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THE GAUSS MAP OF TIMELIKE SURFACES IN Rn
1

Hong Jianqiao*

Abstract

Gauss maps of oriented timelike 2-surfaces in Rn
1 are characterized, and it is shown that

Gauss maps can determine surfaces locally as they do in Rn case. Moreover, some essential
differences are discovered between the properties of the Gauss maps of surfaces in Rn and those

of the Gauss maps of timelike surfaces in Rn
1 . In particular, a counterexample shows that a

nonminimal timelike surface in Rn
1 cannot be essentially determined by its Gauss map.
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§1. Introduction

Let S be an oriented 2-dimensional timelike surface immersed in Minkowski n-space Rn
1 .

Let

g : S → G∗
2,n (1.1)

be the generalized Gauss map, which maps each point p of S to g(p), the tangent plane to

S at p, where G∗
2,n is the set of oriented timelike 2-planes in Rn

1 . It then follows from [4]

that G∗
2,n is naturally a Lorentzian manifold, and it is called pseudo-Grassmannian. The

objective of this paper is to study the properties of the map g, particularly those related to

the geometry of S in Rn
1 and the conformal structure of S.

The main problems we consider here are:

1. Let S0 be an oriented 2-dimensional Lorentzian manifold, and

X : S0 → S ⊂ Rn
1 (1.2)

a conformal immersion realizing S. What properties does the map

G = g ◦X : S0 → G∗
2,n (1.3)

possess? Here Gauss map g is defined by (1.1).

2. Given a map

G : S0 → G∗
2,n (1.4)

defined on an oriented 2-dimensional Loretzian manifold S0, when does there exist a con-

formal immersion X of S0 onto a timelike surface S in Rn
1 such that G is of the form (1.3),

where g is the Gauss map of S?

3. To what extent is a surface S given by (1.2) determined by its Gauss map g?
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Let us recall some known facts about special class of Gauss maps.

(a) A timelike surface X : S0 → Rn
1 is a minimal surface if and only if it can be expressed

locally as X(u, v) = F (u) + G(v), where {u, v} are local null coordinate parameters. The

map X is not uniquely determined by its Gauss map G. In fact, T. K. Milnor constructed

infinite families of isometric entire, timelike minimal surfaces in R3
1, no two of which are

congruent under similarity transformations of R3
1, but all of them share the same Gauss

map[5].

(b) Wang Hong considered the following problem[6] : Given a real-valued function H :

D → R and a map G : D → S1,1 = G∗
2,3, where D is a simply connected domain in R2

1,

when does there exist a conformal immersion X : D → R3
1 with mean curvature H and

Gauss map G? She derived an integrable condition which is a single second-order equation

involving G and H.

(c) In [2], D. A. Hoffman and R. Osserman have discussed similar problem for surfaces

in Rn, some existence and uniqueness theorems are established. They also obtained the

following uniqueness result: Let a surface S be defined by a conformal immersion X : S0 →
Rn of a Riemann surface S0, then S is determined up to similarity transformations by its

Gauss map unless S is minimal. They proved this by virtue of elliptic equation; more

precisely, by the unique continuation of the harmonic function on S0.

In this paper, we obtain a necessary and sufficient condition for a map G : D → G∗
2,n to

be a Gauss map of a timelike surface S in Rn
1 , where D is a simply connected domain in R2

1,

or a simply connected 2-dimensional Lorentzian manifold. On discussing the uniqueness, we

find that the result mentioned in (c) is not always right while considering the timelike surface

in Rn
1 , because we are now in situation of dealing with hyperbolic equation. First we will

give an example to see this, next we will give some uniqueness theorems by the characteristic

theory of the hyperbolic equations under the condition that the set of minimal points is not

too large. The above example just says that the condition is sharp.

§2. The Gauss Map and its Properties

2.1. The Expression of G∗
2,n

Let G∗
2,n denote the pseudo-Grassmannian of oriented timelike 2-plane in Minkowski n-

space Rn
1 . The inner product on Rn

1 is given by

v · w = v · w = v1 · w1 + · · ·+ vn−1 · wn−1 − vn · wn

for any v = (v1, v2, · · · , vn), w = (w1, w2, · · · , wn) ∈ Rn
1 . Given an oriented timelike 2-plane

P in Rn
1 , let {v, w} be an ordered pair of null vectors spanning P and v · w > 0. The order

depends on the orientation, and the vectors v and w are null means that v2 = v · v = 0

and w2 = w · w = 0. A different choice of such basic vectors yields an ordered pair of form

{av, bw}, where a, b ∈ R, ab > 0. And if we pass to the real projective space RPn−1, we

find that to each plane P corresponds a unique point in RPn−1 × RPn−1. The nullity of

the vectors v and w implies that the point so obtained must be in Q∗
n−2 ×Q∗

n−2, where the

quadric Q∗
n−2 ⊂ RPn−1 is defined by

Q∗
n−2 = { [ξ] ∈ RPn−1| ξ2 = 0}. (2.1)
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In fact, it is easy to verify that the map

P → ([v], [w])

of

G∗
2,n → Q∗

n−2 ×Q∗
n−2 \Diag

is a bijection, where Diag= diag{Q∗
n−2 × Q∗

n−2} = {([ξ], [ξ]) | [ξ] ∈ Q∗
n−2}, and hence we

may identify Q∗
n−2 ×Q∗

n−2\ Diag with the Grassmannian G∗
2,n.

2.2. The Gauss Map

First we recall some facts.

Let S0 be a 2-dimensional Lorentzian manifold. Then for any point p in S0, there exists

an oriented local null coordinate system {U ; (u, v)}around p such that the metric on S0 has

the form

ds20 = 2fdudv (2.2)

for some positive function f on U . Furthermore, if {U ; (ū, v̄)} is another oriented local null

coordinate system around p, then

ū = ū(u), v̄ = v̄(v) (2.3)

on U ∩ U .

Now given an oriented timelike 2-dimensional surface S in Rn
1 , we have the Gauss map

g : S → Q∗
n−2 ×Q∗

n−2 \Diag. (2.4)

Locally, if {u, v} are oriented null parameters in a neighborhood of a point p on S, so that

S is defined near p by a map

(u, v) → X = (x1, x2, · · · , xn),

then the vectors
∂X

∂u
,
∂X

∂v
are null. It follows that the Gauss map g may be given locally by

(u, v) → (
[∂X
∂u

]
,
[∂X
∂v

]
) ∈ Q∗

n−2 ×Q∗
n−2 \Diag. (2.5)

By the fact mentioned above, the definition is not dependent on the choice of local null

parameters.

2.3. Properties of the Gauss Map

We may now formulate our basic questions as follows. Given an oriented 2-dimensional

Lorentzian manifold S0 among all maps of S0 into Q∗
n−2 ×Q∗

n−2\Diag, how can one charac-

terize those which arise in the manner described as Gauss maps of oriented timelike surface

in Rn
1 ?

At first, we will say something on the quadric Q∗
n−2 ⊂ RPn−1. The quadric Q∗

n−2 is

topologically the (n− 2)-sphere Sn−2 by the correspondence

(ξ1, ξ2, · · · , ξn−1, ξn) →
( ξ1
ξn
,
ξ2

ξn
, · · · , ξ

n−1

ξn

)
which is obviously a homeomorphism from Q∗

n−2 to Sn−2.

To answer the above questions, we will start by deriving the necessary condition on such

a map.
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Given a map G of S0 into Q∗
n−2 × Q∗

n−2\ Diag, we may represent it locally under the

null coordinate system {U ; (u, v)} in the form ([Φ], [Ψ]), where Φ(u, v) = (φ1, φ2, · · · , φn) ∈
Rn \ {0} and Ψ(u, v) = (ψ1, ψ2, · · · , ψn) ∈ Rn \ {0} satisfy

φ2
1 + · · ·+ φ2

n−1 − φ2
n = ψ2

1 + · · ·+ ψ2
n−1 − ψ2

n = 0. (2.6)

We then look for X(u, v) = (x1, x2, · · ·xn) such that (2.5) is satisfied. But that means

∂X

∂u
= fΦ,

∂X

∂v
= gΨ (2.7)

for some functions f, g : U → R \ {0}. From this we have

ds2 = 2Xu ·Xvdudv, (2.8)

and the important relationship

Xu ·XvH = Xuv, (2.9)

where H is the mean curvature vector field of immersion X. From (2.7) and (2.9). we have

fgΦ ·ΨH = (Xu)v = (fΦ)v = fvΦ+ fΦv (2.10)

and

fgΦ ·ΨH = (Xv)u = (gΨ)u = guΨ+ gΨu. (2.11)

Let Π be the tangent plane to X. Denote by CΠ the projection of vector C on Π for any

vector C in Rn
1 . By (2.6) and (2.7), we get

(Φv)
Π = η1Φ, (Ψu)

Π = η2Ψ, (2.12)

where

η1 = Φv ·Ψ/Φ ·Ψ, η2 = Ψu · Φ/Φ ·Ψ. (2.13)

Further, we denote by V1 (resp. V2) the component of Φv (resp. Ψu) orthogonal to Π, so

that

V1 = Φv − (Φv)
Π = Φv − η1Φ,

V2 = Ψu − (Ψu)
Π = Ψu − η2Ψ. (2.14)

Since the mean curvature vector H is orthogonal to the tangent plane Π, we obtain the

following equations by taking the tangent and normal components of (2.10) and (2.11):

(log f)v + η1 = 0, (log g)u + η2 = 0, (2.15)

and

fgΦ ·ΨH = fV1 = gV2. (2.16)

We are now in a position to formulate our first result.

Theorem 2.1. Let S be an oriented timelike surface in Rn
1 given locally by a conformal

map X : D → Rn
1 . Let Φ,Ψ be the Gauss map in the sense of (2.5) and (2.7). Form the

quantities η1, η2 and V1, V2 from Φ,Ψ by (2.13) and (2.14). Then for any point (u, v) ∈ D,

we have

V1(u, v) = α(u, v)V2(u, v), (2.17)

where α(u, v) is a nonvanishing function on D, and on the set where V1(u, v) ̸= 0 (or

equivalently V2(u, v) ̸= 0) the function α(u, v) is uniquely defined. And on D it satisfies

(logα)uv = (η1)u − (η2)v. (2.18)
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Proof. Setting α = g/f , by (2.15) and (2.16) we finish the proof immediately.

Remark 2.1. The vanishing of the V1 at a point is equivalent to the vanishing of the

vector V2, and by (2.16), is equivalent to the vanishing of the mean curvature vector H.

On the other hand, by (2.14) this is also equivalent to the condition that (φj/φn)v = 0 or

(ψj/ψn)u = 0 for j = 1, 2, · · · , n− 1. The latter two conditions mean that the Gauss map Φ

and Ψ may have the form Φ = Φ(u) and Ψ = Ψ(v).

We next note the important fact that the conditions (2.17) and (2.18) are purely statement

about Gauss map G; that is, they are expressed via (2.13) and (2.14) in terms of the

components of a representation ([Φ], [Ψ]) of G in homogeneous coordinates, but they are

independent of the particular representation. In fact, one has the following lemma.

Lemma 2.1. Given two maps Φ,Ψ : D → Rn \ {0}, set Φ̂ = fΦ and Ψ̂ = gΨ where f

and g are two smooth and nonvanishing real functions on D. Use (2.13) and (2.14) to define

the quantities η1, η2, V1, V2 in terms of Φ,Ψ, and the corresponding quantities η̂1, η̂2, V̂1, V̂2
in terms of Φ̂ and Ψ̂. Then

V̂1 = fV1, V̂2 = gV2, (2.19)

and the functions α and α̂ satisfy

(log α̂)uv − (η̂1)u + (η̂2)v = (logα)uv − (η1)u + (η2)v. (2.20)

Proof. By the definitions (2.13) and (2.14), we have

η̂1 = η1 + (log f)v, η̂2 = η2 + (log g)u

and hence

V̂1 = Φ̂v − η̂1Φ̂v = fvΦ+ fΦv − η̂1fΦ = fV1,

V̂2 = Ψ̂u − η̂2Ψ̂u = guΨ+ gΨu − η̂2gΨ = gV2.

From (2.17), we can set α̂ = αfg−1. This gives the lemma.

Remark 2.2. We may note that Lemma 2.1 can be used to give an alternative proof of

Theorem 2.1.

To see Remark 2.2, we proceed as follows. By (2.7), we can let

∂X

∂u
= fΦ = Φ̂,

∂X

∂v
= gΨ = Ψ̂.

Then by (2.13) and (2.14) we have

η̂1 = η̂2 = 0, V̂1 = V̂2.

Thus we may choose α̂ ≡ 1, so that (2.17) and (2.18) follow trivially for Φ̂ and Ψ̂. But by

(2.19) and (2.20) they must also hold for Φ and Ψ.

§3. Existence and Uniqueness

3.1. Local Existence Theorem

First we will prove that the conditions (2.17) and (2.18) are also sufficient for ([Φ], [Ψ])

to be Gauss map of a timelike surface in Rn
1 locally. We have

Theorem 3.1. Let {D, 2dudv} be a simply connected domain in R2
1. For two maps

Φ,Ψ : D → Rn \ {0}, define η1, η2, V1 and V2 by (2.13) and (2.14). If there exists a nowhere
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vanishing function α : D → R such that (2.17) and (2.18) hold, then ([Φ], [Ψ]) can be a

Gauss map of a timelike surface given by a conformal map X : D → Rn
1 .

Proof. What we need to do is to find two functions f, g : D → R such that

Xu = fΦ, Xv = gΨ

is completely integrable, or equivalently they satisfy

fV1 = gV2 (3.1)

and

(log f)v + η1 = 0, (log g)u + η2 = 0. (3.2)

First we fix a pair of solutions f̃ , g̃ to the equations (3.2), then the unknown functions f

and g must have the forms:

f(u, v) = f̃(u, v)F (u), g(u, v) = g̃(u, v)G(v). (3.3)

From (2.18), we have

(logαf̃ g̃−1)uv = (logα)uv + (η1)u − (η2)v = 0.

So there exist two functions F (u) and G(v) such that F (u)−1G(v) = αf̃ g̃−1. Then by (2.17)

f̃(u, v)F (u)V1 = α−1g̃(u, v)G(v)V1 = g̃(u, v)G(v)V2.

This gives the result.

Remark 3.1. In Theorem 3.1, the resulting functions f and g depend only on Φ,Ψ and

α. More precisely, functions f and g are independent of the choice of functions f̃ and g̃

satisfying (3.2), and they are determined up to a similar factor by Φ,Ψ and α.

From this remark, we see that if α is uniquely determined by the maps Φ and Ψ, and

([Φ], [Ψ]) can be made to be a Gauss map of a timelike surface S in Rn
1 , then the resulting

surface S is essentially unique. Following this, we have

Theorem 3.2. Let S be a timelike surface defined by a conformal immersion X : S0 →
Rn

1 of an oriented connected 2-dimensional Lorentzian manifold S0 with the Gauss map

G : S0 → Q∗
n−2 × Q∗

n−2 \ Diag. If the mean curvature vector of S is nowhere vanishing,

then S is determined up to a similarity transformation of Rn
1 by its Gauss map G; i.e., if

Y : S0 → Rn
1 is another conformal immersion inducing the same Gauss map G, then there

exist a real constant c and a constant vector X0 such that Y = cX +X0.

Proof. Given maps X,Y : S0 → Rn
1 , set Φ = Xu and Ψ = Xv under a local null

coordinate system {U ; (u, v)} on S0. The fact that X and Y induce the same Gauss map is

equivalent to the existence of two nonvanishing functions f and g on U , such that

Yu = fΦ, Yv = gΨ.

From (2.13) we have

η1 = η2 = 0,

and hence by (2.15)

f(u, v) = F (u), g(u, v) = G(v).

Then the completely integrable condition with respect to the immersion Y gives

(F (u)−G(v))Xuv = 0. (3.4)
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Since X has nonvanishing mean curvature, we conclude by (2.9)

Xuv ̸≡ 0. (3.5)

Combining (3.4) and (3.5), we get

F (u) = G(v) = c, (3.6)

where c is a real constant. So by Yu = cXu and Yv = cXv we must have

Y = cX +X0 (3.7)

on U , where X0 is a constant real vector. Finally note that S0 is connected, so (3.7) holds

on S0.

3.2. A Global Existence Theorem

We now turn to the question of the extent to which the two necessary conditions (2.17)

and (2.18) for map G to be a Gauss map are also sufficient. In local case, we have Theorem

3.1, we also have a theorem on global existence as follows.

Theorem 3.3. Let S0 be a simply connected 2-dimensional Lorentzian manifold, and let

G : S0 → Q∗
n−2 × Q∗

n−2 \ Diag be a map that any local representation ([Φ], [Ψ]) satisfies

(2.17) and (2.18). If V1 never vanishes on S0, then G can be the Gauss map of a timelike

surface S in Rn
1 given by a conformal map X : S0 → Rn

1 .

Proof. Theorem 3.1 says that local problem always has a solution by the conditions

(2.17) and (2.18). To obtain a global solution, we note first that the condition V1 ̸≡ 0

means that the local surface obtained via Theorem 3.1 has nonvanishing mean curvature

vector. It then follows from Theorem 3.2 that the surfaces so obtained are unique up to a

similarity transformation of Rn
1 . Thus if we fix any point p0 of S0, and define a surface S

in a neighborhood of p0 with the prescribed Gauss map, then S can be uniquely continued

along every path starting at p0 by piecing together local solutions. Finally, since S0 is simply

connected, the monodromy theorem guarantees that the resulting surface is independent of

path and is globally well defined over S0. This proves the theorem.

Remark 3.2. Topologically S0 in Theorem 3.3 must be a plane R2, since there is no

Lorentzian metric on the 2-sphere S2.

An obvious question which remains is what one can say concerning existence, if the vector

V1 (or V2) constructed from the map G vanishes somewhere, or identically? To answer, we

note first that the local existence always holds. Next, to get a global solution, we have to

piece together these local surfaces. Many problems appear when one does this. And here

we can say nothing even in the case that V1 vanishes identically; in this case, one can easily

solve it while considering the surface in Rn with the prescribed Gauss map.

3.3. Uniqueness

In the following, we will say something more about uniqueness. We know from Remark

2.1 that if the function α in (2.17) is uniquely determined by the maps Φ and Ψ, we will have

essentially one resulting local surface with the Gauss map ([Φ], [Ψ]). As to α, from (2.17),

on the point where V1 ̸= 0, α is determined by Φ and Ψ. So if V1 never vanishes or V1 has

only isolated zero points, then α is unique and we have a uniqueness theorem (Theorem 3.2).

Not in this case, first if V1 = 0 identically, the case corresponding to the minimal timelike

surface, then we already know that the surface cannot be essentially determined by its Gauss
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map. Next, if V1 vanishes somewhere but not identically, then we will face the situation that

on the closure of the set where V1 does not vanish α is determined, and on other hand the

conditions (2.17) and (2.18) only say that α must satisfy equation: (logα)uv = (η1)u− (η2)v

under any null coordinate system {U ; (u, v)}. So we should discuss the uniqueness of the

following problem. Let {D, 2dudv} be a simply connected domain in Rn
1 , Ω be an open

set of D. α is a smooth function on D such that it is given on D \ Ω, and it satisfies the

equation: (logα)uv = (η1)u − (η2)v on D for some smooth functions η1 and η2 on D. When

is α unique?

When one considers the surface in Rn, the above equation is replaced by an elliptic

equation. The unique continuation ensures that if D \Ω is not empty, α is unique. It turns

out that every nonminimal surface in Rn is essentially determined by its Gauss map[2].

This is not always right when we consider the timelike surfaces in Rn
1 , first we will give a

counterexample.

Example. Let {R2
1, 2dudv} be a Minkowski 2-space. Let

X(u, v) = (u+ v, f(v), u− v) : R2
1 → R3

1

be a timelike surface in R3
1, where

f(v) =

{
0, v ≤ 0,

0 < f ′ < 1/2, f ′′ ̸≡ 0, v > 0

is a smooth function on R.

Let {U ; (ū, v̄)} be a null coordinate system around point (0, 0) for X with u(0, 0) = 0 and

v(0, 0) = 0. Since X(u, v) = (u+ v, 0, u− v) when v < 0 and {u, v} are also null parameters,

by Lemma 2.1 we have

ū = ū(u), v̄ = v̄(v) when v < 0.

We may also require that u′ > 0 and v′ > 0 on v < 0, and then ū = 0 (resp. v̄ = 0) if and

only if u = 0 (resp. v = 0). On U , we have under the new parameters ū and v̄

X(ū, v̄) =

{
u(ū)(1, 0, 1) + v(v̄)(1, 0,−1), v̄ ≤ 0,

X(ū, v̄), v̄ > 0.

Now we define

Y (ū, v̄) =

{
u(ū)(1, 0, 1) + g(v̄)v(v̄)(1, 0,−1), v̄ ≤ 0,

X(ū, v̄), v̄ > 0,

where g(v̄) is a smooth function on [0,+∞) and satisfies g(0) = 1 and g(k)(0) = 0. Then it

is easily checked that the new local surface Y has the same Gauss map induced by X, and

it cannot be obtained from X by similarity transformations of Rn
1 .

To obtain local or global unique theorem, we must exclude the case appearing in the

above example. Following this, we have

Theorem 3.4. Let Φ,Ψ : D → Rn \ {0} be two maps satisfying (2.17) and (2.18) where

D is a connected domain in R2
1. Denote D′ = int{p ∈ D|V1(p) = 0}. If for any point

p = (u0, v0) ∈ D′, both the lines u = u0 and v = v0 in D′ have at least one endpoint in

D \D′, then up to a similarity transformation of Rn
1 , there is only one surface S given by

a conformal immersion X : D → Rn
1 whose Gauss map is given by ([Φ], [Ψ]).
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Proof. By Theorem 3.1, it remains to prove that the function α is uniquely determined

by Φ and Ψ. Since D \D′ is not empty, α|D\D′ is already determined. In D we have

(logα)uv = (η1)u − (η2)v. (3.8)

If α̃ is another smooth function on D satisfying (3.8) and α = α̃ on D \D′, for any point

p = (u0, v0) in D
′, (3.8) implies

(logα− log α̃)u(u0, v) = constant.

By the assumption, the constant must be zero because α = α̃ on D \D′. Similarly we have

(logα− log α̃)v(u, v0) = 0,

that is to say,

d(logα− log α̃)(u0, v0) = 0

for any point p = (u0, v0) ∈ D′. So we conclude that logα − log α̃ = 0 on D, this finishes

the proof.

We will end this section with a global unique theorem.

Theorem 3.5. Let S0 be a connected oriented 2-dimensional Lorentzian manifold, which

is null geodesic complete. Let a timelike surface S be defined by a conformal immersion

X : S0 → Rn
1 . Denote S′

0 = int{p ∈ S0|H(p) = 0}, where H is the mean curvature vector of

S. If S0 \S′
0 is connected and for any point p ∈ S′

0 each null geodesic passing through p in S′
0

has at least one endpoint in S0 \S′
0, then X is determined up to a similarity transformation

of Rn
1 by its Gauss map G.

Proof. Let Y : S0 → Rn
1 be another conformal immersion with the Gauss map G. Then

we have X = cY +X0 on S0 \ S′
0, where c is a real constant and X0 is a constant vector in

Rn
1 .

For p ∈ S′
0, let γ be a null geodesic passing through p, and q ∈ ∂S′

0 be one of the first

points at which γ intersects S′
0, and N be a null vector along γ such that N(t) · γ′ > 0.

Assume that γ(0) = p, γ(l) = q and {Ui; (ui, vi)}i=1,2··· ,m is a finite local null coordinate

system which covers γ([0, l]) and q ∈ U0. Denote Vi = S0 ∩Ui for i = 1, 2, · · · ,m. We write

γi = γ|Vi = (ui(t), v
0
i ), ds

2
i = ds2|Vi = 2fiduidvi, Ni = N |Vi = gi

∂

∂vi
, where v0i is a real

constant and ui(t), fi and gi are functions on Vi, for i = 1, 2, · · · ,m.

Calculating on Vi, we get

(NiX) ◦ γi = gi(t)Xvi(ui(t), v
0
i )

and
d

dt
(NiX) ◦ γi = g′i(t)Xvi(ui(t), v

0
i ) = (log gi)

′(NiX) ◦ γi (3.9)

by the fact that Xuivi = 0 on Vi. Also we have

d

dt
(NiY ) ◦ γi = (log gi)

′(NiY ) ◦ γi. (3.10)

Combining these gives

d

dt
(Ni(X − cY )) ◦ γi = (log gi)

′(Ni(X − cY )) ◦ γi.

So

Ni(X − cY ) ◦ γi = giZi
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for some constant vectors Zi.

But by the choice of point q we have N(X − cY )(q) = 0, and from this we see that the

vector Z0 must be zero vector, and hence N(X − cY ) ◦ γ|V0 = 0. By induction, we conclude

that Zi = 0 for all i and finally reach to N(X − cY )(p) = 0.

On the other hand, we can prove by the same method that N ′(X − cY )(p) = 0, where

N ′ is another null vector such that N ·N ′ > 0.

From above, we have

d(X − cY ) = 0 on S′
0.

But we already know X − cY = X0 on S0 \ S′
0, so X = cY +X0 should hold on S0.
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