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KIRCHHOFF TYPE EQUATIONS

DEPENDING ON A SMALL PARAMETER
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Abstract

The authors prove some global existence results for equations of Kirchhoff type, i.e., non-
linear stretched string with nonlocal terms, depending on a parameter. This general setting
includes the known results on the Kirchhoff equation with small data. Moreover, the authors

can also handle some cases of degeneracy, which escaped earlier methods.
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§1. Introduction

The Cauchy problem

utt −m

(∫
Rn

|∇u|2dx
)
∆u = 0, (1.1)

u(0, x) = u0(x), ut(0, x) = u1(x), u0, u1 ∈ C∞
0 (Rn), (1.2)

where m(r) is a positive C1 function, has been extensively studied in the last fifty years,

starting with the pioneering work of S. Bernstein[3] (for more extensive references, see [4,

5]; see also [8]). Most investigations have been centered on the local existence in Sobolev

spaces, while only a few results of global existence are known. Roughly speaking, the global

solvability of (1.1), (1.2) has been proved in two different cases:

i) for analytic initial data;

ii) for small initial data decaying as |x| → ∞.

Here we are interested in the case (ii), whereas we refer to [3, 5], for the first kind of

problem. The first result of type (ii) was obtained by J. M. Greenberg and S. C. Hu in [7],

for the one dimensional Kirchhoff equation

utt −
(
1 + λ

∫
|ux|2dx

)
uxx = 0,

where the global existence was proved for small λ or, equivalently, for fixed λ and small

initial data ϕ, ψ. Such a result was later extended in [4] to several space dimensions, and to

any problem of the form (1.1), (1.2).

In this paper, we propose a comprehensive setting for these results, by giving a general

condition that ensures the global solvability for (1.1),(1.2). More precisely, we find a pos-

itive functional H, depending on the functions m(r), u0(x), u1(x), with the property that

(1.1),(1.2) can be globally solved as soon as H(m,u0, u1) is small enough.
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Introducing the notation

N(f) =
∑
|α|≤2
|β|≤1

∫
Rn

|xαDβf |2dx

we have (see Lemma A in the Appendix; see also [6])

cn ≡ 1 + Sup
τ∈R

f1,f2∈C∞
0

(Rn)

N(f1)
−1/2N(f2)

−1/2(1 + |τ |)2
∣∣∣∣∫ eiτ |ξ|f̂1(ξ)f̂2(ξ)|ξ|dξ

∣∣∣∣ < +∞ (1.3)

(where f̂j is the Fourier transform of the function fj). If we assume that m(0) > 0 and we

consider the quantity

ν0 = 256cn

(
N(∇u0) +

N(u1)

m(0)

)
, (1.4)

where we write for brevityN(∇u0) =
n∑
j=1

N(Dju0), we can define the functionalH(m,u0, u1)

as

H = ν0 ·
∥m′∥L∞(0,ν0)

m(0)
(1.5)

and we have

Theorem 1.1. Consider Problem (1.1), (1.2) where m(r) is a C1 function in a right

neighbourhood of r = 0 such that

m(0) > 0 (1.6)

and u0, u1 are smooth functions on Rn with N(∇u0), N(u1) <∞.

Then a global solution u(t, x) exists on R+ ×Rn, as soon as

H(m,u0, u1) <
1

2
. (1.7)

We notice that H cannot be made small by any rescaling of the form

u(t, x) 7→ ũ(t, x) = λ · u(µt, x). (1.8)

Indeed, if u solves (1.1),(1.2), then ũ solves a similar problem with

m̃(r) = µ2m(λ−2r), ũ0 = λu0, ũ1 = λµu1,

and we have

H(m̃, ũ0, ũ1) = H(m,u0, u1).

On the other hand, by a suitable choice of µ in (1.8), we can always reduce ourselves to

the case m(0) = 1, for which (1.5) reads

H = 256cn(N(∇u0) +N(u1)) · Sup {|m′(r)| : 0 ≤ r ≤ 256cn(N(∇u0) +N(u1))} .

Thus, condition (1.7) means, roughly speaking, that either the initial data of (1.1),(1.2) are

small in the N -norms, or m(r) is close to the constant 1 ≡ m(0). In both cases, we can say

that (1.1),(1.2) is close to a problem with global solution, namely the same equation with

u0 = u1 = 0 in the first case or the linear problem u = 0 in the second case. Finally, we

emphasize that assumptions (1.6)-(1.7) imply that m(r) > 0 on the interval 0 ≤ r ≤ ν0 with

ν0 given by (1.4).
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Theorem 1.1 can be better appreciated when applied to a family of problems (1.1),(1.2)

depending on a small parameter ϵ > 0. More precisely, if we consider the problems

utt −mϵ

(∫
Rn

|∇u|2dx
)
∆u = 0 (1.9)

u(0, x) = uϵ0(x), ut(0, x) = uϵ1(x), (1.10)

with mϵ(0) > 0, Theorem 1 gives the global existence for ϵ < ϵ provided that

H(mϵ, u
ϵ
0, u

ϵ
1) → 0 as ϵ→ 0. (1.11)

In some special cases, condition (1.11) can be simplified. Indeed, if we assume that

mϵ(0) ≥ λ0 > 0,

and also that

νϵ ≡ 256cn(N(∇uϵ0) + λ−1
0 N(uϵ1)] ≤ ν <∞,

with ν, λ0 independent of ϵ (for instance when the initial data are fixed or bounded in the

N -norms), then (1.11) is implied by the condition

νϵ
m′
ϵ(r)

mϵ(0)
→ 0 in L∞([0, ν]) (ϵ→ 0),

and hence, a fortiori, by

m′
ϵ(r) → 0 in L∞

loc(R
+) (ϵ→ 0). (1.12)

In order to illustrate these results, we list now some classes of problems of type (1.9),(1.10),

for which Theorem 1.1 ensures the global existence for small ϵ > 0.

Corollary 1.1. The Cauchy problem

utt −m

(∫
Rn

|∇u|2dx
)
∆u = 0,

u(0, x) = uϵ0(x), ut(0, x) = uϵ1(x),

where N(∇uϵ0) + N(uϵ1) → 0 as ϵ → 0, and m(r) is a C1 function defined in a right

neighbourhood of r = 0 with m(0) > 0, admits a global solution for ϵ small enough.

Corollary 1.2. The Cauchy problem

utt − µ

(
ϵ;

∫
Rn

|∇u|2dx
)
∆u = 0,

u(0, x) = uϵ0(x), ut(0, x) = uϵ1(x),

where µ(ϵ, r) is a C1 function on [0, ϵ]× [0, ν] such that

µ(0, r) ≡ constant, µ(ϵ, 0) ≥ λ0 > 0

and 256cn(N(∇uϵ0) + λ−1
0 N(uϵ1)) ≤ ν, admits a global solution for ϵ small enough. For

instance, we can take each of the following functions as µ(ϵ, r):

µ(ϵ, r) = m(ϵr), µ(ϵ, r) = 1 + ϵ ·m(r), µ(ϵ, r) = (1 + r)ϵ,

with m(r) as in Corollary 1.1.

In the examples above, the functions mϵ(r) are uniformly bounded from above and below

near r = 0. However, Theorem 1.1 can also be applied to some problems which degenerate

asymptotically as ϵ→ 0. For instance, if we assume that ∇uϵ0 and uϵ1 are uniformly bounded
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in the norm N(·), while m(r) is a C1 function, then Problem (1.9),(1.10) can be globally

solved for small ϵ > 0, in each of the following cases:

mϵ(r) = ϵ−1 +m(r),

mϵ(r) = ϵα + ϵm(r), α <
1

2
, Sup

r≥0
|m′(r)| <∞,

mϵ(r) = ϵαm(ϵr), α < 1, Sup
r≥0

|m′(r)| <∞, m(0) > 0.

A crucial assumption in Theorem 1.1 is that the function m(r) is strictly positive and

differentiable at r = 0. This excludes many degenerate cases (where m(0) = 0 or m′(0) =

+∞) which are of interest in the theory of Kirchhoff type equations. In particular, the

equation

utt −
(∫

|∇u|2dx
)λ

∆u = 0 (λ ≥ 0) (1.13)

has been studied by Y. Yamada[9] and A. Arosio and S. Garavaldi[1] who proved the local

existence with data u0, u1 in Sobolev spaces, assuming λ ≥ 1, or 0 < λ ≤ 1 and u0 ̸≡ 0,

respectively. It is to be mentioned that if u0, u1 are real analytic functions, then (1.1),(1.2)

is always globally solvable as soon as m(r) is a continuous nonnegative function (see [2,5]).

Another interesting equation, related to (1.13), to which Theorem 1.1 does not apply, is

utt −

[
1 +

(∫
|∇u|2dx

)λ]
∆u = 0 (0 < λ < 1); (1.14)

indeed, m(r) = 1 + rλ is not a C1 function when 0 < λ < 1.

In the second part of the paper, we prove some global existence results also for Equations

(1.13),(1.14), imposing a suitable relation between the (non analytic) initial data u0, u1.

More precisely, we require that the pair (u0, u1) is close enough to a pair of data generating

a traveling wave solution.

In order to illustrate these results, we shall put ourselves, for sake of simplicity, in the

one dimensional case (n = 1). Then we can easily see that (1.1),(1.2) admits traveling wave

solutions, i.e., solutions of the form u(t, x) = w(x± c0t), if and only if the initial data satisfy

u1(x) = ±c0∂xu0(x) with

c20 = m

(∫
|∂xu0|2dx

)
. (1.15)

Thus the closeness of (u0, u1) to a couple of data giving rise to a traveling wave can be

expressed as follows:

u1(x) = ±
[
m

(∫
|∂xu0|2dx

)]1/2
· ∂xu0(x) + ϵg(x),

where g(x) is a given function, and ϵ is small.

Then we prove:

Theorem 1.2.
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i) The Cauchy problem

utt −
(∫ +∞

−∞
|∂xu|2dx

)λ
∂2xu = 0 (λ ≥ 0), (1.16)

u(0, x) = u0(x), ut(0, x) = ±δλ/20 ∂xu0(x) + ϵg(x) (1.17)

with u0, g ∈ C∞
0 (R) and

δ0 =

∫ +∞

−∞
|∂xu0|2dx > 0 (1.18)

has a unique global solution for λ, ϵ small, i.e. provided that

0 ≤ λ < λ(u0, u1), |ϵ| < ϵ(u0, u1).

ii) The same conclusion as in (i) holds for the problem

utt −

[
1 +

(∫ +∞

−∞
|∂xu|2dx

)λ]
∂2xu = 0 (λ ≥ 0), (1.19)

u(0, x) = u0(x), ut(0, x) = ±(1 + δλ0 )
1/2∂xu0(x) + ϵg(x). (1.20)

iii) Let us now consider again Equation (1.19), but with the initial conditions

u(0, x) = ϵf(x), ut(0, x) = ϵ(1 + δλ0 )
1/2∂xu0(x) + ϵ2g(x), (1.21)

where f, g ∈ C∞
0 (R), and as above

δ0 =

∫ +∞

−∞
|∂xf |2dx > 0. (1.22)

Then for all (not necessarily small) λ ≥ 0 there exists a unique global solution to (1.19),

(1.21), provided ϵ ≤ ϵ(f, g).

Remarks. 1) In part (iii) of Theorem 1.2 we have been forced to assume not only that

the initial data are ϵ-small but also that they are ϵ2-close to a traveling wave. Of course,

this additional assumption is not necessary when λ ≥ 1, since in that case m(r) = 1 + rλ is

a C1 function at r = 0 and we can apply Theorem 1.1.

2) A similar result to part (iii) of Theorem 1.2 holds for Equation (1.1) with

m(r) =
1

| log r|
, (1.23)

(here ut(0, x) = ϵ
√
m(δ0)∂xf + ϵ2g), or more generally for any m(r) such that

r
m′(r)

m(r)
→ 0 as r → 0+. (1.24)

3) Theorem 1.2 can be extended to several space dimensions, provided the notion of

traveling wave is generalized in the following sense: a solution to Equation (1.1) will be

called a traveling wave if∫
Rn

|∇u(t, x)|2dx =

∫
Rn

|∇u0|2dx ∀t ≥ 0. (1.25)

By Fourier transform we then find

û(t, ξ) = û0(ξ)e
±ic0t|ξ| (1.26)

with

c20 = m

(∫
Rn

|∇u0|2dx
)
, (1.27)
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so that a pair (u0, u1) of initial data generates a traveling wave if and only if

û1(ξ) = ±ic0|ξ|û0(ξ). (1.28)

Thus the basic assumption in Theorem 1.2 will be that

û1(ξ) = ±ic0|ξ|û0 + ϵĝ. (1.29)

4) We conjecture that the global existence for (1.19) with initial data close to a traveling

wave, i.e., satisfying (1.29) with ϵ small enough, holds also for λ large, in particular for the

original Kirchhoff equation, corresponding to the choice m(r) = 1 + r.

The proof of both Theorems 1.1 and 1.2 (see Section 3 below) is based on a lemma (Lemma

2.1 in Section 2), which consists in an improvement of the existence result of [7] and [4]:

in this lemma we find a precise condition on the triple (m(·), u0, u1) which is sufficient to

ensure the global solvability for Problem (1.1),(1.2).

§2. Two Basic Lemmas

In this section we shall prove two lemmas from which we shall derive Theorems 1.1 and

1.2.

The first lemma consists essentially of an a priori estimate for global solutions to (1.1),

(1.2), where m(r) is a C1 function, m(r) > 0. Let u(t, x) ∈ C2(R+;C∞(Rn
x)) be such a

global solution; by Fourier transform in x we can write

v′′ + c2(t)|ξ|2v = 0, (2.1)

v(0) = v0, v′(0) = v1, (2.2)

where v(t) = v(t, ξ) = û, v0 = û0, v1 = û1, and

c(t) = [m(δ(t))]
1/2

, δ(t) =

∫
Rn

|ξ|2|v(t, ξ)|2dξ. (2.3)

Then the (real) quantities

α =
|v̇|2

c(t)|ξ|
− c(t)|ξ||v|2,

β = 2Re(v̇v),

ψ =
|v̇|2

c(t)|ξ|
+ c(t)|ξ||v|2

satisfy the first order system 
α′ = −2c(t)|ξ|β − c′(t)

c(t)
ψ,

β′ = +2c(t)|ξ|α,

ψ′ = −c
′(t)
c(t)

α.

If we define

γ(t) =

∫ t

0

c(s)ds (2.4)

and

ϕ(t, ξ) = e2iγ(t)|ξ|(α− iβ), (2.5)
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the above system can also be written as
ϕ′ = −c

′(t)
c(t)

e2iγ(t)|ξ|ψ,

ψ′ = −c
′(t)
c(t)

Re
(
e−2iγ(t)|ξ|ϕ

)
.

(2.6)

Now we define the following functionals, associated to the quantities ϕ, ψ, for t ≥ 0, τ ∈ R,

Jϕ(t, τ) = c(t)−1

∫
Rn

e−2iτ |ξ|ϕ(t, ξ)|ξ|2dξ (2.7)

Jψ(t, τ) = c(t)−1

∫
Rn

e−2iτ |ξ|ψ(t, ξ)|ξ|2dξ, (2.8)

and we remark that the time derivative δ′(t) (see (2.3)) can be written in terms of Jϕ as

follows:

δ′(t) =

∫
|ξ|22Re(v̇v)dξ =

∫
|ξ|2 β dξ = − Im Jϕ(t, γ(t)) · c(t). (2.9)

Hence, recalling that c(t) = (m(δ(t))1/2, we get the identity

c′(t) = −1

2
m′(δ(t)) Im Jϕ(t, γ(t)). (2.10)

Differentiating (2.7),(2.8) with respect to time and using the equations (2.6) and the identity

(2.10), we easily obtain

J ′
ϕ(t, τ) = Im Jϕ(t, γ(t)) · [Jψ(t, τ − γ(t)) + Jϕ(t, τ)]

m′(δ(t))

2m(δ(t))
c(t), (2.11)

J ′
ψ(t, τ) = Im Jϕ(t, γ(t)) ·

[
Jϕ(t, τ − γ(t)) + Jϕ(t, τ + γ(t)) + Jψ(t, τ)

] m′(δ(t))

2m(δ(t))
c(t).

(2.12)

Now using (2.11),(2.12) we shall prove that, for all τ ∈ R, t ≥ 0, the inequalities

|Jϕ(t, τ)| ≤ K1(1 + |τ |)−2, |Jψ(t, τ)| ≤ K2(1 + |τ |)−2 (2.13)

hold for some constants K1,K2, provided the function |m′(r)|/m(r) satisfies a suitable

“smallness condition”. More precisely, (2.13) holds with constants

K1 ≡ 2 Sup
τ∈R

(1 + |τ |)2|Jϕ(0, τ)| (2.14)

and

K2 ≡ Max

{
K1, 2 Sup

τ∈R
(1 + |τ |)2|Jψ(0, τ)|

}
(2.15)

as soon as

16(K1 +K2)
|m′(r)|
m(r)

< 1 for |r − δ0| ≤ K1, r ≥ 0 (2.16)

where

δ0 = δ(0) =

∫
|ξ|2|v0|2dξ. (2.17)

First of all, let us observe that the constants K1,K2 given by (2.14),(2.15) are finite.

This is an easy consequence of the definition of α, β, ϕ, ψ and of Lemma A in the Appendix;

indeed we have

ϕ(0, τ) = α(0, ξ)− iβ(0, ξ) =

(
|v1|2

c0|ξ|
− c0|ξ||v0|2

)
− 2iRe(v1v0),
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ψ(0, τ) =
|v1|2

c0|ξ|
+ c0|ξ||v0|2,

where c0 = c(0) = [m(δ0)]
1/2, and hence (see (2.7),(2.8))

Jϕ(0, τ) =

∫
e−2iτ |ξ|

(
|v1|2

m(δ0)
− |ξ|2|v0|2

)
|ξ|dξ− 2i√

m(δ0)

∫
e−2iτ |ξ| Re(v1v0)|ξ|2dξ, (2.18)

Jψ(0, τ) =

∫
e−2iτ |ξ|

(
|v1|2

m(δ0)
+ |ξ|2|v0|2

)
|ξ|dξ. (2.19)

Thus the finiteness of K1,K2 follows from Lemma A in the Appendix applied to f̂1 = v1,

f̂2 = |ξ|v0 (i.e. f1 = u1, f2 = |∇|u0), for ν = 1 and k = 2.

Next we prove that (2.16) implies (2.13). To this end, let [0, T∗[ be the maximum time

interval where (2.13) holds for all τ ∈ R (evidently T∗ > 0 by (2.14),(2.15)), and assume by

contradiction that T∗ <∞.

Then, integrating (2.11),(2.12) on [0, T∗], and using (2.13), we have, for t < T∗,

|Jϕ(t, τ)| ≤ |Jϕ(0, τ)|+
1

2
Sup
[δ]

|m′(r)|
m(r)

[
K1K2

∫ T∗

0

(1 + γ(s))−2(1 + |τ − γ(s)|)−2c(s)ds

+K2
1

∫ T∗

0

(1 + γ(s))−2c(s)ds · (1 + |τ |)−2

]
, (2.20)

|Jψ(t, τ)| ≤ |Jψ(0, τ)|+
1

2
Sup
[δ]

|m′(r)|
m(r)

[
K2

1

∫ T∗

0

(1 + γ(s))−2(1 + |τ − γ(s)|)−2c(s)ds

+K2
1

∫ T∗

0

(1 + γ(s))−2(1 + |τ + γ(s)|)−2c(s)ds

+K1K2

∫ T∗

0

(1 + γ(s))−2c(s)ds · (1 + |τ |)−2

]
, (2.21)

where the interval

[δ] = {δ(t) : 0 ≤ t < T∗} (2.22)

denotes the range of the values assumed on [0, T∗[ by the function δ(t) defined in (2.3).

Now, by the change of variables ρ = γ(s), recalling that c(s) = γ̇(s) and using Lemma B

in the Appendix with θ1 = θ2 = 2, we obtain∫ T∗

0

(1 + γ(s))−2(1 + |τ − γ(s)|)−2c(s)ds ≤
∫ +∞

0

(1 + ρ)−2(1 + |τ − ρ|)−2dρ ≤ 8(1 + |τ |)−2

and an identical inequality holds for the term with τ + γ(s) instead of τ − γ(s), while a

simpler computation gives∫ T∗

0

(1 + γ(s))−2c(s)ds ≤
∫ +∞

0

(1 + ρ)−2dρ = 1.
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Hence by (2.20),(2.21) and (2.14),(2.15) we obtain, for t < T∗,

|Jϕ(t, τ)| ≤ |Jϕ(0, τ)|+ 4(1 + |τ |)−2(K1K2 +K2
1 ) Sup

[δ]

|m′(r)|
m(r)

≤ 1

2
K1(1 + |τ |)−2 + 4(1 + |τ |)−2K1(K2 +K1) Sup

[δ]

|m′(r)|
m(r)

, (2.23)

|Jψ(t, τ)| ≤ |Jψ(0, τ)|+ 4(1 + |τ |)−2(K1K2 + 2K2
1 ) Sup

[δ]

|m′(r)|
m(r)

≤ 1

2
K2(1 + |τ |)−2 + 8(1 + |τ |)−2K1(K2 +K1) Sup

[δ]

|m′(r)|
m(r)

. (2.24)

Assume now that m(r) satisfies

16(K1 +K2) Sup
[δ]

|m′(r)|
m(r)

< 1. (2.25)

Then, taking into account that K1 ≤ K2 by definition (2.15) we see that (2.23),(2.23) for

t→ T∗ give

|Jϕ(T∗, τ)| < K1(1 + |τ |)−2, |Jψ(T∗, τ)| < K2(1 + |τ |)−2 (2.26)

in contradiction with the definition of T∗ (unless T∗ = +∞). Thus we have proved that

(2.25) implies (2.13) for all t ≥ 0. On the other hand, condition (2.25) can be made more

explicit by estimating the range [δ] (see (2.22) and (2.3)). Indeed by (2.9) and (2.13) we

deduce, for t < T∗,

|δ′(t)| ≤ | Im Jϕ(t, γ(t))| · c(t) ≤ K1(1 + γ(t))−2c(t) (2.27)

and hence, integrating on [0, t] and recalling that c(t) = γ̇(t), we see that

|δ(t)− δ0| ≤ K1

∫ t

0

(1 + γ(s))−2γ̇(s)ds ≤ K1,

or equivalently

[δ] ⊆ [δ0 −K1, δ0 +K1] ∩R+ ≡ I0. (2.28)

In conclusion, if (2.16) is fulfilled, then (2.25) holds and hence (2.13) and also (2.27) hold

for any t ≥ 0.

In view of the proof of Theorems 1.1, 1.2, the main consequence of (2.27),(2.28) is the

following estimate of the coefficient c2(t) = m(δ(t)) in Equation (2.1):∣∣∣∣ ddtc2(t)
∣∣∣∣ ≤ K1 Sup

I0

|m′(r)|
√
m(r).

To make future reference easier, we collect what we have proved above in the following

Lemma 2.1. Let v(t, ξ) be a solution to the Cauchy problem

v′′ +m(δ(t))|ξ|2v = 0,

v(0) = v0, v′(0) = v1,

where

δ(t) =

∫
Rn

|ξ|2|v(t, ξ)|2dξ,
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and assume that m(δ0) > 0, with

δ0 = δ(0) =

∫
Rn

|ξ|2|v0|2dξ.

Moreover, consider the quantities

Jϕ(0, τ) =

∫
e−2iτ |ξ|

[(
|v1|2

m(δ0)
− |ξ|2|v0|2

)
− 2i√

m(δ0)
Re(v1v0)|ξ|

]
|ξ|dξ, (2.29)

Jψ(0, τ) =

∫
e−2iτ |ξ|

[
|v1|2

m(δ0)
+ |ξ|2|v0|2

]
|ξ|dξ, (2.30)

K1 = 2Sup
τ∈R

(1 + |τ |)2|Jϕ(0, τ)|, K2 = Max{K1, 2 Sup
τ∈R

(1 + |τ |)2|Jψ(0, τ)}, (2.31)

and the interval

I0 = [δ0 −K1, δ0 +K1] ∩R+. (2.32)

Then, if

16(K1 +K2) Sup
I0

|m′(r)|
m(r)

< 1, (2.33)

the range of the function δ(t) is contained in the interval I0, and for all t ≥ 0 we have∣∣∣∣ ddtm(δ(t))

∣∣∣∣ ≤ K1 Sup
I0

|m′(r)|
√
m(r). (2.34)

In the next lemma, we give a simple convergence result for a family of strictly hyperbolic

linear equations with coefficients depending on a parameter.

Lemma 2.2. Cosider the family of Cauchy problems

utt − ak(t)∆u = 0, (2.35)

u(0, x) = uk0(x), ut(0, x) = uk1(x), (2.36)

where the coefficients ak(t) are strictly positive C1 functions on the intervals [0, ρk], with

ρk → +∞ as k → +∞, and assume that on [0, ρk]

0 < λ0 ≤ ak(t) ≤ Λ0, |a′k(t)| ≤ Λ0 (2.37)

for some constants λ0,Λ0 independent of k.

Then there exists a subsequence {akj} which converges in L∞
loc(R

+) to some a(t) ∈
C1(R+) satisfying (2.37) on R+.

Moreover, if the initial data uk0 , u
k
1 converge as k → ∞ to some functions u0, u1 in the

Sobolev spaces Hm(Rn) for all m, then the solutions ukj (t, x), which are in C2([0, ρkj ];

C∞(Rn)), converge for all T > 0 in the space C2([0, T ];C∞(Rn)) to the solution of the

limit problem

utt − a(t)∆u = 0, (2.38)

u(0, x) = u0(x), ut(0, x) = u1(x), (2.39)

which belongs to C2(R+;C∞(Rn)).

Proof. We will only give a sketch of the proof, since it relies on standard arguments.

The first claim regarding the sequence {ak} is a trivial consequence of the Ascoli-Arzelà

theorem.
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In order to prove the convergence of the solutions {ukj}, which exist by the theory of

strictly hyperbolic equations, we introduce the energy of order j of a solution uk(t, x) to

Problem (2.35),(2.36), defined as

Ej(uk, t) =
∑

|α|=j−1

∫
Rn

(|Dα∂tuk|2 + ak(t)|∇Dαuk|2)dx.

A standard computation shows that

E′
j(uk, t) ≤

|a′k(t)|
ak(t)

· Ej(uk, t)

and hence, by Gronwall’s lemma and by (2.37) we have, for any fixed T > 0 and k so large

that ρk > T ,

Ej(uk, t) ≤ C(λ0,Λ0, T ) · Ej(uk, 0) on [0, T ].

Thus it is clear that the sequence uk(t, x) is bounded in C1([0, T ];Hm(Rn)) for all T > 0

and m ≥ 0; hence, using Equation (2.38), we see that it is bounded also in the space

C2([0, T ];Hm(Rn)).

Now assume that the subsequence {akj} converges as above. Then, using the bounds

just proved (and the finite speed of propagation property), it is easy to show that any

subsequence of {ukj} admits some convergent subsequence, whose limit must be the unique

solution to (2.38),(2.39); thus the whole sequence {ukj} must converge to the same limit,

and this concludes the proof of the Lemma.

§3. Proof of the Theorems

A) Proof of Theorem 1.1.

Theorem 1.1 is a direct consequences of Lemmas 2.1, 2.2. We begin by verifying the

assumptions of Lemma 2.1. By Lemma A in the Appendix (for k = 2, µ = ν = 1), choosing

f̂1, f̂2 equal to one of the functions v1, |ξ|v0 (where v0 = û0, v1 = û1), we obtain that the

quantities (2.29),(2.30) can be estimated as follows:

|Jϕ(0, τ)|, |Jψ(0, τ)| ≤ 4cn(1 + |τ |)−2 · [N(∇u0) +N(u1) ·m(δ0)
−1], (3.1)

where cn ≥ 1 is the constant defined in (1.3), N(∇u0) =
n∑
j=1

N(Dju0) and

N(f) =
∑
|α|≤2
|β|≤1

∫
Rn

|xα ·Dβf |2dx, δ0 =

∫
Rn

|∇u0|2dx. (3.2)

Thus the constants K1,K2 in (2.31) can be estimated as

Ki ≤ 8cn[N(∇u0) +N(u1) ·m(δ0)
−1] (i = 1, 2) (3.3)

and assumption (2.33) in Lemma 2.1 is implied by

128cn[N(∇u0) +N(u1) ·m(δ0)
−1] Sup

J0

|m′(r)|
m(r)

< 1, (3.4)

where

J0 = [0, δ0 + 8cn(N(∇u0) +N(u1) ·m(δ0)
−1)].
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We shall now prove that (2.33) is fulfilled as soon as H < 1/2, where (see (1.3),(1.4),(1.5))

H = ν0
∥m′∥L∞(0,ν0)

m(0)
, ν0 = 256cn

(
N(∇u0) +

N(u1)

m(0)

)
. (3.5)

We have (see (3.2) and (3.5))

δ0 ≤ N(∇u0) ≤
ν0

256cn
≤ ν0, (3.6)

and

m(r) ≥ m(0)− r · ∥m′∥L∞(0,r), (3.7)

thus we have easily

m(δ0) ≥ m(0)− ν0∥m′∥L∞(0,ν0) = m(0)(1−H). (3.8)

This implies that

N(∇u0) +N(u1)m(δ0)
−1 ≤ 1

1−H
(N(∇u0) +N(u1)m(0)−1) =

1

1−H

ν0
256cn

. (3.9)

Now assume that

H <
1

2
.

Then (3.9), together with (3.6), gives

δ0 + 8cn(N(∇u0) +N(u1)m(δ0)
−1) ≤ ν0

256cn
+

ν0
32(1−H)

≤ ν0,

which allows us to estimate the interval J0 (see (3.4)) as follows:

J0 ⊆ [0, ν0].

Hence, using again (3.9), we see that to have (3.4) it is sufficient that

ν0
2(1−H)

Sup
[0,ν0]

|m′(r)|
m(r)

< 1. (3.10)

On the other hand, by (3.7), we know that

m(r) ≥ m(0)− ν0∥m′∥L∞(0,ν0) = m(0)(1−H) for r ≤ ν0,

thus (3.10) is in turn a consequence of the condition

H

2(1−H)2
≡ ν0

2(1−H)2
∥m′∥L∞(0,ν0)

m(0)
< 1,

that is to say, H < 1/2.

In conclusion, if H < 1/2 assumption (2.33) in Lemma 1 is fulfilled, and we obtain that,

if u(t, x) is a global solution to Problem (1.1),(1.2), the time derivative of the coefficient in

Equation (1.1) satisfies the bound (2.34), and also, by (3.3), the bound∣∣∣∣ ddtm(δ(t))

∣∣∣∣ ≤ 8cn[N(∇u0) +N(u1) ·m(δ0)
−1] · Sup

I0

|m′(r)|
√
m(r) = C(m,u0, u1) (3.11)

with a constant C depending only on m and on suitable Sobolev norms of u0, u1.

Now we shall apply Lemma 2.2 to conclude the proof of Theorem 1.1. To this end, we

approximate in H∞(Rn) = ∩mHm(Rn) the initial data u0, u1 with sequences uk0 , u
k
1 of

entire real analytic functions, rapidly decreasing at infinity (e.g. by analytic convolution).

For such data, Equation (1.1) has global solutions uk(t, x), as it is proved in [5], which are

real analytic in x and belong to H∞(Rn). Moreover, the result of Lemma 2.1 holds for
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the problems corresponding to the triples (m,uk0 , u
k
1) with constants independent of k, since

H(m,uk0 , u
k
1) converges to H(m,u0, u1) and satisfies eventually H < 1/2. Thus, writing

ak(t) = m(δk(t)), (3.12)

where

δk(t) =

∫
Rn

|∇uk|2dx

and applying (3.11), we obtain a common bound for the derivatives a′k(t). This shows that

the first part of assumption (2.37) in Lemma 2.2 is satisfied. In order to verify the second

part of (2.37), it is sufficient to observe that, by Lemma 2.1 (see (2.33)), the ranges [δk] of

the functions δk(t) are all contained in a common interval on which the function m(δ) is

bounded and strictly positive. Thus we can apply Lemma 2.2, and we obtain that the the

sequence {uk} has a converging subsequence {ukj}, with a smooth limit u(t, x) which solves

Equation (2.38). Moreover, we have

a(t) = lim
j
akj (t) = lim

j
m

(∫
Rn

|∇ukj |2dx
)

= m

(∫
Rn

|∇u|2dx
)

and this implies that u(t, x) is a solution to (1.1),(1.2).

Uniqueness can be proved by a standard linearization argument. Indeed, consider the

solution u obtained by the above argument, and assume there is another solution v, with

the same initial data. Then u, v must coincide as long as the corresponding functions δ(t)

stay in the interval wherem(r) is Lipschitz continuous; hence they must coincide everywhere.

In particular, from uniqueness it follows that the solution has compact support in space

for all times, since we can regard (1.1) as a linear strictly hyperbolic equation, for which the

property of finite speed of propagation holds.

The verifications in Corollaries 1.1, 1.2 are fairly obvious.

B) Proof of Theorem 1.2 (Sketch).

The proof follows the same lines as the preceding one. We firstly observe that, in the case

n = 1, it is possible to prove a version of Lemma 2.1 which is almost identical to the above

one, the only difference being that |ξ| is replaced by ξ everywhere. In the following we shall

apply this last version.

Consider case (i), that is to say m(r) = rλ, assuming e.g. that the initial data are of the

form (1.17) with the plus sign. Applying the Fourier transform (v0 = û0, v1 = û1), we have

then

v1 = iδ
λ/2
0 ξv0 + ϵĝ

(
δ0 =

∫ +∞

−∞
|∂u0|2dx

)
,

so that

|v1|2 = δλ0 ξ
2|v0|2 + ϵ2|ĝ|2 + 2ϵδ

λ/2
0 ξIm(v0ĝ),

Re(v1v0) = −ϵRe(v0ĝ)

and (2.29),(2.30) become

Jϕ(0, τ) =

∫ +∞

−∞
e−2iτξ(ϵ2δ−λ0 |ĝ|2 − 2iϵδ

−λ/2
0 v0ĝ)ξdξ,
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Jψ(0, τ) =

∫ +∞

−∞
e−2iτξ(2ξ2|v0|2 + ϵ2δ−λ0 |ĝ|2 + 2ϵδ

−λ/2
0 ξ Im(v0ĝ))ξdξ.

Hence, applying Lemma A in the Appendix, we see that the constants K1,K2 defined in

(2.31) can be estimated as follows (for ϵ ≤ 1)

K1 ≤ Cϵ(N(∂xu0) + δ−λ0 N(g)), K2 ≤ C(N(∂xu0) + δ−λ0 N(g))

for some universal constant C. Let us now choose ϵ so small with respect to u0, g that

K1 ≤ δ0/2,

then the interval I0 in (2.32) can be estimated as follows

I0 ⊆
[
δ0
2
, 2δ0

]
(3.13)

and assumption (2.33) in Lemma 2.1 is fulfilled as soon as

32C(N(∇u0) + δ−λ0 N(g)) Sup
[δ0/2,2δ0]

|m′(r)|
m(r)

< 1. (3.14)

But we have δ0 > 0,

Sup
[δ0/2,2δ0]

|m′(r)|
m(r)

≤ 2

δ0
Sup

[δ0/2,2δ0]

|m′(r)|r
m(r)

,

and for m(r) = rλ we have also

|m′(r)|r
m(r)

≡ λ,

thus (3.14) is fulfilled provided λ is small enough with respect to u0, g.

Thus we have proved that the assumptions of Lemma 2.1 are fulfilled for small ϵ and λ.

Note in particular that by (3.13) the range [δ] of δ(t) is bounded away from 0. The proof

now proceeds exactly as for Theorem 1.1.

The proof of cases (ii),(iii) is completely analogous.

Appendix

In the following, ∥ · ∥s for real s will denote the Sobolev norm on Rn

∥f∥s =
(∫

Rn

|f̂(ξ)|2(1 + |ξ|)2sdξ
)1/2

.

Lemma A. Let f1(x), f2(x) be two smooth functions with compact support on Rn, let

µ > 0, ν > −n be real numbers, and define

F (τ) =

∫
eiτ |ξ|

µ

f̂1(ξ)f̂2(ξ)|ξ|νdξ (1)

for τ ∈ R. Then:

i) For every nonnegative integer k ≤ (ν + n)/µ we have

|F (τ)| ≤ C(n, µ, ν)(1 + |τ |)−kNk(f1)1/2Nk(f2)1/2, (2)

where

Nk(f) =
∑
|α|≤k

(
∥xαf∥2(ν+k(1−µ))/2 + δ · ∥xαf∥2L1

)
,

δ = 0 if ν + k(1− µ) ≥ 0, δ = 1 otherwise.

(3)
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ii) If (ν + n)/µ is not integer, we have in addition

|F (τ)| ≤ C(n, µ, ν)(1 + |τ |)−(ν+n)/µN∗(f1)
1/2N∗(f2)

1/2, (4)

where

N∗(f) =
∑

|α|≤k∗+1

(
∥xαf∥2(k∗+1−n)/2 + δ∗ · ∥xαf∥2L1

)
, k∗ =

[
ν + n

µ

]
,

δ∗ = 0 if k∗ + 1− n ≥ 0, δ∗ = 1 otherwise.

(5)

In particular, for k = 2 and µ = ν = 1, we have∣∣∣∣∫ eiτ |ξ|f̂1(ξ)f̂2(ξ)|ξ|dξ
∣∣∣∣ ≤ c(n)(1 + |τ |)−2N(f1)

1/2N(f2)
1/2

with

N(f) =
∑
|α|≤2
|β|≤1

∫
Rn

|xαDβf |2dx.

Proof.

i) Setting |ξ| = ρ, ξ/|ξ| = η and

f̂1(ξ) · f̂2(ξ) = w(ξ) = w(ρ, η),

we can write (1) in the form

F (τ) =

∫
|η|=1

G(τ, η)dη,

with

G(τ, η) =

∫ ∞

0

eiτρ
µ

w(ρ, η)ρνρn−1dρ (|η| = 1). (6)

We shall prove the following estimate:

|G(τ, η)| ≤ C(µ, ν)|τ |−k
∫ ∞

0

|∂kρw| · ρν+k(1−µ)ρn−1dρ, (7)

for all real τ ̸= 0, and all integer k ≤ (n+ ν)/µ (k ≥ 0).

Before proving (7), we show how (2) follows from (7). Observing that

|∂kρw| ≤ c(k)
∑

h1+h2=k

|∂h1
ρ f̂1| · |∂h2

ρ f̂2|,

|∂hρ f̂ | ≤ c(n, h)
∑
|α|≤h

|∂αξ f̂ |, |∂αξ f̂ | = |x̂αf |,

we easily see that (7) implies

|G(τ, η)| ≤ C(n, µ, ν)|τ |−kÑk(f1)1/2Ñk(f2)1/2, (8)

where

Ñk(f) =
∑
|α|≤k

∫
Rn

|x̂αf |2|ξ|ν+k(1−µ)dξ. (9)

On the other hand we have, for any s > −n,∫
Rn

|ĝ|2|ξ|2sdξ ≤ c1(n) Sup
|ξ|≤1

|ĝ(ξ)|2 +
∫
|ξ|≥1

|ĝ(ξ)|2(1 + |ξ|)2sdξ

≤ c2(n)
(
∥g∥2L1

+ ∥g∥2s
)
,
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hence for g = xαf and s = (ν + k(1 − µ))/2 (note that ν + k(1 − µ) > −n since µ > 0,

ν > −n and 0 ≤ k ≤ (ν + n)/µ) we get

Ñk(f) ≤ c(n)Nk(f), 0 ≤ k ≤ ν + n

µ
.

Thus we have proved that (8), and hence (7), implies (2) for |τ | ≥ 1. As to the values

|τ | ≤ 1, (2) can be proved directly observing that

Sup
|τ |≤1

|F (τ)| ≤
∫
Rn

|w(ξ)| · |ξ|νdξ ≤ C(n, ν)Ñ0(f1)
1/2Ñ0(f2)

1/2

by the Schwartz inequality, and that (see (9) and (3))

Ñ0(f) ≤ Nk(f) if k ≥ 0.

The same argument shows that (2) holds for k = 0.

In conlusion, it remains to prove (7) for integer k ∈ [1, (ν + n)/µ], under the assumption

that (ν + n)/µ ≥ 1. To this end, we perform the change of variables

ρ 7→ ρµ ≡ r, w(ρ, µ) 7→ w(r1/µ, η) ≡ ψ(r)

for a fixed η such that |η| = 1, so that (writing for brevity G(τ) instead of G(τ, η)) (6)

becomes

G(τ) = µ−1

∫ ∞

0

eiτrψ(r)rλ−1dr, λ ≡ ν + n

µ
≥ 1. (10)

We claim that

|G(τ)| ≤ µ−1C(λ)|τ |−k
k∑
j=0

∫ ∞

0

|(r∂r)jψ| · rλ−k−1dr if k < λ (11)

while

|G(τ)| ≤ µ−1C(λ)|τ |−k
k∑
j=1

∫ ∞

0

|(r∂r)jψ| · r−1dr if k = λ. (12)

Indeed, integrating by parts in (10) we have

G(τ) = µ−1(−iτ)−1

{∫ ∞

0

eiτr[(r∂r)ψ + (λ− 1)ψ]rλ−2dr + δ(λ− 1) · ψ(0)
}
, (13)

where δ(s) is defined by δ(0) = 1, δ(s) ≡ 0 for s ̸= 0, and if we apply (13) k times we

find the identity

G(τ) = µ−1(−iτ)−k

∫ ∞

0

eiτr

 k∑
j=0

Aj(λ)(r∂r)
jψ

+B(λ)δ(λ− k) · ψ(0)

 (14)

for some constants A0, · · · , Ak, B depending only on λ, with

A0(λ) = (λ− 1)(λ− 2) · · · (λ− k).

Now, (11) and (12) follow directly from (14), taking into account that

∥ψ∥L∞ ≤
∫ ∞

0

|ψ′|dr =
∫ ∞

0

|(r∂r)ψ| · r−1dr. (15)

Finally, we have to prove that (11),(12) give (7). Going back to the original variable

ρ = r1/µ, observing that

r∂r = µ−1ρ∂ρ, r−1dr = µρ−1dρ,
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(ρ∂ρ)
j =

j∑
h=1

C(h, µ)ρh∂hρ for j ≥ 1, (16)

and recalling that λ = (ν + n)/µ, we easily see that (11) and (12) imply respectively that

|G(τ)| ≤ C(µ, ν)|τ |−k
k∑
h=0

∫ ∞

0

|∂hρw|ρh+ν−kµ+(n−1)dρ if k <
ν + n

µ
, (17)

|G(τ)| ≤ C(µ, ν)|τ |−k
k∑
h=1

∫ ∞

0

|∂hρw|ρh−1dρ, if k =
ν + n

µ
. (18)

But using the inequality(∗)∫ ∞

0

|ϕ(ρ)|ρα−1dρ ≤ 1

α

∫ ∞

0

|ϕ′(ρ)|ραdρ, α > 0 (19)

with ϕ = ∂hρw and α = h+ ν − kµ+ n (in (17)) or α = h− 1 (in (18)) and observing that

k − 1 = k + ν − kµ+ (n− 1) if k = (ν + n)/µ,

we see that (16),(17) imply

|G(τ)| ≤ C1(µ, ν)|τ |−k
∫ ∞

0

|∂kρw|ρν+k(1−µ)ρn−1dρ,

as claimed above. This concludes the proof of part (i).

ii) Assume now that λ = (ν + n)/µ is not an integer, say λ = k∗ + α with 0 < α < 1.

From (14) with k = k∗ we know that

G(τ) = µ−1(−iτ)−kH(τ) (20)

with

H(τ) =

∫ ∞

0

eiτrϕ(r)rα−1dr, ϕ(r) =

k∗∑
j=0

Aj(λ)(r∂r)
jψ.

Therefore, splitting the interval of integration as [0, δ] ∪ [δ,+∞[, we can write

H(τ) = H1(τ) +H2(τ)

and we have

|H1(τ)| =

∣∣∣∣∣
∫ δ

0

eiτrϕ(r)rα−1dr

∣∣∣∣∣ ≤ ∥ϕ∥L∞

δα

α

and

|H2(τ)| =
∣∣∣∣∫ ∞

δ

eiτrϕ(r)rα−1dr

∣∣∣∣
=

∣∣∣∣(−iτ)−1

{∫ ∞

δ

eiτr(ϕ′rα−1 + (α− 1)ϕrα−2)dr + eiτδϕ(δ)δα−1

}∣∣∣∣
≤ |τ |−1(∥ϕ′∥L1δ

α−1 + ∥ϕ∥L∞δ
α−1 + |ϕ(δ)|δα−1).

(∗)Actually (19) holds for any smooth function ϕ(ρ) with compact support in [0,+∞[, and can be proved
by applying the identity ∫ ∞

0
ϕ(ρ)ρα−1dρ = −

1

α

∫ ∞

0
ϕ′ραdρ, α > 0

to the functions ϕϵ = (ϵ+ |ϕ|2)1/2 and then letting ϵ → 0; note that |ϕ| ≤ ϕϵ, |ϕ′
ϵ| ≤ |ϕ′|.
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Thus, if we choose δ = |τ |−1 and recall (15), we obtain |H(τ)| ≤ C(α)|τ |−α∥ϕ′∥L1 . Hence,

by (20),(16) and (19), we get

|G(τ)| ≤ µ−1C(λ)|τ |−k∗−α
k∗∑
j=0

∫ ∞

0

|(r∂r)j+1ψ| · r−1dr

= c(n, µ, ν)|τ |−(ν+n)/µ
k∗∑
j=0

∫ ∞

0

|(ρ∂ρ)j+1w|ρ−1dρ

≤ c1(n, µ, ν)|τ |−(ν+n)/µ

∫ ∞

0

|∂k∗+1
ρ w|ρk∗dρ.

Then (4) follows by a similar argument as in the beginning of the proof.

Lemma B. If Max(θ1, θ2) > 1, then∫ +∞

0

(1 + |t− s|)−θ1(1 + |s|)−θ2ds ≤ c(θ1, θ2)(1 + |t|)−min(θ1,θ2)

with c(θ1, θ2) = 2min(θ1,θ2)+1/(Max(θ1, θ2)− 1).

Proof. Write for brevity φ = (1 + |t− s|)−θ1(1 + |s|)−θ2 . We have immediately∫ ∞

t

φ ds ≤ 1

Max(θ1, θ2)− 1
(1 + t)−min(θ1,θ2).

Moreover, for s ∈ [0, t] the expression φ is symmetric in θ1, θ2, thus we can assume that

θ1 ≥ θ2, θ1 > 1. We have then∫ t

t/2

φ ds ≤
(
1 +

t

2

)−θ2 ∫ t

t/2

(1 + t− s)−θ1ds ≤ 2θ2

θ1 − 1
(1 + t)−θ2

and ∫ t/2

0

φ ds =

∫ t/2

0

(1 + t− s)−θ2(1 + t− s)θ2−θ1(1 + s)−θ2ds

≤
(
1 +

t

2

)−θ2 ∫ t/2

0

(1 + s)−θ1ds ≤ 2θ2

θ1 − 1
(1 + t)−θ2 ,

and this concludes the proof of the Lemma.
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