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LARGE-TIME BEHAVIOR OF SOLUTIONS FOR
THE SYSTEM OF COMPRESSIBLE ADIABATIC
FLOW THROUGH POROUS MEDIA ***

X1a0 Lina(L. Hsia0)*  D. SERRE**

Abstract

Consider the system
v —ug =0,
ut +p(v, 8)g = —au, a >0, (1)
St = 07
which can be used to model the adiabatic gas flow through porous media. Here v is specific
volume, u denotes velocity, s stands for entropy, p denotes pressure with p, < 0 for v > 0.

It is proved that the solutions of (1) tend to those of the following nonlinear parabolic
equation time-asymptotically:

vy = 7%17(”75)@1‘7
st =0,
u = 7&1’(”7 s)z~
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¢1. Introduction

Consider the system
Ve — Uy = 0,
ug +p(v,8)e = —au, «a>0,

StZO,

which can be used to model the adiabatic gas flow through porous media. Here v is specific

volume, u denotes velocity, s stands for entropy, p denotes pressure with p, < 0 for v > 0.

This system is strictly hyperbolic with eigenvalues Ay = —\/—py, A2 = 0, A3 = /—D»-

The intent of this paper is to contribute to the program of elucidating the role of damping

mechanism, in particular, the influence to the asymptotic behavior of the processes under

consideration.
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For the case of isentropic flow, namely, s(z,t) = constant, it has been proved[!l that the
solution of the Cauchy problem
vy — Uy = 0,
ug +p(v)y = —au, «a >0, p'(v) <0 forv>0, (1.2)

v(x,0) = vo(z),u(z,0) = up(x), with zgglm(vo(m),uo(x)) = (vT,uT)

can be described by the solution of the following problem

Ut = _ép(v)xwa
U= —2p(0)a, (1.3)
v(x,0) = Up(x) with zgglm vo(z) = oF

time-asymptotically. The system in (1.3) is obtained from (1.2) by approximating the mo-
mentum equation in (1.2)y with Darcy’s law. Moreover, the Lo-norm and L..-norm of
the difference between these two solutions tend to zero with a rate =2 as time tends to
infinity[!]. This shows that certain nonlinear diffusive phenomena occur for the solution of
(1.2) which is caused by the damping mechanism.

For the system (1.1), the corresponding simplified system takes the form

Uy = _ép(vys)mxa
U= —ép(v, Sz, (1.4)
St = 0.

We will compare the solution of (1.1) with initial data (u(z, 0), v(x,0), s(z,0)) to the solution
of (1.4) with initial data (v(z,0),s(x,0)) and prove that the difference between these two
solutions tends to zero as time tends to infinity. This shows that the large time behavior of
solutions for nonlinear hyperbolic system (1.1) can be well approximated by corresponding
simplified nonlinear diffusion equations and certain nonlinear diffusive phenomena may occur
also, as in the isentropic case, for the solutions of (1.1), caused by the damping mechanism.
Denote the solution of (1.1) with
u(z,0) = uo(x), v(z,0)=vo(x), s(z,0)=so(x) (1.5)

by (u1,v1,$1); the solution of (1.4) with

U(J?, 0) = UQ(JJ), S(JT,O) = SQ(Z‘)
by (us,vs, s2). It is obvious that

s1(z,t) = sa(z,t) = s(x) = so(x). (1.6)

For simplicity, we assume that

lim wo(z) =0, lim wvo(z)=7>0
T—F 00 T—F o0
and
zgglm so(z) =3, (1.7)

where ¥ and s are constants.
Remark 1.1. The same result as in the present paper can be obtained in the case when
the initial data for (1.4) is v(z,0) = vo(z) Z vo(x) but lim vy(z) = 7.
r—TFoo
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Let w = v1 — va, 2 = u; — ug. It follows by (1.1) and (1.4) that
{ Wy — 2z =0, X (1.8)
2t + [p(w + v2,5) — p(ve, )]z + az — EP(U% 8)at = 0,
where s = s(x) is known.
By introducing y(z,t) = ffoo w(€,t)dE, the system (1.8) can be reduced into a single
equation for y since y,, = w and y; = z, due to (1.7). Namely,

1
Yet + [P(Ya + v2,8) — p(v2, 8)]o + ayr — EP(U% 8)at = 0, (1.9)
where vq satisfies (1.4); and (1.5)2, s = s(z) = so(x).

Ignore the subscript with v and assume « = 1 for convenience. We study the following
initial-value problem

{ Yer + [p(yz +v,8) = p(v, 8)]e + y: — p(v,8)t = 0, (1.10)
y(x,0) =yo(z), wyi(z,0) =y1(2), (1.11)
where

yo(l') = 07

y1(z) = uo(z) + p(vo(z), S0(2))z,

while v(x,t) satisfies

{vt = —p(v, $)ax, (1.12)
v(z,0) = vo(x). (1.13)

For any given initial data (ug(z),vo(z), so(z)) with ug(z) € H%(R), [vo(z) — v] € H5(R)
and [so(z) — 5] € H*(R), we show that the Cauchy problem (1.10) — (1.13) has a unique
smooth solution in the large in time provided the initial data are small. (We will give the
precise description for the smallness in the next section). Furthermore, the solution y and
it’s derivatives y; and y, decay to zero in the L,,-norm as ¢t — oo, which implies that the
system (1.1) is accurately approximated by (1.4) time-asymptotically.

Remark 1.2. A similar result for the case of isentropic flow was obtained in [2].

Remark 1.3. A different approach for the global existence of solutions of (1.1) can be
found in [4] where

u(z,0) =up(z), v(x,0) =7+ vo(z) and s(z,0) =35+ so(z)

such that (ug(z),vo(x), so(x)) is smooth with a compact support.

§2. Premininary Remarks

For any given v, s, we choose 7 such that 0 < r < v and define
Q={(v,5):0<T—r<v<v4rs—r<s<3s+r}h

Hypothesis 2.1. The function p(v, s) is smooth in € such that 0 < ag < —p,(v,s) < a;

()
for (v, s) € 2 and the derivatives %&?;‘2), 0<1<1,1<1i<4,arebounded in . Without

loss of generality, we assume that a; > 1,0 < ag < 1.
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We seek a smooth solution (y(z,t),v(z,t)) € C*(t > 0,z € R) and

ly(t),v(t)ll2 = [y(- t)|c2 + ye () ler + [y (- 1)l co
+v(t) = Dlez + |ve(- t)|er + v (- t)[co < 0o for t >0,

(2.1)
where [f()|c: = 3 supl|d’ f(z)/da?].
0<j<l R
By using Sobolev’s lemma, it is known that
[fO)ler < KILF )l (2.2)

Thus, using the Ls-energy method as in [2] we will solve the Cauchy problem (1.10)—(1.13)
in the space X3 defined by

Y(t) € Loo(t; H™), ye(t) € Loo(t; H™™Y), yy € Loo(t; H™2),
X =1 (v(t) =0) € Loo(t; H™), v(t) € Loo(t; H™ 1), v4e(t) € Loo(t; H™2), (2.3)
0<t<T, for any T > 0.
Hypothesis 2.2.
ug(z) € H*(R), wo(z) —v € H*(R),
so(z) —5 € HY(R) and (vo(x),so(z)) € QF, (2.4)
where
Q ={(v,8): 0<V—r" <v<THr*5—r* <s<F+r",0<r* <r}
It can be proved that the classical local existence theorem gives the solution for the
Cauchy problem (1.10)—(1.13) in the space X3 locally in time. For the global existence in

t > 0 we only need the a priori estimates in the norm (2.1) for which the a priori estimates
in the norm of X3 is sufficient by (2.2), i.e

Iy (®), w5 = Ty @)z + lye @2 + lyer (Ol 7
+ o) = Tl Fs + o)l + o (@) F: < oo fort>0.  (2.5)

In order to obtain the a priori estimates in the norm (2.5), we introduce

3
E(t) =Y E;(t) (2.6)
j=1

for the solution (y,v) with (v,s) € Q and (y, + v, s) € Q in each (¢, ), where

L[> (1 y?
El(t) = 5/ {Q(y'yt+2) +y§+[_pv(ay1+vvs)]yi

2 92
o+ ;} b
/ (024 11— polys + 0,952 + Doy + 0,842

+M2 9tt + ( pv(v S))Q?I]} (x,t)dx,
/ {Wire + 1= oo + v, 9)|Yo0s

+ M3 [azmt + ettm]}(w7 t)dl‘,
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M;(i =1,2,3) is a positive constant, given later, 0 < o < 1, s = s(x), 0 is defined by

O(z,t) = v(zx,t) — v(x), (2.7)
and v(x) is determined by
p(0(z),s(x)) = p(v,3), 2
q(0, ) = p(v(x), s(x)) — p(0 + (), s(x)), 29
Q(0,z) is defined by
0
Q.) = [ atn.oyin (2.10)

It is claimed that [*°_ 62dx can be expressed in terms of [* ¢2dxz and [ 62dx by

. . . . . o . o0 2
differentiating (2.8) and (2.9) with respect to « respectively and combining them; [~ 62 dx
can be expressed in terms of [~ ¢, dx, [*_q¢2dx and [*_6?dx by differentiating (2.8) and
(2.9) with respect to z twice respectively and combining the resulting equalities; ffooo 02, .dx

can be expressed in terms of [% 607 dx, [* qZ,dx, [*_q2dx and [*_6?dx with the help

of (2.8)zazs (2.9)zza, (1.12) and (2.7). Moreover, [* 62dx can be expressed in terms of
S5, Qdz, (by 2.10). This, together with (2.1), (2.2), (2.5)~(2.10), implies

ly(6), v (®)15 < lly(1), 6(D)[I3 + Kils — 5]
< K|lly(1), 0(t)|[13 + Kils —5lc2

< K?E(t) + K1|s — 5| c2 (2.11)
for (y,v)(z,t) with (v,s) € , (V(x),s) € Q and (y, + v, s) € Q, provided
|S — §|03 = 50 < ]., (212)

where the constants K and K depend only on 2 and p.

Lemma 2.1. Under the Hypotheses 2.1 and 2.2, there exists an e = (2, p) with 0 < e <
1, such that if the solution (y(t),v(t)) € X3 with (y, +v,s) € Q, (v,s) € Q and (V,s) € Q to
the Cauchy problem (1.10)—(1.13) is small as

ly#),v(t)2<e in0<t<T (2.13)
and
s —8|cs < e (2.14)
then one has the a priori estimate
Et)<KyE(0) m0<t<T (2.15)
where Ko > 1 depends only on p and 2.

For proving, we first assume that the solution (y(t),v(t)) belongs to the space X, with
y1(z) € H3(R),vo(x) —v € H®(R). This a priori estimate (2.15) is also valid for the solution
(y(t),v(t)) in X3 by use of the Friedrich’s mollifier under the same assumptions (2.13) and
(2.14), which we omit.

To obtain the a priori estimate of E(t), we establish certain Lo-estimates on 0(x,t) first.

By the definition (2.7) of 4, the equation (1.12) can be written as

0 = q(0,2) s, (2.16)
where ¢(6,x) is defined in (2.9).
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Multiplying (2.16) by ¢(6, x), using the definition of (2.10) on Q(6, x) and (2.9) on ¢(0, ),
integrating then over [tg,t] X (—o0 , after the integration by parts we get

/ Ql’tdl’+/t/ qxl’TdICdT_/ Q(z,to)d (2.17)

where ¢, denotes dx[ 0, z)].
Define V = Z[q(6, z)]. Then
Vi = qu-
Multiplying the above equation by V and integrating over [to,t] X (—oc, 00) with the help
of integration by parts, we arrive at

[e%e] 1 t [e%e] [e%e] 1
/ §q§(m,t)d$+/ / (—pv)HtQ(x,T)dxdT :/ iqi(x,to)dx. (2.18)
t() —00

—00 —00
Differentiate (2.16) with respect to ¢ and multiply the equation by 6;. Then one obtains
the following equation by integration:

(') 2 t ()
| e [ [ paws)6 o ndodr
—00 to v/ —o0

[ee) 02 t o]
= / (@, to)dz — / / Otz - Ot {Dv0 (0 +7) + pyss’}(, 7)dzdT.
to J —o0

—o0 2 (2.19)
(2.17)—(2.19) yield, by using Cauchy inequality,
e} 1 1 t o
/ {Q + g2+ 59,52}(@15)(137 + (ag — M) / / (02 + 02 ](x, 7)dxdr
—00 to v/ —o0
> 1 1
< / {Q + quc + 703}(x,t0)d:r. (2.20)

Hereafter, M denotes the constant which only depends on the bound of W (1<i<
4, 0<1<4)in Q, and
d = max{||0(t)]|2, 0}
Differentiate (2.16) with respect to ¢t and multiply the resulting equation by 6y, integrate

it over [to, t] X (—00, 00) then, we get
2

[ e %} tyis [ [ iy

:/ [ o (v, 8) - 9 (z, o der/ / —Du)t ztd:z:d’r
// O1e{[(Pov (0 +70) + puss’)0t) } (z, 7)dzdT. (2.21)
to

Differentiating (2.16) with respect to ¢ and x successively and multiplying the resulting
equation by 6., integrating it over [to, ] —00,00), we have

oo g2
/ amt (z,t d:v+/ / —py(v,8)-02,,)(x, 7)dxdr
— 00 to

oo N2
= / %(xa to)d.’L‘ + / / Ga::zzt{29zt [pv'u (ea: + i)\/
—o00 tg J —o0
+ PusS’] + 0t [pow (0 +0') + puss’]s } (z, 7)dzdT. (2.22)
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Differentiating (2.16) with respect to ¢ twice and multiplying the equation by 6y, inte-
grating it over [tg,t] X (—00,0), we obtain

[e'e) 02 t )
/ %(33, t)dx + / / [—po(v, s)ﬁitt](x, 7)dxdT
—00 to J —o0

[e%e] 02 t o0 N
- / %(l’v to)déﬂ + / / ottz{ett [pvv (em + U/) + pvssl]
[e’e) to J —o0

+ 04 [Doo (0 +0) + puss’]e + 0wt (Do) } (2, 7)dzdT. (2.23)
It follows from (2.21)—(2.23) that

9 1_ t [ee]
/ { % w;ﬂ@} @ tdr+(-om) [ [ Ghaodr
— 00 to o
CLO — 5M / / ;cxt + etta: (l' T)dIdT

2 _
</ {92”+M2(1’“9)]93t}($ to) dx+5M/ / (02 + 02))dxdr.
o (2.24)

Differentiating (2.16) with respect to ¢ twice and x once successively, multiplying the
equation by 6y, and integrating it over [tg,t] X (—o0, 00), we arrive at
/OO 2 t

%(w,t)da:—k// [—pv(v,s)-Oftm](a:,T)da:dT
[e'e] tg J —o0

o) 02 t 00

- / %(l’,to)déﬂ + / / gttzm{2(pv)t . atzx + 2(pv)z : attm + (pv)mm : ett
—00 to J —o0

+ 2(pv)tx9tx + 2(pvv)$9t : etx

+ (Pov) 2202}z, 7)dxdT. (2.25)

Differentiating (2.16) with respect to t once and x twice successively, multiplying it by
0..+ and integrating over [to, —00 oo) it turns out

> 0
/ Lz, t) der/ / —po(v,8) - 0%,.,)(x, T)dadr

00 92
= / IQIt( ’ )dfﬂ + [ / gzzxt{al’fbt ’ 3(p”)z + (pv)tezxx

+ 3(p'u)zz : eta: + et [2(pvv)x : 095:1: + (pvv)xm : 91 + (pv'ufv/\/ +va I):L’:c]}(x T)d{EdT

(2.26)
where 6,., can be expressed in terms of 6;,,0;,0,,6 by differentiating (2.16) with respect
to x.

(2.25) and (2.26) yield

93""5 92 T ¢ >
[m ( - t f2t) (z,t)dx + (ap — 5M)/ / (Himt + watt)(x,T)dasdT

2 2
g/ (9952” +9t2“”> (z,to) dx+5M// m:t m+9 +9 +0t2]dxd7—'

(2.27)
We turn to the Lo-estimates on y(t

, ) next

yer + [p(ys +v,8) — p(v, )]z + ¥+ — p(v,8)zt = 0. (2.28)

Multiply the equation (2.28) by y and y: respectively and integrate then over [to,?]
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(—00,00). After the integration by parts, we arrive at

2

/oo (y . %)(%t)dw n /t; /Oo[—Pv(ny + o, 8) - 12 (z, 7)dwdr

:/ (y yt+ xtodx-i-// yZ(x, 7)dxdr
/ / pv v, S8 ’Ut yT](I’ T)dIdT (229)

o0 2 _ t o0
/ {y; Ll Pv(”y;+”vs)] yg} (;z:,t)der/ / y2dadr
PN tg 4 —o00

- /_O:O {yj + [_p”(ayg to.5) yi} (,to)dz

t [e'e)
+ / / Yt [Pov(V,8) - Vg - O 4 Pus (0, 8)r - 8"+ Py(v, 8) - vz |drdT
to

t ) 2
-/ %[pv(ayw+v,s)]t(x,7')dxd7', (2.30)
to J/ —o0

where 0 < 0 < 1, (y, +v,5) € Q and (v,s) €
By using Cauchy inequality with (2.29) and (2.30), it follows that

2

¢

/OO {i[y.yt—s—y;} +y2 +[ pv(ay;+v ;)] 'yi}(x,t)d:c

—00

1 t oo
3ﬂ — 61 / / dxdT + (5 — (51) / / y?da?dT
t() — 00

(1 2 —po (oY, + 0,8
</m{4[y yﬁ%ﬁ%ﬂp(% )]~y§}(:c,to)dw

t 00
Jra%/ / vfxddeJr — + 51 / / vidxdr, (2.31)
to J —o0

where §; = 01(||y(t), 0(¢)||2, do)-
It is clear that there exists an € > 0 such that if (2.13) and (2.14) are true, then

o 1 ag
< = < — .
01 < min { 6’ 4} 16 2 and M 2 (2.32)

Thus, it follows from (2.31), (2.32) and (2.20) that

* 1 ¥’ 1, v [pe(oye +u,8)] o
/_w{4[y‘yt+2}+2+ 9 Yz ¢ (@, t)dw

agp t [e%¢) 1 t e3¢}
+ — / / yidadr + = / / yZdxdr
8 to — 00 4 t() — 0o

[e%e) 2
Y Yy [ pv(gyat Uas)] 2
< ZL .
[ {4{@/ y+2]+2+ 5 ya ¢ (z,t0)dx

t t o5}
a() 2
+a2/ / d:l:dTJr( —)/ / vidxdr
Y dag 16/ ), J oo !
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and

(e’ 1 1 t (')
/ {Q + ¢+ 705}(x,t)dx + @/ / (07 + 07,)dxdr
. 2% T3 2 )i )

° 1 1
< / {Q + 5%25 + 59?}(3«3750)‘137-

—00

Combining these two inequalities, we obtain

=1 y vi | [pov+oys,s)] o 1, 1,
/m{zx[y Yt 2}+ 5 T yx+M1[Q+2qm+20t} (z,t)dz

2
a t [e'e] 1 t [e%e) a t [e'e]
+ —0/ / yidrdr + f/ / yZdxdr + M; - —O/ / (07 + 07,)dxdr
8 to —00 —00 4 to J —o0
> —PMvu T 1 1
§/ [y o+ L ] I JUCRL ) 'yi-f—Ml[Q"‘*qg‘f'*eﬂ (x, to)dz,
_ 4 2 2 2 2 2
I (2.33)
where
4a3 /1 a2
This gives
ao t [e'e] 1 t [e%e] t [e%e)
Eq(t) + 7/ / y2dzdr + */ / y?dxdT—Faf/ / (07 + 02,)dzdr
8 to J —oo 4 to J —o0 to J —o0
< Eq(to), (2.35)

where Ej(¢) is defined as in (2.6).

Differentiate (2.28) with respect to ¢ and multiply by y;; then. We obtain the following
equation by integration.

oo 2 o t e}
/ {y; + [=po(ye +v,5)] pv(ym2+ v,8)] y?z} (z,t)dx +/ / ypdxdr
o 2 _ 2
=/ {y; + —[ pv(ya:2+ v, 5)] y2 }(x to)dz —/ / [Py (Y + v, 8)]t - ;xdacdf

/ / Yee{[po Yz + v, 8) — py(v, s vt}gpd:vd7'+/ / Yee{po (v, 8)vt tredxdr.
(2.36)

Differentiate (2.28) with respect to x and multiply by y.: then. We obtain the equation
below by integration

t o]
I {y;x +W.ygm}(x,wdz+ || stsar
— 00 to /oo

t o] 2
- {ym 4 Epelye +0,5)] pv(ygﬂ*”’S”ygz}(x,to)dx—/ | ot + w5 ez dor
—00 2 2 tg J —o0 2

N /t /_Oo Yea{[Po(Ya + v, 5) = po(v, 8)]ow + [ps(ye + v, 8) = ps(v, 8)]s" }odadr

t o
+ / / ytm{pv (’U, S)Uf}rrdsz (237)
to J —o0
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By using Cauchy inequality to (2.36) and (2.37), it reads

[e%¢] 2 1— —
/ {ytt+[ p”(%””Jrv’S)]yfzﬁL[ p”(ym;v’s)] -yix}(w,t)dx

1 t oo 5 5
+ (5 - 51)/ / (Yiz + Yi)dxdT
to — 00

[ee] 2
Y 1 —py(Ye +v,8 —Po(Ye + v, 8
< [ {y Rendirndl Bl g e

2 t [e%s} t 00
+ % / / (vZ, +vi)dxdr + 6, / / [y? + y2 4+ vZ, + vi, + v?]dzdr.
T fo oo (2.38)

Due to (2.32) and (2.24), it follows that

* y152t + [1 - p’ti(yw + v, S)] L2 + [_p’v<ya: + v, 5)] 2
2 2 tx D) yza:
—00

+M, [05% - M -9;} } (z,t)dx

t e3¢}
/ (ytzt + yfm)dxdT + %M2 / / agt:r + Ga::zzt + th)da:dT

=<
16 to J —oo

(42 1 —po(ys +v,s —po (Y + v, 8
< Y L=poly )]~yfm+[p(y )]~y§m
. 2 2
0 1
+M, | H

2
5 + [_”“2(”’8)]934 } (z, to)da

/ / [y2 + y2|dxdr + Mg + / / (v? 4 v2))dxdr,
to (2.39)

oo

where

2 2
M, =211 (2.40)

This yields

7 t ) a2 t oo
i | [+ 5 [ / (6o + 02+ O )
to
< Es(to) + —/ / (y? +92) dde—i— al / / (v? 4 v2,)dxdr
to tO

< Eg(to) + KoFEr (to), due to (2.35), (2.41)

where Fs(t) is defined as in (2.6), Ky > 0 depends only on Q and p.

Differentiate (2.28) with respect to x and ¢ successively and multiply the resulting equa-
tion by ., integrate it then over [tg,t] x (—00,00). One obtains the following inequality
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with the help of (2.28) and differentiating (2.28) with respect to x,

[e%e] 2 _ ! >
/ {yt;urw.ygm}(x,t)dwr/ / Yirgdwdr
to J —o0

— 00

o] 2 _
< / {ytm + Epolye +v,9)] pv(yz2+ v:3) ygzt} (x,to)dx

/ / pv v, S ) Ytta 'Uttm|d$d7
to

+ 6 / / (Yirw + Yowr + Yt + Yiw + yi + y2)dadr
0 —00

t [e%e)
+ & / / (vfm + Ufm + vtzt + vtz:c + vf)dmdr (2.42)

To estimate the term of ft f y2,.,, we differentiate (2.28) with respect to ¢ and multiply

it by yuq¢. Integrate over [tg,t] X (—o0,00) then, we arrive at
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Due to (2.41) and (2.42), (2.43) implies that
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Substituting (2.44) into (2.42), we end up with
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provided (2.45) holds.
By combining (2.46) with (2.27), it reads
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where Fs5(t) is defined as in (2.6).

By (2.35), (2.41) and (2.48), we arrive at the a priori estimate (2.15) under the assumption
(2.13) and (2.14), where ¢ is chosen so that (2.32) and (2.45) are satisfied.

This a priori estimate is also valid for the solution (y(t),v(t)) belonging to the space X3
under the same assumption (2.13) and (2.14) by use of the Friedrich’s mollifier. Lemma 2.1
follows then.

63. The Main Theorem

Theorem 3.1. Under the Hypotheses 2.1 and 2.2 there exists a constant €9 > 0 such that
if the initial data are small as E(0) < €9 and |so(z) — 5|cs < €0, then the Cauchy problem
(1.10)—(1.13) has a unique smooth solution in the large in time. The solution (y(t),v(t) —v)
decays to zero in the Lo, morm ast — oo and so do their first derivatives.

Proof. We choose the initial data so small that

B(0) < —5

—— 1
< 4K2K2 (3:-1)

and
2

_ €
I%@ﬁ—sbs<§ﬁq, (3.2)

where € and K are the same as in Lemma 2.1, K and K are the same as in (2.11).
By the local existence theorem there exists 1 > 0 such that the solution (y(t), v(t)) exists
in 0 <t < t; and satisfies

E(t) <2K,FE(0) and (y; +v,s) € Q,(v,5) € Q, in0<t<t.
It follows by (2.11) then that
ly(t), v(®)|I3 < K2E(t) + Kils — 5]
<2K?K,E(0) 4+ Kqlso(x) — 5|c2
<& m0<t<t. (3.3)
Thus, Lemma 2.1 implies that
E(t) < K2E(0) in0<t<t. (3.4)
Therefore, (y, + v,s) € ﬁ, (v,s) € SAZ, in 0 <t <ty, where
Q={(v,8): 0<T—T<v<T+7"5—T<s<5+70<r*<F<r}
Next, by the local existence theorem for t > ¢;, there exists ¢ > 0 such that the solution
(y(t),v(t)) exists in 0 <t < t; + ¢ and satisfies

E(t) < 2K,E(t)) and (y, +v,5) €Q, (v,8) €Q, inty <t <t +t. (3.5)
In view of (2.11), (3.1), (3.2), (3.4) and (3.5), it reads
ly(®), O3 < K2E() + K s — 5l
<2K?K3E(0) + Kq|so(z) — 5|c2
<e? int; <t<t +t. (3.6)
Therefore, (3.3), (3.6) and Lemma 2.1 imply
E(t) < K2E(0)in 0 <t <ty +t. (3.7)
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Also
(yw—|—v,s)€§, (v,s)eﬁ, n0<t<t +t.

Repeating the same procedure with the same time interval t > 0, we complete the proof
of the global existence of the solution.

We prove the decay of solution now.

By using Cauchy inequality, it follows from (2.35) with taking ¢y = 0 that

[t e [ [ [ [t <50,

which implies that

/ (yt2 + yﬁ)(z,t)dx —0ast— oo. (3.8)
On the other hand, it can be shown, due to (2.35), that
[ 1/2
v (x,t) < k(/ yidw) , (3.9)
where k is a positive constant independent of ¢.
(3.8) and (3.9) show that
y*(x,t) — 0 as t — oo, uniformly for z € (—o0, 00). (3.10)

Next, it reads from (2.41) that

/_O:O {‘%‘% + @yfm]( t)dx + —/ / (yiy + i )dadT < E2(0) + KoE1(0),

which yields

/ (v, +y2.) (x, t)dx — 0 as t — oc. (3.11)
In view of (2.35), it is also true that
- 0o 1/2
yi(x,t) <k [/ y?zdw] : (3.12)

This, combined with (3.11), gives

yZ(x,t) — 0 as t — oo uniformly for z € (—o0, 00). (3.13)
Similarly, it can be shown that

y2(2,t) — 0 as t — oo uniformly for z € (—o00, 00). (3.14)

The decay of (v(z,t) —v) can be discussed in the same way, as in [3].
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