BLq(I

n
a ),M,Lq(I

n
a ))− ε, (3.5)

where M =: M(a, ε, L) is a subspace of Lq(I
n
a ) of dimension kε(a, L, Lq(R

n)) such that

E(BL(Ina ),M,Lq(I
n
a )) < ε.

Let {as}∞s=1 be a sequence such that

lim
a→∞

kε(a, L, Lq(R
n))

(2a)n
= lim

s→∞

kε(as, L, Lq(R
n))

(2as)n
= σ. (3.6)

Consider that

dim(S(a)) = dim(Q(a)) = N(2[
a(δ − η1)

π
] + 1)n

and

lim
a→∞

dim(S(a))

(2a)n
=

N(2(δ − η1))
n

(2π)n
= v1 > σ.

Then, for some δ1 ∈ (0, v1−δ
2 ), there exists a natural number s0 such that

kε(as, L, Lq(R
n)) ≤ (σ + δ1)(2as)

n

and dim(S(as)) ≥ (v1 − δ1)(2as)
n, s ≥ s0, i.e.,

dim M(a, ε, L) ≤ kε(as, L, Lq(R
n)) < dim(S(as)).

Hence, by Lemma 3.1 we have

dk(S(as) ∩BLq(I
n
as
), Lq(I

n
as
)) = 1, s ≥ s0, (3.7)

where k =: dim(M(as, ε, L)).

Thus, by (3.5) and (3.7), we have

dσ(SB
q
ρ(R

n) ∩BLq(R
n), Lq(R

n)) ≥ 1, (3.8)

which is (3.3). We complete the proof of Lemma 3.2.

Proof of Theorem 1.2.

The upper bound. For any f ∈ B(Rα
2 ), let g ∈ SB2

ρ(R
n) be defined by (Fg)(y) = (Ff)(y)

or 0 according as whether |y| < ρ or not. Then, by Plancherel’s theorem, we have

∥f − g∥22 =

∫
|y|≥ρ

|(Ff)(y)|2dy

≤ ρ−2α

∫
|y|≥ρ

|y|2α|(Ff)(y)|2dy ≤ ρ−2α.

Hence, we have

E(B(Rα
2 ), SB2

ρ(R
n), L2(R

n)) ≤ ρ−α. (3.9)

Therefore, when ρ = ρ(σ) as in Theorem 1.1, we get

dσ(B(Rα
2 ), L2(R

n)) ≤ E(B(Rα
2 ), SB

2
ρ(σ)(R

n), L2(R
n))

≤ (ρ(σ))−α = Cn,ασ
−α

n . (3.10)

The lower bound. We first prove the following Bernstein-type inequality

∥| · |αFf∥2 ≤ ρα∥f∥2 (3.11)
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for any f ∈ SB2
ρ(R

n). In fact, by Plancherel’s Theorem, we have

∥| · |αFf∥22 =

∫
Rn

|y|2α|(Ff)(y)|2dy

=

∫
|y|≤ρ

|y|2α|(Ff)(y)|2dy

≤ ρ2α
∫
|y|≤ρ

|(Ff)(y)|2dy

= ρ2α∥f∥22.

Hence, we obtain

SB2
ρ(R

n) ∩ ρ−αBL2(R
n) ⊆ B(Rα

2 ). (3.12)

Thus, by Lemma 3.2, we have

dσ(B(Rα
2 ), L2(R

n)) ≥ ρ−αdσ(SB
2
ρ(R

n) ∩BL2(R
n), L2(R

n)) ≥ ρ−α. (3.13)

Letting ρ → ρ(σ)+ in (3.13), we get

dσ(B(Rα
2 ), L2(R

n)) ≥ (ρ(σ))−α = Cn,ασ
−α

n . (3.14)

Thus, Theorem 1.2 follows (3.10) and (3.14).
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