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ON EXTREMALITY AND UNIQUE

EXTREMALITY OF TEICHMÜLLER MAPPINGS**
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Abstract

Consider the Teichmüller mapping f associated with φ in the unit disc D and the class of
all quasiconformal mappings in D with the boundary values of f . For a special holomorphic

function φ, the present paper gives the necessary and sufficient condition on φ, such that f is
uniquely extremal among the class. Further, for a general holomorphic function φ, the authors
suggest the models of the best possible growth conditions on φ, such that f is extremal or
uniquely extremal among the class respectively.
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§1. Introduction

Let Ω be a region of the complex z-plane. If f is a quasiconformal mapping of Ω, then

we say that f is extremal if f has minimal maximal dilatation among all quasiconformal

mappings of Ω in its homotopy class that agree with f on ∂Ω. We say that f is uniquely

extremal if it is the only such mapping. The mapping f is called a Teichmüller mapping if

its complex dilatation has the form

fz̄
fz

= k
φ(z)

|φ(z)|
,

φ(z) holomorphic in Ω, with k, 0 ≤ k < 1, a constant.

Let B(Ω) denote the class of functions φ(z), holomorphic in Ω, with

∥φ∥ =

∫∫
Ω

|φ(z)|dxdy <∞.

It is a well known fact that a Teichmüller mapping, with φ ∈ B(Ω), is uniquely extremal.

There are some examples which show that if f is a Teichml̈ler mapping, but φ /∈ B(Ω), then,

depending on the choice of φ, any of the three possibilities, non-extremality, extremality with

or without unique extremality, can occur.

In what follows it will be assumed that Ω = D = {|z| < 1}.
In 1968 G. C. Sethares[1] proved

Theorem A. Let z1, · · · , zm be points of ∂D such that excising an arbitrary neighborhood

Di of each zi from D results in a region of finite φ-area. Let α1, · · · , αm be non-zero complex
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numbers and let t1, · · · , tm be real numbers such that −1 < ti ≤ 0 for i = 1, · · · ,m. Then f
is uniquely extremal if φ also satisfies, for each i = 1, · · · ,m, the growth condition∣∣∣ √

φ(z)

logti(zi − z)
− αi
zi − z

∣∣∣ = O(1), z → zi. (1.1)

In this case it is easy to see that φ satisfies the growth condition

m(φ, r) =
1

2π

∫ 2π

0

|φ(reiθ)|dθ = O
( 1

1− r

)
, r → 1. (1.2)

In 1974 E. Reich and K. Strebel[2] proved that (1.2) implied that f was extremal, and that

the extremality of f is no longer implied if O(1/(1 − r)) in the right-hand side of (1.2) is

replaced by O(1/(1− r)s), for any s > 1. In 1982 W. K. Hayman and Reich[3] showed that

the growth condition (1.2) also implied that f was uniquely extremal. In 1987 Li wei and

Lü Yong[4] gave an example: “If φ = log2(1 − z)/(1 − z)2, then f is uniquely extremal”.

This example shows that (1.2) is not best for the growth conditions of unique extremality.

In this paper the growth condition given by Theorem A has been sharpened and we obtain

Theorem 1.1. Suppose that φ satisfies all conditions in Theorem A except the condition

for ti, then f is uniquely extremal if and only if ti ≤ 1/2, i = 1, · · · ,m.
First, Theorem 1.1 contradicts the example given by Li Wei and Lü Yong, so we have to

point out a mistake in their proof.

Secondly, φ in Theorem 1.1 satisfies the growth condition

m(φ, r) = O
( log(1− r)−1

1− r

)
, r → 1.

In view of this it seems that the best possible growth condition for unique extremality may

be

m(φ, r) = o
( log(1− r)−s

1− r

)
, r → 1

for any s > 1, and that the best possible growth condition for extremality may be

m(φ, r) = o
( 1

(1− r)s

)
, r → 1

for any s > 1.

§2. Some Preliminary Results

Let φ be holomorphic in D, and {Sn} denotes a sequence of open subsets of D such that,

for every n, the boundary ∂Sn is a union of countably many smooth arcs. For every n define

Γn to be that part of D ∩ ∂Sn remaining after all horizontal arcs are deleted. Write

|Sn|φ =

∫∫
Sn

|φ|dxdy, |Γn|φ =

∫
Γn

√
|φ||dz|.

We further assume that Sn satisfies the following three conditions:

(i) |Sn|φ <∞, n = 1, 2, · · · ,
(ii) |Sn|φ → ∞, n→ ∞,

(iii) ln = |Γn|φ <∞, n = 1, 2, · · · .
In [1] Sethares obtained the following

Theorem B. Let f be a K-quasiconformal self mapping of D with the complex dilatation

κf = kφ̄/|φ|, K = (1 + k)/(1− k).
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Let h be a K̃-quasiconformal self mapping of D with h|∂D = f |∂D. For every n let

Tn = h(Sn)\f(Sn), |Tn|ψ =

∫∫
Tn

|ψ|dudv.

If both lnBn and |Tn|ψ are o(1) as n → ∞ and if in addition K = K̃ and Sn → D, then

f ≡ h, where ψ is holomorphic in D̃ = {|w| < 1} which is determined by φ (see [1, p.101])

and Bn are constants such that

dψ(f(z), h(z)) = inf
γ

{∫
γ

√
|ψ(w)||dw|

}
≤ Bn, z ∈ Γn,

with every curve γ in D̃ which joins the points f(z) and h(z).

Let R be a region in the z-plane whose boundary is a union of countable many arcs. For

F (z) = Kx + iy and every y set S = F (R) and Ry = {z ∈ R|Imz > y} respectively. Next,

let H be a K̃-quasiconformal mapping of Ry0 into S that agrees with F on ∂Ry0 ∩ ∂R and

also satisfies H(Ry1) ⊂ F (Ry0) for some y1 ≥ y0. Finally, for every y ≥ y0, let

γy = {z ∈ R|Imz = y}.

We define M(y) and δ(y) as follows:

M(y) = sup
y0≤y′≤y

|γy′ |, δ(y) = sup
z∈γy

|ImH(z)− y|.

Lemma 2.1.[1] δ(y0) ≤
√
KK̃M(y + δ(y)) for every y ≥ y1.

Let

R̃y = Ry1\Ry, Ty = {w ∈ H(R̃y)|Imw > y}.

Let |γy| and |Ty| denote the Euclidean length of γy and area of Ty, respectively. We have

Lemma 2.2. Let ∆(y) = |H(γy)| − |F (γy)|, 0 < s ≤ 1/3. If there exist positive contants

C1 and C2 such that M(y) < C1y
s and∫ y

y1

∆(η)dη ≤ C2δ(y)y
s

for all sufficiently large y, and in addition K = K̃, then |Ty| = 0 for every y > y1.

Proof. Set y∗ = y + δ(y). It follows from Lemma 2.1 and the assumption that there

exists y2 > y1 such that

δ(y) = y∗ − y ≤ KM(y∗) ≤ C1Ky
∗s,

for every y > y2. Again 0 < s ≤ 1/3 implies y∗ ≤ 2y for sufficiently large y. We conclude

that

M(y∗) =M(y + δ(y)) ≤ 2sC1Ky
s, δ(y) ≤ 2sC1Ky

s

and lim
y→∞

δ(y)/y = 0.

On the other hand, there exists y3 > y2 such that∫ y

y1

∆(η)dη ≤ C2δ(y)y
s, y > y3. (2.1)

Then

lim
y→∞

(∫ y

y1

∆(η)dη
)
/y1+s = 0.
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Hence

lim inf
y→∞

∆(y)

ys
= 0. (2.2)

Since |γy| ≤M(y) ≤ C1y
s for y > y3, we have for any fixed δ(y)

δ(y)2 ≤ |H(γy)|2 − |F (γy)|2

4

=
K|γy|∆(y)

2
+

∆(y)2

4

≤ C1Ky
s∆(y)

2
+

∆(y)2

4
.

Thus inequality (2.1) becomes∫ y

y1

∆(η)dη ≤ C3(y
3s∆(y))1/2

(
1 +

∆(y)

2C1Kys

)1/2

, y > y3

with C3 = C2(C1K/2)
1/2. Writing u(y) =

∫ y
y1

∆(η)dη, we have

u(y) ≤ C3(y
3su′(y))1/2

(
1 +

u′(y)

2C1Kys

)1/2

, y > y3. (2.3)

By Comparing with the proof in [5], (2.2) and (2.3) correspond to (2.15) and (2.18) in [5],

respectively. This shows that the conclusion of [5] still holds, namely, δ(y) = 0 for y > y1.

But

|Ty| ≤ δ(y)M(y + δ(y)),

this proves |Ty| = 0 for y > y1.

§3. Proof of Theorem 1.1

Proof of Sufficiency. We may assume ti > −1, i = 1, 2, · · · ,m0 and ti ≤ −1, i =

m0 + 1, m0 + 2, · · · ,m. If m0 = 0, then φ ∈ B(D), and we have known that f is uniquely

extremal. If m0 ̸= 0, we need only to prove the sufficiency for the case of zi, Di, αi,−1 <

ti ≤ 1/2, i = 1, 2, · · · ,m0. So we can suppose ti > −1, i = 1, 2, · · · ,m. Hence we know by

Remark in [1, p. 117] that f is extremal. In the following we prove that f is uniquely

extremal.

We can take Sn in §2 as
m
∩
i=1
Si,n, where Si,n = D\Di,n, and {Di,n} are neighborhoods of

zi with

Di ⊃ Di,1 ⊃ Di,2 ⊃ · · · → zi.

Let Γi,n denote that part of D∩ ∂Si,n remaining after all horizontal arcs are deleted, Ti,n =

h(Si,n)\f(Si,n). Then

Sn =
m
∪
i=1
Si,n, Γn =

m
∪
i=1

Γi,n, Tn =
m
∩
i=1
Ti,n.

The meaning of the symbols |Si,n|φ, li,n = |Γi,n|φ and |Ti,n|ψ are obvious. We have

1) ln ≤
m∑
i=1

li,n,

2) |Tn|ψ ≤
m∑
i=1

|Ti,n|ψ.

By Theorem B we remain to prove li,n ≡ 0 and |Ti,n|ψ = o(1), n → ∞, i = 1, 2, · · · ,m.
And it is easy to see that for every fixed i, li,n ≡ 0 and |Ti,n|ψ = o(1), n → ∞, are not
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different from ln ≡ 0 and |Tn|ψ = o(1), n → ∞, for the case of m = 1. So we need only to

discuss the typical case m = 1 and z1 = 1. By (1.1) and Lemma 4 in [1] there exists a ρ > 0

such that a single valued and schlicht branch Φ(z) of
∫ z√

φ(z)dz can be chosen in

Nρ = {z||z − 1| < ρ} ∩D.

Moreover, we may write

z̄ = Φ(z) =

∫ z√
φ(z)dz = − α1

1 + t1
(log(1− z))1+t1 + η(z), z ∈ Nρ,

where

η(z) =

∫ z(√
φ(z)dz − α1(log(1− z))t1

1− z

)
dz = O(1), z → 1,

i.e.,

z̃ = Φ(z) = − α1

1− t1
(log(1− z))1+t1 +O(1), z → 1. (3.1)

Let R = Φ(Nρ). We first consider the boundary behavour of R. Set ζ = ζ(z) = ξ + iη =

log(1− z). Then ζ(z) maps Nρ conformally into a region R′ bounded by curves

γ1 =
{
ξ + iη|ξ = log 2 sin

θ

2
, η = −π

2
+
θ

2
, 0 < θ < θ0

}
,

γ2 =
{
ξ + iη|ξ = log 2 sin

θ

2
, η = −π

2
− θ

2
, 0 < θ < θ0

}
,

γ3 =
{
ξ + iη|ξ = log 2 sin

θ0
2
, −π

2
+
θ0
2
< η <

π

2
− θ0

2

}
,

where 2θ0 is equal to the length of arc {|z| = 1} ∩Nρ.
Let w = w(ζ) = −α1ζ

1+t1/(1 + t1). Write

−α1/(1 + t1) = r1e
iθ1 , 1 + t1 = l, w = u+ iv = reiα̃ and ζ = ρeiα.

Then

r = r1ρ
l, α̃ = lα+ θ1. (3.2)

If ζ ∈ γ1, then

ρ =
((

log 2 sin
θ

2

)2

+
(
−π
2
+
θ

2

)2)1/2

,

α = π + arctg
−π

2 + θ
2

log 2 sin θ
2

≡ π + θ̃.

Thus

ρ = − log θ + o(1),

θ̃ = arctg
−π

2 + θ
2

log 2 sin θ
2

= − π

2 log θ
+ o

(
− 1

log θ

)
,

sin lθ̃ = − lπ

2 log θ
+ o

(
− 1

log θ

)
,

cos lθ̃ = 1 + o
(
− 1

log θ

)
, θ → 0. (3.3)
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For simplicity, we may assume (see Remark 5 in [1, p. 117])

θ1 =
π

2
− lπ. (3.4)

From (3.2) and (3.4) we get

u = r cos α̃ = −r1ρl sin lθ̃, v = r sin ᾱ = rρl cos lθ̃. (3.5)

If we set − log θ = τ, it follows from (3.3) and (3.5) that w(γ1) satisfies

u = −πlr1
2
τ l−1 + o(τ l−1), v = r1τ

l + o(τ l), τ → ∞.

Similar reason shows that w(γ2) satisfies

u = −πlr1
2
τ l−1 + o(τ l−1), v = r1τ

l + o(τ l), τ → ∞.

Hence, the boundary curves of R′′ = w(R′) satisfy

u = ±πlr1
2
τ l−1 + o(τ l−1), v = r1τ

l + o(τ l), τ → ∞. (3.6)

By (3.1) and (3.6), the boundary curves of R are determined by

x̃ = ±πlr1
2
τ l−1 + o(τ l−1), ỹ = r1τ

l + o(τ l), τ → ∞.

Writing

C =
r1

(πlr12 )l/(l−1)
,

1

s
=

l

l − 1
,

we get

ỹ = ±cx̃1/s + o(x̃1/s), x̃→ ∞. (3.7)

Next, choose an increasing sequence {ỹn} such that ỹn → ∞, n → ∞. Then γzn =

Φ−1(γỹn) is a sequence of horizontal arcs in D. We set Sn = D\Φ−1(Rỹn). Thus ln ≡ 0. It is

therefore sufficient to prove that |Tn|ψ = o(1), n→ ∞. Choose 0 < ρ′ < ρ such that Nρ′ and

h(Nρ′) are free of zeros of φ and ψ respectively. Then h can be lifted to a K-quasiconformal

mapping of Φ(Nρ′) into S = F (R). Call this mapping H. We may choose sufficiently large

ỹ0 and ỹ1 such that the conditions in §2 are fulfilled. Noticing that |Tn|ψ = |Tỹn |, we need

only to prove |Tỹn | = o(1), n→ ∞.

If 0 < t1 ≤ 1/2, then 0 < s ≤ 1/3. Following (3.6) we see that there exists n0 and positive

constants C0, C1 such that

|γỹ| = C0ỹ
s + o(ỹs), 0 < s ≤ 1

3
, ỹ → ∞,

M(ỹ) ≤ C1ỹ
s, 0 < s ≤ 1

3
, ỹ ≥ ỹn0 . (3.8)

Noting ln = 0 and the proof of Theorem 1 in [1], we have(∫
β(n)

|γw′ |ψdσ
)2

≤ K2|Sn|2φ +K|Sn|φ|Tn|ψ, (3.9)

where β(n) is a union of vertical arcs, dσ denotes the differential of arc length
√

|φ(z)||dz|
along β(n), γw′ = h(γz) and γz are horizontal arcs (see [1, p. 103]). If we set

|γw′ |ψ = |h(γz)|ψ = K|γz|φ +∆(z),
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(3.9) becomes

K|Sn|φ +

∫
β(n)

∆(z)dσ ≤ K|Sn|φ
(
1 +

|Tn|ψ
K|Sn|φ

)1/2

.

Because we always have (
1 +

|Tn|ψ
K|Sn|φ

)1/2

≤ 1 +
|Tn|ψ
K|Sn|φ

,

we obtain ∫
β(n)

∆(z)dσ ≤ |Tn|ψ.

If we set β̃n = β(n) ∩ Φ−1(R̃y1), then∫
β̃

∆(z)dσ ≤ |Tn|ψ. (3.10)

On the one hand, z ∈ Φ−1(Rỹ1) implies Φ(γz) = γỹ, and we have

∆(z) = |h(γz)|ψ −K|γz|φ
= |H(γỹ)| − |F (γỹ)| ≡ ∆(ỹ).

On the other hand, making use of (3.8) and a conclusion in the proof of Lemma 2.2, we se

that there exist n1 and a positive constant C2 such that

|Tn|ψ = |Tỹn | ≤ δ(ỹn)M(ỹn + δ(ỹn))

≤ C2δ(ỹn)ỹ
s
n, ỹn > ỹn1 .

Hence (3.10) becomes ∫ ỹn

ỹ1

∆(η)dη ≤ |Tỹn | ≤ C2δ(ỹn)ỹ
s
n, ỹn > yn1 . (3.11)

According to the above proof, (3,11) is even true for every ỹ > ỹn1 , that is∫ ỹ

ỹ1

∆(ζ)dζ ≤ C2δ(ỹ)ỹ
s, ỹ > yn1 . (3.12)

In view of Lemma 2.2, (3.8) and (3.12) we know |Tỹn | = o(1), n→ ∞.

If −1 < t1 ≤ 0, by the proof of Theorem A we know also |Tỹn | = o(1), n→ ∞.

Proof of Necessity. Assume, as we may, that t1 > 1/2, z1 = 1. From the proof of

sufficiency the boundary curves of R = Φ(Np) are still determined by (3.7), but 1 < 1/s < 3.

In view of the conclusions of §4, §5, §6 in [5], it is clear that f is not uniquely extremal. We

have thus achieved the desired contradiction.

§4. An Example

Corollary 4.1. If φ = logs(1 − z)/(1 − z)2, then f is uniquely extremal if and only if

s ≤ 1.

This corollary contradicts the example given by Li Wei and Lü Yong in §1. We now show

a mistake in their proof. Their proof (see [4, p.49]) says

“|y′1 − y′2| = | − ξ1a− (−ξ2b)| = |ξ2b− ξ1a|

≤ a|ξ2 − ξ1| ≤ a
∣∣∣a2 − b2

ξ1 + ξ2

∣∣∣,
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where a > b > 0, ξ21 − ξ22 = a2 − b2. Hence |y′1 − y′2| → 0 as ξ1, ξ2 → −∞.′′

The above assertion is not true. Indeed, for sufficiently large −ξ2, the condition ξ21 −ξ22 =

a2 − b2 gives ξ1 = −(a2 − b2 + ξ22)
1/2. Then

|y′1 − y′2| = |ξ2b− ξ1a| = |bξ2 + a(a2 − b2 + ξ22)
1/2|

=
∣∣∣ (a2 − b2)(a2 + ξ22)

a(a2 − b2 + ξ22)
1/2 − bξ2

∣∣∣.
Hence |y′1 − y′2| → +∞ as ξ2 → −∞.
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