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EXISTENCE AND NONEXISTENCE OF GLOBAL

SOLUTION OF NONLINEAR PARABOLIC EQUATION

WITH NONLINEAR BOUNDARY CONDITION
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Abstract

This paper deals with the existence and nonexistence of global positive solution of the

following equation: 
ut = ∇(uq−1∇u)− αum, x ∈ Ω, t > 0,

∂u

∂n
= up, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) > 0, x ∈ Ω̄,

where p, q,m, α are parameters with q ≥ 1, m, p > 0, α ≥ 0. Ω ⊂ RN is a bounded domain with
∂Ω smooth enough, N ≥ 1. The necessary and sufficient conditions for the global existence of
solution are obtained.

Keywords Nonlinear parabolic equiation, Nonlinear boundary condition, Existence,

Blow-up, Subsolution and supersolution.
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§1. Introduction

In this paper, we study the following problem:
ut = ∇(uq−1∇u)− αum, x ∈ Ω× (0, T ), (1.1)

∂u

∂n
= up, (x, t) ∈ ST = ∂Ω× (0, T ), (1.2)

u(x, 0) = u0(x) > 0, x ∈ Ω̄, (1.3)

where p, q,m, α are parameters with p,m > 0, q ≥ 1, α ∈ R, n is the outward normal

vector. When α = 0, equation (1.1) is the well-known porous medium equation, and it has a

variety of applications in physical, biological and engineering problems. Many mathemati-

cians devote themselves to the study of (1.1) with Dirichlet, Neumann or Rabin boundary

conditions, and some beautiful results have been obtained (see [1] and the references there).

However, just as Professor H. A. Levine pointed out (in [2]), few efforts are made when the

nonlinearity occurs in the boundary, and the results are far from complete. To our knowl-

edge, [3] first studies (1.1)−(1.3) with α = 0, q = 1 and
∂u

∂n
= b(u), and obtains that if

b(u) = |u|1+ϵh(u) with ϵ > 0, h(u) is increasing, then (1.1)−(1.3) has no global solution.
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Later, [5] deals with the generalized nonlinear boundary condition and obtains that if b(u)

and b′(u) are continuous, positive and increasing, then the solution of (1.1)−(1.3), with

α = 0, q = 1 and
∂u

∂n
= b(u), blows up in finite time provided that∫ ∞ ds

b(s)b′(s)
<∞,

and it exists globally provided that
∫∞ ds

b(s)b′(s)
= ∞. [8] considers the problem from

another point of view, i.e., the nonlinear diffusion
ut = ∇(a(u)∇u), x ∈ Ω, t > 0,

∂u

∂n
= 1, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) > 0, x ∈ Ω̄.

(1.4)

Let a(u), a′(u) be positive, continuous and

lim
u→∞

a′(u)

a(u)
≤M.

[8] proves that if
∫∞ ds

a(s)
< ∞, then the solution of (1.4) blows up in finite time; if∫∞ ds

a(s)
= ∞, then the solution of (1.4) exists globally. Recently [7] deals with the case

with both nonlinear diffusion and nonlinear boundary condition,
ut = ∇(a(u)∇u), x ∈ Ω, t > 0,

∂u

∂n
= b(u), x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) > 0, x ∈ Ω̄.

(1.5)

Under the hypothesis that a(s) and b(s) are positive nondecreasing c1 functions for s > 0,

if
∫∞ ds

b(s)
< ∞, then the solution of (1.5) blows up in finite time; if

∫∞ ds

b(s)
= ∞, and

a(s) + a(s)b′(s) + a′(s)b(s) is nondecreasing, then there are two subcases: if∫ ∞ ds

(a(s) + a(s)b′(s) + a′(s)b(s))b(s)
<∞,

then the solution blows up in finite time; if∫ ∞ ds

(a(s) + a(s)b′(s) + a′(s)b(s))b(s)
= ∞,

then the solution of (1.5) exists globally.

In this paper, we put three kinds of nonlinearity together, i.e., nonlinear diffusion, non-

linear reaction and nonlinear boundary condition. In this paper we assume that α > 0. (For

the case of α ≤ 0, i.e., the reaction term is a source, we can deal with it in the same way as

that of [7] and the results are trivial, so we omit it). Here the reaction term is absorption.

It is very important to realize the interactional relations of the three nonlinear terms.

In the case of p + q ≤ 2 or p + q > 2 and m ≤ 1, we can prove in the same way as that

of [7] that the solution of (1.1)−(1.3) exists globally for p+ q ≤ 2, and it (with large initial

data) blows up in finite time for p + q > 2 and m ≤ 1. So here we focus our attention on

the case of p+ q > 2 and m > 1.
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§2. Main Results and Preliminaries

A solution u(x, t) of (1.1)−(1.3) means that

u(x, t) ∈ C2,1(Ω× (0, T )) ∩ C(Ω̄× [0, T )),

and u(x, t) satisfies (1.1)−(1.3), where T ≤ ∞. If T = ∞, we say that u(x, t) exists globally;

if T <∞ and there exists tn ↗ T− such that

lim
n→∞

sup
x∈Ω̄

|u(x, tn)| = ∞,

we say that u(x, t) blows up in finite time.

It is easy to prove that then u(x, t) blows up in finite time if T < +∞.

Our main results are as follows.

Theorem 2.1. Suppose p > 1, p + q > 2 and m > 1. Then the solution of (1.1)-(1.3)

exists globally if 2p + q < m + 2, and the solution blows up in finite time for large initial

data if 2p+ q ≥ m+ 2.

Theorem 2.2. Suppose 0 < p ≤ 1, p + q > 2, and m > 1. If p + q < m + 1, then the

solution of (1.1)-(1.3) exists globally; if p+ q > m+ 1, then the solution of (1.1)-(1.3) blows

up in finite time for large initial data. For the case of p + q = m + 1, the situation is very

subtle, and the geometry of the domain Ω becomes very important. In this case, if
|∂Ω|
|Ω|

< 1,

then the solution of (1.1)-(1.3) exists globally; if
|∂Ω|
|Ω|

> 1, then the solution of (1.1)-(1.3)

blows up in finite time.

Our approach to the proof of the theorems is based upon the subsolution and supersolution

method. ū(x, t) is called a supersolution of (1.1)-(1.3) if ū(x, t) ∈ C2,1(Ω× (0, T )) ∩ C(Ω̄×
[0, T )) and satisfies 

ūt ≥ ∇(ūq−1∇ū)− αūm, x ∈ Ω, t > 0, (2.1)

∂ū

∂n
≥ ūp, x ∈ ∂Ω, t > 0, (2.2)

ū(x, 0) ≥ u0(x), x ∈ Ω̄. (2.3)

A subsolution u of (1.1)−(1.3) is defined in the same way but with each “≥” replaced by

“≤”.

For subsolution and supersolution, we have the following comparison theorem.

Lemma 2.1. Let u and ū be a subsolution and a supersolution of (1.1)-(1.3) respectively.

Then u(x, t) ≤ ū(x, t) for all x ∈ Ω̄ and t ∈ (0, Tmax), where Tmax is the maximal time of

existence of ū. Moreover, if one of the inequalities (2.1)-(2.3) is strict, then u(x, t) < ū(x, t)

for all x ∈ Ω and t ∈ (0, Tmax).

Under the previous assumptions, problem (1.1)-(1.3) has a unique, local solution u(x, t).

Furthermore, if u0(x) > 0 on Ω̄, then u(x, t) > 0 for t > 0 and x ∈ Ω̄. Here, we restrict

our attention to the positive solution of (1.1)-(1.3). By the standard monotone method we

know that if we can find a supersolution ū with u0(x) ≤ ū(x, 0), and ū exists globally, then

problem (1.1)-(1.3) admits a unique global solution u(x, t) satisfying

0 < u(x, t) ≤ ū(x, t).

If there exists a subsolution u of (1.1)−(1.3) such that u(x, 0) ≤ u0(x) and u(x, t) blows
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up in finite time, then u(x, t) must blow up in finite time. Therefore, in the proofs of the

main theorems, our main work is looking for the appropriate subsolution or supersolution.

Without loss of generality, we assume that α = 1 in the following.

§3. Proof of Theorem 2.1

In the case of 2p + q < m + 2, we just need to find a positive global supersolution

ū(x, t). Denote by h(x) the eigenfunction corresponding to the first eigenvalue λ1 of −△
with Dirichlet boundary condition, i.e.,{ −△h = λ1h, x ∈ Ω,

h(x) = 0, x ∈ ∂Ω.

Then h(x) > 0 in Ω. Assume that max
x∈Ω

h(x) ≤ 1

2
and max

x∈Ω̄
|∇h(x)| = C1. By the strong

maximal principle we know that
∂h

∂n
< 0 on ∂Ω. Thus, there is a positive constant C2 such

that |∂h
∂n

| > C2 on ∂Ω.

We construct the supersolution ū(x, t) of the form

ū(x, t) = [2ϵ− ϵ(1− h(x))
k
ϵ ]

1
1−p ,

where k = (p− 1)/C2 and

ϵ <
1

2
min{1, [(2p+ q − 2)k2C2

1/(p− 1)2]
1−p

m+2−2p−q }.

A straight forward but routine computation shows that −∇(ūq−1∇ū) ≥ −ūm, x ∈ Ω,

∂ū

∂n
≥ ūp, x ∈ ∂Ω.

(3.1)

Note that ϵ can be chosen arbitrarily small, so that for any u0(x) ∈ C(Ω̄) and u0(x) > 0

on Ω̄ we can find ϵ > 0 such that

u0(x) ≤ ū(x). (3.2)

This, together with (3.1), means that ū is indeed a supersolution of problem (1.1)−(1.3),

and by a standard argument we see that u(x, t) exists globally.

For 2p+ q = m+ 2, we construct a subsolution u of the form

u(x, t) = [A− (p− 1)(δt+ x1)]
1

1−p ,

where A > px ∈ Ω → max
x∈Ω

|x1| and

δ < (p+ q − 1)(2A)
p+q−2
1−p .

Direct computations show that

ut −∇(uq−1∇u) < −um,
∂u

∂n
= up cos(n, x1) ≤ up.

For any u0(x) ∈ C(Ω) and u0(x) > 0 on Ω, we can always find an A large enough such

that

u(x, 0) ≤ u0(x) on Ω.
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Hence, u(x, t) is a subsolution of (1.1)−(1.3) and blows up in finite time, which, in turn ,

means that u(x, t) must blow up in finite time.

For the case of 2p+ q > m+ 2, we have two subcases, q > m and q ≤ m. If q > m, let

u(x, t) = C[1− (p− 1)(δt+
x1
A

)]
1

1−p ,

where A = 2(p− 1)Ω → max|x1|,

C ≥ max{A− 1
p−1 , p−

1
q−mA

2
q−m }

and

δ ≤ (q − 1)A−2Cq−1.

It is easy to verify that  ut −∇(uq−1∇u) ≤ −um,
∂u

∂n
< up.

Hence, if u0(x) > 2
1

p−1C, then u(x, t) is a subsolution of (1.1)-(1.3) and it blows up in finite

time, and so does u(x, t).

If q ≤ m, we only deal with the one dimensional case. Without loss of generality, we

assume Ω = (−1, 1) and construct a subsolution as follows:

u(x, t) = [ϵ(2 + x)
p−1
ϵ − δt]

1
1−p . (3.3)

Denote

y = ϵ(2 + x)
p−1
ϵ − δt.

Then

ut −∇(uq−1∇u) ≤ −um, (3.4)

iff

(p+ q − 1)(2 + x)2(
p−1
ϵ −1)y

2p
1−p + (2 + x)

p−1
ϵ −2y

p+1
1−p

≥ y
m−q+2

1−p +
δ

p− 1
y

p+2−q
1−p +

p− 1

ϵ
(2 + x)

p−1
ϵ −2y

1+p
1−p .

(3.5)

Since y ≤ ϵ(2 + x)
p−1
ϵ , we have

1

ϵ
≤ (2 + x)

p−1
ϵ y−1.

Thus, to ensure (3.5) holds we need only

(p+ q − 1)(2 + x)2(
p−1
ϵ −1)y

2p
1−p + (2 + x)

p−1
ϵ −2y

p+1
1−p

≥ y
m−q+2

1−p + (p− 1)(2 + x)2(
p−1
ϵ −1)y

2p
1−p +

δ

p− 1
y

p+2−q
1−p .

(3.6)

It is obvious that (3.6) holds if

q(2 + x)2(
p−1
ϵ −1)y

2p
1−p ≥ y

m−q+2
1−p , (3.7)

(2 + x)
p−1
ϵ −2 >

δ

p− 1
y

q−1
p−1 . (3.8)
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It is easy to see that if  ϵ < min{1, p− 1

2
, (q/10)

p−1
2p+q−m−2 },

δ < 3
p−q
ϵ −2,

(3.9)

then (3.7), (3.8) hold and in turn (3.4) holds. On the other hand

∂u

∂n
(−1) = −∂u

∂x
(−1) = y

p
1−p = up,

∂u

∂n
(1) =

∂u

∂x
(1) = −3

p−1
ϵ −1up < up.

Thus, if

u0(x) ≥ [ϵ(2 + x)
p−1
ϵ ]

1
1−p

and (3.9) holds, then u(x, t) defined by (3.3) is a subsolution of (1.1)−(1.3), and it blows up

in finite time. Therefore, u(x, t) blows up in finite time.

Remark 3.1. For the dimension N ≥ 2, we can only prove that if the domain is

sufficiently narrow, then u(x, t) blows up in finite time. But we conjecture that for general

case the same result is also true. This problem is open.

§4. Proof of Theorem 2.2

In this section, we shall prove Theorem 2.2. To do this, we divide the proof into two

subcases.

(1) p + q > m + 1 or p + q = m + 1 and |∂Ω|/|Ω| > 1. We show that the solution of

(1.1)−(1.3) u(x, t) blows up in finite time for large initial data.

Denote by h(x) the solution of
△h(x) = |∂Ω|

|Ω|
△ → =K, x ∈ Ω,

∂h

∂n
= 1, x ∈ ∂Ω,

(4.1)

where |∂Ω| and |Ω| are the volume of ∂Ω in (N − 1)-dimension and the volume of Ω in N

dimension respectively. Since if h(x) is a solution of (4.1) , so are h(x) + C for any C ∈ R,

we may assume that h(x) > 0 on Ω̄. Denote

L = max
x∈Ω̄

h(x), C4 = max
x∈Ω̄

|∇h|.

Let

ψ(t) =

{
expt, if p = 1,

[1 + (1− p)t]
1

1−p , if 0 < p < 1.
(4.2)

It is easy to check that ψ′(t) = ψp(t). Now, we construct a subsolution u(x, t) of (1.1)−(1.3)

as follows:

u(x, t) = ψ(g(t) + h(x)), (4.3)

where g(t) satisfies {
g′(t) = Kψq−1(g(t))− ψm−p(g(t)),

g(0) = g0,
(4.4)
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and g0 > 0 satisfies

Kψq−1(g0)− ψm−p(g0) > 0. (4.5)

Since p + q ≥ m + 1, p + q > 2 and K > 1 if p + q = m + 1, from (4.4) and (4.5) we have

that g(t) > g0, g
′(t) > 0 and g(t) blows up in finite time. Moreover,

Kψq−1(g(t) + h(x))− ψm−p(g(t) + h(x)) ≥ Kψq−1(g(t))− ψm−p(g(t)),

which implies that

g′(t) ≤ Kψq−1(g(t) + h(x))− ψm−p(g(t) + h(x)). (4.6)

By (4.1) and (4.6), it is easy to verify that ut −∇(uq−1∇u) ≤ −um,
∂u

∂n
= up.

If we choose

u0(x) ≥ ψ(g0 + h(x)) = u(x, 0),

then u(x, t), defined by (4.3), is a subsolution of (1.1)−(1.3), and u(x, t) blows up in finite

time, which, in turn, means that u(x, t) must blow up in finite time.

(2) p + q < m + 1, or p + q = m + 1 and |∂Ω|/|Ω| < 1. We show that the solution of

(1.1)−(1.3) exists globally. In this case, we construct a supersolution ū(x, t) of the form:

ū(x, t) = ψ(g(t) + h(x)), (4.7)

where ψ(s) is defined by (4.2) and g(t) satisfies{
g′(t) = Kψq−1(g(t) + L) + (p+ q − 1)C2

4ψ
p+q−2(g(t) + L)− ψm−p(g(t)),

g(0) = g0,
(4.8)

g0 satisfies {
Kψq−1(g0 + L) + (p+ q − 1)C2

4ψ
p+q−2(g0 + L) < ψm−p(g0),

g0 > ḡ,
(4.9)

where ḡ is the maximal positive equilibrium point of (4.8).

Noting that 2 < p+ q < m+1, or 2 < p+ q = m+1 and K < 1, we can always find a g0
satisfying (4.9), and from classical ordinary differential equation theory we know that g(t)

exists all the time and ḡ < g(t) < g0, g
′(t) < 0 for all t > 0.

Now, by means of h(x) ≤ L, we can obtain easily ūt −∇(ūq−1∇ū) ≥ −ūm,
∂ū

∂n
= ūp.

For any u0(x) ∈ C(Ω̄) and u0(x) > 0 on Ω̄, we can always find a g0 sufficiently large such

that

u0(x) < ψ(g0) for x ∈ Ω̄.

Hence, ū(x, t) defined by (4.7) is indeed a supersolution of (1.1)−(1.3), and it exists globally.

Therefore, u(x, t) exists globally, which ends our proof.

Remark 4.1. For the case 0 < p ≤ 1, p+ q = m+ 1 and |∂Ω|/|Ω| = 1, it remains open

whether the solution of (1.1)−(1.3) exists globally or blows up in finite time for large initial

data. We conjecture that it will blow up in finite time for large initial values.
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