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ON EXTREMALITY AND UNIQUE
EXTREMALITY OF TEICHMULLER MAPPINGS**

LAt WANcAT* WU ZHEMIN*

Abstract

Consider the Teichmiiller mapping f associated with ¢ in the unit disc D and the class of
all quasiconformal mappings in D with the boundary values of f. For a special holomorphic
function ¢, the present paper gives the necessary and sufficient condition on ¢, such that f is
uniquely extremal among the class. Further, for a general holomorphic function ¢, the authors
suggest the models of the best possible growth conditions on ¢, such that f is extremal or
uniquely extremal among the class respectively.
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¢1. Introduction

Let © be a region of the complex z-plane. If f is a quasiconformal mapping of €2, then
we say that f is extremal if f has minimal maximal dilatation among all quasiconformal
mappings of  in its homotopy class that agree with f on 9. We say that f is uniquely
extremal if it is the only such mapping. The mapping f is called a Teichmiiller mapping if
its complex dilatation has the form

BS

fe _ 70)
f2 le(z)
©(z) holomorphic in €, with k,0 < k < 1, a constant.

)

Let B(€2) denote the class of functions ¢(z), holomorphic in €2, with

Il = [ o(e)ldzdy < .

It is a well known fact that a Teichmiiller mapping, with ¢ € B(), is uniquely extremal.
There are some examples which show that if f is a Teichmller mapping, but ¢ ¢ B(R), then,
depending on the choice of ¢, any of the three possibilities, non-extremality, extremality with
or without unique extremality, can occur.

In what follows it will be assumed that @ = D = {|z| < 1}.

In 1968 G. C. Sethares!! proved

Theorem A. Let z1,- -+ , zm be points of 0D such that excising an arbitrary neighborhood
D; of each z; from D results in a region of finite p-area. Let aq,--- , oy be non-zero complex
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numbers and let t1,--- ,t, be real numbers such that —1 <t; <0 fori=1,---,m. Then f
is uniquely extremal if @ also satisfies, for each i =1,--- ,m, the growth condition

‘ W o ‘:0(1), z =z (1.1)
logh(z; —2) =zi—2

In this case it is easy to see that ¢ satisfies the growth condition
2
mep,r) = %/0 (elreldo = 0( =), r =1 (1.2)
In 1974 E. Reich and K. Strebel® proved that (1.2) implied that f was extremal, and that
the extremality of f is no longer implied if O(1/(1 — r)) in the right-hand side of (1.2) is
replaced by O(1/(1 — r)*), for any s > 1. In 1982 W. K. Hayman and Reich!®! showed that
the growth condition (1.2) also implied that f was uniquely extremal. In 1987 Li wei and

(4] gave an example: “If ¢ = log®(1 — 2)/(1 — 2)?, then f is uniquely extremal”.

Li Yong
This example shows that (1.2) is not best for the growth conditions of unique extremality.
In this paper the growth condition given by Theorem A has been sharpened and we obtain
Theorem 1.1. Suppose that ¢ satisfies all conditions in Theorem A except the condition
for t;, then f is uniquely extremal if and only if t; <1/2, i=1,--- m.
First, Theorem 1.1 contradicts the example given by Li Wei and Lii Yong, so we have to
point out a mistake in their proof.
Secondly, ¢ in Theorem 1.1 satisfies the growth condition
log(1 —r)~t
mierr) = O( == —
In view of this it seems that the best possible growth condition for unique extremality may
be

), r— 1.

m(p,r) = 0(@), r—1

for any s > 1, and that the best possible growth condition for extremality may be
1
m(p,r) = 0<7(1 — T)S>7 r—1

for any s > 1.

§2. Some Preliminary Results

Let ¢ be holomorphic in D, and {S,,} denotes a sequence of open subsets of D such that,
for every n, the boundary 9.5, is a union of countably many smooth arcs. For every n define
T",, to be that part of D N dS,, remaining after all horizontal arcs are deleted. Write

Sule = [ Ietdody. Talo= [ Vel

We further assume that S,, satisfies the following three conditions:
(i) [Sple <00, n=1,2,---,
(i) [Sn|e = 00, 1 — o0,
(ili) I, = Thlp <00, n=1,2,---.
In [1] Sethares obtained the following
Theorem B. Let f be a K-quasiconformal self mapping of D with the complex dilatation

rp=ko/lel, K=(1+k)/(1-k)
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Let h be a I?—quasiconformal self mapping of D with hlaop = flop. For every n let

T, = WSS, Tl = ([ Wldude.

If both 1,,B,, and |T,,|y are o(1) as n — oo and if in addition K = K and S, — D, then
f = h, where v is holomorphic in D = {|w| < 1} which is determined by ¢ (see [1,p.101])
and B, are constants such that

45 1e)) = int{ [ Vi) < B, = e

with every curve v in D which joins the points f(z) and h(z).

Let R be a region in the z-plane whose boundary is a union of countable many arcs. For
F(z) = Kz + iy and every y set S = F(R) and R, = {# € R|Imz > y} respectively. Next,
let H be a K -quasiconformal mapping of Ry, into S that agrees with F' on OR,, N OR and
also satisfies H(Ry,) C F(R,,) for some y; > yo. Finally, for every y > o, let

vy = {z € R[Imz = y}.
We define M (y) and §(y) as follows:

M(y) = sup |yy|, d(y) = sup [ImH(z) — y|.
Yo<y'<y ZE7y

Lemma 2.1.11 §(yy) < v KI?M(y +4(y)) for every y > y1.
Let
R, = R, \R,, T,={we H(R,)Imw > y}.

Let |y,| and |T,| denote the Euclidean length of v, and area of T),, respectively. We have

Lemma 2.2. Let A(y) = |H(vy)| — |[F(vy)], 0 <s < 1/3. If there exist positive contants
Cy and Cy such that M(y) < Cry® and

y
A(n)dn < C20(y)y*
Y1

for all sufficiently large y, and in addition K = I~(, then |T,| =0 for every y > y1.

Proof. Set y* = y + §(y). It follows from Lemma 2.1 and the assumption that there
exists yo > y1 such that

o(y) =y —y < KM(y") < C1Ky™,
for every y > yo. Again 0 < s < 1/3 implies y* < 2y for sufficiently large y. We conclude
that
M(y*) = M(y+d(y)) < 2°C1Ky*, d(y) <2°C1Ky°
and lim 6(y)/y = 0.
Yy—>00

On the other hand, there exists y3 > y2 such that

y
[ stan < Catyr v (21)

Y1

Then
y
lim ( A(n)dn)/st =0.

Y—>0o0 Y1
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Hence
A
Jim inf 2%

Yy—00 ys

= 0. (2.2)

Since |7y, < M(y) < Cyy® for y > ys3, we have for any fixed 6(y)

|H ()| = |F(7y)?
5(y)? < 1
Ky |Aly) | Ay)?
o 2 + 4
- OEyAl) | Ay)*.
= 2 4

Thus inequality (2.1) becomes

y A) V2
< 3s 1/2
| aman < s aw) 2 (14 55580) " v

with C3 = Cy(C1 K /2)'/2. Writing u(y) = fyyl A(n)dn, we have
/ 1/2
<C 3s,,/ 1/2 1 u (y) ) ) 2.3
uly) < O™ ) (14 56 0) T v (2.3)
By Comparing with the proof in [5], (2.2) and (2.3) correspond to (2.15) and (2.18) in [5],
respectively. This shows that the conclusion of [5] still holds, namely, §(y) = 0 for y > y;.
But

Tyl < 6(y)M(y +6(y)),
this proves |Ty| = 0 for y > y;.

§3. Proof of Theorem 1.1

Proof of Sufficiency. We may assume ¢; > —1, ¢ = 1,2,--- ;mg and t; < —1,i =
mo+1, mo+2,---,m. If mg =0, then ¢ € B(D), and we have known that f is uniquely
extremal. If mg # 0, we need only to prove the sufficiency for the case of z;, D;, a;, —1 <
t; <1/2,i=1,2,--- ,mg. So we can suppose t; > —1,i = 1,2,--- ,m. Hence we know by
Remark in [1, p. 117] that f is extremal. In the following we prove that f is uniquely
extremal.

We can take S, in §2 as ‘61152»7”7 where S; ,, = D\D; ,, and {D,,} are neighborhoods of
z; with "

D;D>Dj1 DDjaD - = 2.
Let I'; ,, denote that part of DN a5, , remaining after all horizontal arcs are deleted, T; ,, =
h(Sin)\f(Sin). Then

m m m
Sn = U Si,'ru Fn =u Fi,n, Tn =N Ti,n-
i=1 i=1 i=1
The meaning of the symbols |S; »|,, lin = |T'inle and |T; |y are obvious. We have

1) Zn S Z li,na
i=1

m
2) Taly = 2 [Tinly-
i=
By Theorem B we remain to prove l;, =0 and |T; |y = 0(1), n - o0, i =1,2,--- ,m.
And it is easy to see that for every fixed 4,l;, = 0 and |T} |y = o(1), n — oo, are not
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different from [, = 0 and |T,|y = o(1), n — oo, for the case of m = 1. So we need only to

discuss the typical case m =1 and z; = 1. By (1.1) and Lemma 4 in [1] there exists a p > 0
such that a single valued and schlicht branch ®(z) of f v/ ¢(z)dz can be chosen in

N, ={z||z—1| < p}ND.

Moreover, we may write

/Fdz—

(log( 2))' T 4 0(2), 2 €N,

where

/(\/ z)dz —M)dz:O(l), z— 1,

1—=2

ie.,

(log(1 —2))'™ + O(1), z — 1.

IS 3

i il v

Let R = ®(N,). We first consider the boundary behavour of R. Set { = ((z)
log(1 — z). Then ¢(z) maps N, conformally into a region R’ bounded by curves

. .0 T 0
{§+zn|§—log251n§,n——2+2 0<9<90}
. .0 T 0
{§+zn|§—log251n§, n=-3" 3 O<9<90},
N . o . 90 m 90 7T (90
—{5+’”'5—1°g251“? Ft3<1<3- %)

where 26 is equal to the length of arc {|z| =1} NN,
Let w = w(¢) = —ai (M /(1 + t1). Write
i

—ay/(L4+t) =re, 1+t =1, w=u+iv=re® and (= pe™®

Then
r= rlpl, a=la+ 0.

- ((10g25in§)2 +(-

If ¢ € 11, then

ol
+
N D
N———
[ V)
N———
d
~
[ )

f,+, ~
a—ﬂ'—i—arctgizﬂ'—i—&
logQSlnf
Thus
—log 6 + o(1),
~ _1_|_Q
9:arct27.29
log 2sin 5
___ T ( ;)
~ 2log¥b © logf/’
sinlf = — i —i—o(—L)
~ 2log¥b logf/’

coslf = 1—}-0(—@), 0 — 0.

(3.1)

={+in=

(3.2)

(3.3)
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For simplicity, we may assume (see Remark 5 in [1, p. 117])
6, = g — . (3.4)

From (3.2) and (3.4) we get
w=rcosd=—rip sinld, v=rsina=rp coslf. (3.5)
If we set —log @ = 7, it follows from (3.3) and (3.5) that w(y;) satisfies

7TZ’I“1 1—1
2
Similar reason shows that w(yz2) satisfies

U= +o(r'™Y), v=rrt+o(r)), T— .

wlry 4
——T
2
Hence, the boundary curves of R” = w(R’') satisfy

U= +0(7‘l*1)7 UZT’lTl—FO(TZ), T — 00.

7TZT1 -1
2
By (3.1) and (3.6), the boundary curves of R are determined by

u== +o(r'™Y), v=rirt +o(rh), T occ. (3.6)

wre 4

z= 5T +o(r'™ ), g=rr+o(r!), T— .
Writing
- T1 1 - l
¢= (/=17 s -1
we get
§ = +cit/* 4+ o(z'*), & — oco. (3.7)

Next, choose an increasing sequence {y,} such that ¢, — oo,n — oo. Then v, =
@1 (vz,) is a sequence of horizontal arcs in D. We set S,, = D\® (R, ). Thus l,, = 0. It is
therefore sufficient to prove that |T),|, = o(1), n — co. Choose 0 < p’ < p such that N, and
h(N,) are free of zeros of ¢ and 9 respectively. Then h can be lifted to a K-quasiconformal
mapping of ®(N,/) into S = F(R). Call this mapping H. We may choose sufficiently large
Jo and g such that the conditions in §2 are fulfilled. Noticing that |T}, |y, = |T}, |, we need
only to prove |Tj | = o(1), n — occ.

If 0 < ¢ < 1/2, then 0 < s < 1/3. Following (3.6) we see that there exists ny and positive
constants Cy, Cy such that

gl = Cof” +0(3*), 0<s< 3, 500,
M(§) < Cijf*, 0<s< % 7> Tng.- (3.8)
Noting /,, = 0 and the proof of Theorem 1 in [1], we have
([, wlode) < K.+ KIS Tl (39)

where B(n) is a union of vertical arcs, do denotes the differential of arc length /|p(z)||dz|
along 3(n),yw = h(7.) and ~, are horizontal arcs (see [1, p. 103]). If we set

Ywrly = h(32)ly = Klv:le + A2),
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(3.9) becomes

Tyl \1/2
< .
K|Sy +/ﬁ(n)A(z)da < K|Sn|¥,(1 + K|Sn|¢)

Because we always have

T, 1/2 T,
<1+ Ty ) <14 Ty ’
K|Syl K|S,

we obtain
/ A(z)do < |Ty,|y.
B(n)
If we set 3, = A(n) N ®*(R,,), then
/~ A(2)do < |Tulo. (3.10)
B
On the one hand, z € ®71(Ry,) implies ®(v,) = 75, and we have
A(z) = [h(v2)ly = Klrele
= [H(vg)| = [F(v)| = A®®)-

On the other hand, making use of (3.8) and a conclusion in the proof of Lemma 2.2, we se
that there exist ni and a positive constant Cy such that

Tl = T, < 6(Fn) M (Jn + 0(3n))
< C25(gn)gfu gn > 37n1~
Hence (3.10) becomes

Gn
/_ A(n)dn S |Tg]n| S 026(:911)@:17 gn > Yn - (3'11)
Yy

According to the above proof, (3,11) is even true for every § > ¢y, , that is

Yy
[ A(Q)IC < Cob@)Fs T > Y. (3.12)
Yy

In view of Lemma 2.2, (3.8) and (3.12) we know |Tj, | = o(1), n — oc.
If —1 < t; <0, by the proof of Theorem A we know also |Tj,
Proof of Necessity. Assume, as we may, that ¢t > 1/2,2; = 1. From the proof of

sufficiency the boundary curves of R = ®(N,,) are still determined by (3.7), but 1 < 1/s < 3.

In view of the conclusions of §4, §5, §6 in [5], it is clear that f is not uniquely extremal. We

=o0(1), n— oo.

have thus achieved the desired contradiction.

§¢4. An Example

Corollary 4.1. If p = log®(1 — 2)/(1 — 2)2, then f is uniquely extremal if and only if
s <1.

This corollary contradicts the example given by Li Wei and Lii Yong in §1. We now show
a mistake in their proof. Their proof (see [4, p.49]) says

“lyy — Yol = | = &1a — (=&2b)| = |€2b — &1a

<al§ - &) < a‘

)

a2—62
&1+ &
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where a > b >0, £2 — £2 = a® — b2 Hence |y} — y4| — 0 as &, & — —o00.”
The above assertion is not true. Indeed, for sufficiently large —&», the condition £2 — £2 =
a® — b? gives &, = —(a® — b® + £2)'/2. Then
V) — il = [62b — &ra] = [ba + a(a® — b* + €5)"/?|
_ | (@ —b?)(a®+ &)
BT

Hence |y} — y4| — +o0 as & — —o0.

REFERENCES

[1] Sethares, G. C., The extremal property of certain Teichmiiller mappings, Comment. Math. Helv., 43
(1986), 98-119.

[2] Reich, E. & Strebel, K., Extremal quasiconformal mappings with given boundary values, Contributions
to Analysis, A Collection of Papers to Lipman Bers, Academic Press, 1974, 375-391.

[3] Hayman, W. K. & Reich, E., On Teichmiiller mappings of the disk, Complez Variable, 1(1982), 1-12.

[4] Li, W. & Li, Y., The extremal property of a certain Teichmiiller mapping, Acta Sci. Natur. Pekin.,
5(1987), 42-51.

[5] Reich, E. & Strebel, K., On the extremality of certain Teichmiiller mappings, Comment. Math. Helv.,
45(1970), 353-362.



