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NAVIER-STOKES EQUATIONS IN IRnnn
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Abstract

Consider the Navier-Stokes equations in IRn×(0, T ), for n ≥ 3. Let 1 < α ≤ min{2, n/(n−2)}
and define β by (2/α) + (n/β) = 2. Set α′ = α/(α − 1). It is proved that Dv belongs to

C(0, T ;Lα′
) ∩ Lα′

(0, T ;L2β/(n−2)) whenever Dv ∈ Lα(0, T ;Lβ). In particular, v is a regular
solution. This results is the natural extension to α ∈ (1, 2] of the classical sufficient condition
that establishes that Lα(0, T ;Lγ) is a regularity class if (2/α)+(n/γ) = 1. Even the borderline
case α = 2 is significant. In fact, this result states that L2(0, T ;W 1,n) is a regularity class if

n ≤ 4. Since W 1,n ↪→ L∞ is false, this result does not follow from the classical one that states
that L2(0, T ;L∞) is a regularity class.
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§1. Introduction

In this paper we shall consider the initial value problem for the Navier-Stokes equations

in IRn × (0, T ), n ≥ 3, 
∂tv + (v · ∇)v −∆v = ∇π,

divv = 0,

v(x, 0) = v0(x).

(1.1)

We assume, for simplicity, that the external forces vanish, although it is an easy exercise

to include non-zero external forces. We are interested in the classical problem of finding, in

the framework of Sobolev spaces, sufficient conditions for the existence of a regular (unique)

solution.

If γ ∈ [1,+∞], we denote the space Lγ(IRn) simply by Lγand the canonical norm in

this space by ∥ · ∥γ . We use the same symbol to denote functional spaces consisting of scalar

functions or consisting of vector functions. For instance, we denote the space Lγ×· · ·×Lγ (n

times) simply by Lγ . This convention also applies to other symbols as, for instance, norms.

Many authors proved that uniqueness and regularity for solutions of the Navier-Stokes

equations hold under the assumption that v belongs to Lα(0, T ;Lγ) where

2

α
+

n

γ
= 1, (1.2)

γ > n. See, for instance, the classical references [11, 13] (for n = 2, [10, 7, 12]); see also

[7, 9] and the more recent developments in [3, 4, 6, 14, 16, 15]. More precisely, under the
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above assumption (1.2), the uniqueness of the solution was proved by Prodi in reference [11]

for n = 3 and by Sather and Serrin (see [13]) for n ≥ 3. In [13] regularity is also shown

if n ≤ 4 and (2/α) + (n/γ) < 1. Sohr[14] succeeded in proving that the above class (1.2)

is even a regularity class. This last result was also proved (independently) by Giga[4]. For

n = 3, a simplified version of the proof is given in [17]. It is also known that C(0, T ;Ln) is

a regularity class (see [16]) and that L∞(0, T ;Ln) is a uniqueness class (see [14]). We are

interested in obtaining results in this same spirit.

Let 1 < α ≤ min{2, n/(n− 2)} and define β by

2

α
+

n

β
= 2. (1.3)

We prove that if

Dv ∈ Lα(0, T ;Lβ), (1.4)

then Dv ∈ C(0, T ;Lα′
)∩Lα′

(0, T ;L2β/(n−2)). In particular v is a regular solution. Moreover,

the sharp estimate (2.6) holds. See Theorem 2.2 below, where α = p′ and β = pn/2 (the

assumption p ≥ max{2, n/2} is equivalent to the above assumption on α).

Let us show that our result is the natural extension of the above classical result to values

α ≤ 2. For convenience let us denote by W 1,β the completion of C∞
0 (IRn) with respect to

the norm ∥Dv∥β . Note that, in the classical condition, α ≥ 2 and γ ≤ n. In our condition,

α ≤ 2 and β ≥ n. Nevertheless, in order to compare with the classical result, let us overlap

both situations by assuming α ≥ 2 in our theorem (in fact our theorem holds also for α > 2).

Since β < n, the Sobolev embedding theorem W 1,β ↪→ Lβ∗
holds, where β∗ = nβ/(n − β).

Consequently, our assumption (1.4) yields (exactly) v ∈ Lα(0, T ;Lβ′
). But this is just the

classical assumption, since the pair (α, β∗) satisfies (1.2). This argument shows that our

result is just the natural extension of the classical one to values α ≤ 2. In this last case, less

regularity in time is balanced by additional regularity in space. In the classical situation the

regularity assumption in space, Lγ , reaches its maximum γ = ∞ for α = 2. Hence, if α ≤ 2,

one has to go beyond L∞. In our Sobolev spaces framework, this means starting to use

W 1,β spaces. For α = 2 (common to both conditions) our condition (1.3) gives β = n. This

borderline case is particularly interesting. Our result shows that (if n ≤ 4) L2(0, T ;W 1,n) is

a regularity class. This does not follow from the classical result, that states that L2(0, T ;L∞)

is a regularity class, since W 1,n ↪→ L∞ is false (if n ≥ 2).

Next, consider the case a ∈ (1, 2). Now the value of the classical index 2/α+n/γ, applied

to our regularity class Lα(0, T ;W 1,β), is 2/α (since γ = ∞). Since 2/α is larger than 1, the

classical theorem does not apply. On the other hand, our result shows that, in this new

situation, the significant index is (2/α) + (n/β∗), which is equal to one if the assumption

(1.3) holds. Here β∗ = nβ/(n− β), independently of the fact that the Sobolev’s embedding

theorem W 1,β ↪→ Lβ∗
is true or false (we could also consider fractionary Sobolev spaces).

Curious enough, for α = 1 one gets L1(0, T ;W 1,∞), which is a regularity class for the

Euler equations. In fact, it is the sole (among the above classes (1.4)) to be a regularity

class for the Euler equations (according to what is known at present). In this regard, note

that in equation (1.4) one can replace Dv by curl v.
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§2. Proofs

Let us introduce some notation. We set ∂i = ∂/∂xi, i = 1, 2, · · · , n, and ∂t = ∂/∂t.

The symbol ∂ denotes indifferently ∂xi, for any i, or ∂t. Moreover Dv denotes the tensor

∂ivj , i, j = 1, · · · , n, and

|Dv(x)|2 =

n∑
i,j=1

|∂ivj(x)|2,

where v = (v1, · · · , vn) is a vector field over IRn. We define

∥Dkv∥r =
( ∑
|α|=k

n∑
i=1

∥∂kvj/∂x
α∥rr

)1/r

,

where α = (α1, · · · , αn) is a multi-index. A similar definition holds for scalar fields. We

denote by C(0, T ;X) the Banach space of bounded continuous functions on [0, T ] with values

in a Banach space X. Finally, if p ∈ (1,∞), we denote by p′ its dual exponent p′ = p/(p−1)

and, if p ∈ [1, n), by p∗ the Sobolev embedding exponent p∗ = pn/(n− p).

In the sequel we prove the following a priori estimate.

Theorem 2.1. Let p ∈ [2,∞). Assume that v is a regular solution of problem (1.1) in

some interval [0, T ). Then, if

Dv ∈ Lp′
(0, T ;Lpn/2), (2.1)

one has

Dv ∈ C(0, T ;Lp) ∩ Lp(0, T ;Lpn/(n−2)). (2.2)

Moreover,

sup
0≤t<T

∥Dv(t)∥pp +
∫ T

0

∥Dv(τ)∥ppn
n−2

dτ

≤ c∥Dv(0)∥pp
[
1 + exp

(
c

∫ T

0

∥Dv(τ)∥p
′

np
2
dτ

)]
. (2.3)

Here, and in the sequel, we denote by c (or by c0, c1, · · · ) positive constants that depend,

at most, on n and p. The symbol c may be used, even in the same equation, to denote

distinct constants.

Remark. It is already known that (2.1) is a regularity class if p ∈ (1, 2), since in this

case one has 2/p′ + n/(pn/2) = 1. For that reason, we assume here that p ≥ 2.

In order to avoid argumentations of secondary importance in our context, we shall state

the following application of the above a priori estimate in the framework of the classical

Leray-Hopf solutions [8, 5] (defined as in [3], section 5).

Theorem 2.2. Suppose v0 ∈ L2 and is divergence free. Assume, moreover, that Dv0 ∈ Lp

for some p ≥ max{2, n/2}. Suppose v is a Leray-Hopf solution of problem (1.1) in [0, T ). If

Dv ∈ Lp′
(0, T ;Lpn/2), (2.4)

Then

Dv ∈ C(0, T ;Lp) ∩ Lp(0, T ;Lpn/(n−2)), (2.5)
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Moreover,

sup
0≤t<T

∥Dv(t)∥pp +
∫ T

0

∥Dv(t)∥ppn
n−2

dt

≤ c∥Dv(0)∥pp
[
1 + exp

(
c

∫ T

0

∥Dv(τ)∥p
′

np
2
dτ

)]
. (2.6)

In particular v is a regular (unique) solution in [0, T ].

Proof of Theorem 2.2. Since v0 ∈ L2 and Dv0 ∈ Lp with p ≥ n/2 it follows (by

Sobolev embedding theorems) that v0 ∈ Lq for some q ≥ n. Hence, the solution v is regular

and unique (for instance, in the Hopf-Leray class) on [0, T1], for some T1 > 0. See [3, 6,

16, 14, 4]. By the a priori estimate in Theorem 2.1, together with the assumption (2.4), it

follows that (2.6) holds in [0, T1] (together with the energy inequality, etc.). This argument

shows that as long as (2.4) holds (i.e., until the time T ) the regular solution v satisfies (2.6),

and can be extended by a continuation argument.

Let us show, in a more direct way, that (2.5) is a regularity class. If p > n/2 it follows

that v ∈ L∞(0, T ;Lq) for some q > n, since Dv ∈ L∞(0, T ;Lp). Since 2/∞ + n/q < 1, the

result follows. If p = n/2 (hence n ≥ 4) and if, moreover, n > 4, then pn/(n− 2) < n. By a

Sobolev’s embedding theorem v ∈ Lp(0, T ;Lq), where q = [pn/(n−2)]∗. Since 2/p+n/q = 1,

the result follows. Finally, if p = n/2 and if n = 4, one has Dv ∈ L∞(0, T ;L2)∩L2(0, T ;L4).

Consider any θ-interpolation space, θ ∈ (0, 1), between L∞(0, T ;L2) and L2(0, T ;L4).

Choose, for instance, θ = 1/3. Then

∥Dv∥3 ≤ ∥Dv∥1/32 ∥Dv∥2/34 .

Hence Dv ∈ L3(0, T ;L3). In particular v ∈ L3(0, T ;L12), which is a regularity class since

2/3+4/12 = 1. Note that we use the classical regularity result under the simplified condition

2/α+ n/γ < 1 (except when n = 4 and p = 2).

Proof of Theorem 2.1. The following identities will be usefull in the sequel.

∂(|f |p−2f) = (p− 1)|f |p−2∂f, (2.7)

∇f · ∇(|f |p−2f) = (p− 1)|f |p−2|∇f |2, (2.8)

∇(|f |
p
2−1f) =

p

2
|f |

p
2−1∇f. (2.9)

From (2.8) and (2.9) one gets

∇f · ∇(|f |p−2f) =
4(p− 1)

p2
|∇(|f |

p
2−1f)|2. (2.10)

Apply ∂k to both sides of equation (1.1)1, multiply by |∂kvj |p−2∂kvj and integrate over

IRn. By taking into account that v is divergence free and by doing suitable integrations by

parts one easily gets

1

p

d

dt
∥∂kvj∥pp +

∫
∇(∂kvj) · ∇(|∂kvj |p−2∂kvj)dx

≤ c

∫
|∇∂kπ||Dv|p−1dx+ c

∫
|Dv|p+1dx, (2.11)
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where integrals are over IRn. By using (2.10) we show that

1

p

d

dt
∥∂kvj∥pp +

4(p− 1)

p2

∫
|∇(|∂kvj |

p
2−1∂kvj)|2dx

≤ c∥D2π∥p∥Dv∥p−1
p + ∥Dv∥p+1

p+1,

where Hölder’s inequality has been used in order to estimate the first integral on the right

hand side of (2.11).

Next, we apply the Sobolev embedding theorem∫
|∇f |2dx ≥ c

(∫
|f |2

∗
dx

)2/2∗

in order to estimate from below the integral that appears in the last equation. This yields

1

p

d

dt
∥∂kvj∥pp + c∥∂kvj∥p2∗p

2

≤ c∥Dv∥p+1
p+1 + c∥D2π∥p∥Dv∥p−1

p .

By adding with respect to k and j we show that

1

p

d

dt
∥Dv∥pp + c1∥Dv∥p2∗p

2

≤ c2∥Dv∥p+1
p+1 + c3∥D2π∥p∥Dv∥p+1

p . (2.12)

Next, by applying Hölder’s inequality (with exponents 2∗p/2, p′ and pn/2) to the integral

on the right hand side of the identity

∥Dv∥p+1
p+1 =

∫
|Dv||Dv|p/p

′
|Dv|dx,

one proves that

∥Dv∥p+1
p+1 ≤ ∥Dv∥ 2∗p

2
∥Dv∥p/p

′

p ∥Dv∥np
2
.

Hence, by Young’s inequality,

c2∥Dv∥p+1
p+1 ≤ (c1/4)∥Dv∥p2∗p

2

+ c∥Dv∥p
′

pn
p
∥Dv∥pp. (2.13)

On the other hand, since v is divergence free,

∆π =
∑
i,j

(∂ivj)(∂jvi).

Hence, by Calderon-Zygmund inequality[1,2] it follows that

∥D2π∥p ≤ c∥Dv∥22p. (2.14)

Next, note that

1

2p
=

1/2

2∗p/2
+

1/2

pn/2
.

Hence, by interpolation, one shows that

∥Dv∥2p ≤ ∥Dv∥1/22∗p
2

∥Dv∥1/2pn
2
. (2.15)

From (2.14) and (2.15) it follows that

∥D2π∥p∥Dv∥p−1
p ≤ c∥Dv∥ 2∗p

2
∥Dv∥ pn

2
∥Dv∥p/p

′

p .

By Young’s inequality

c3∥D2π∥p∥Dv∥p−1
p ≤ (c1/4)∥Dv∥p2∗p

2

+ c∥Dv∥p
′

pn
2
∥Dv∥pp. (2.16)

From (2.12), (2.13) and (2.16) it readily follows that

1

p

d

dt
∥Dv∥pp +

1

2
∥Dv∥p2∗p

2

≤ c∥Dv∥p
′

np
2
∥Dv∥pp. (1.17)
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This shows (2.3), since 2∗p
2 = pn

n−2 .
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[11] Prodi, G., Un teorema di unicità per le equazioni di Navier-Stokes, Ann. Mat. Pura Appl., 48(1959),

173-182.
[12] Prodi, G., Qualche risultato riguardo alle equazioni di Navier-Stokes nel caso bidimensionale, Rend.

Sem. Mat. Padova, 30 (1960), 1-15.
[13] Serrin, J., The initial value problem for the Navier-Stokes equations, in Nonlinear problems, Univ.

Wisconsin Press (R. E. Langer Ed), 1963, 69-98.
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