IRRATIONAL ROTATION C*-ALGEBRA FOR GROUPOID C*-ALGEBRA**

CHEN XIAOMAN^{*} XU QINGXIANG^{*} XU SHENGZHI^{*}

Abstract

This paper characterizes the irrational rotaion C^* -algebra associated with the Toeplitz C^* -algebra over the *L*-shaped domain in \mathbb{C}^2 in the sense of the maximal radical series, which is an isomorphism invariant.

1991 MR Subject Classification 46L.

§1. Preliminaries

Irrational rotation C^* -algebra on the unit circle was first studied by M. Rieffel in [13]. Since 1980's many people have paid great attention to this subject (see [15], [16], [17], [18] and [19]). It has played an important part in the analysis of C^* -algebras, K-theory and index theory. In recent years the study of rotation C^* -algebra on group C^* -algebras and Toeplitz C^* -algebras has been developed. For Example, in [19] Handelman and Yin obtained a complete invariant for rotation C^* -algebra of Toeplitz C^* -algebra on the polydisk. In this paper from the view of groupoid we establish the structure of rotation C^* -algebras of Toeplitz C^* -algebras on L-shaped domain in \mathcal{C}^2 . This idea will get further developing in our other papers.

Suppose that Y is a locally compact Hausdoff and second countable space, and X is a both open and compact subset of Y. \mathbb{Z}^n acts on Y on the right continuously so that $(Y\mathbb{Z}^n)$ is a transfomation group. For the *n*-tuple θ in \mathbb{I}^n , define the homomorphism $C_{\theta}: Y \times \mathbb{Z}^n \to \mathbb{I}^r$ by

$$C_{\theta}(y,p) = \theta^p.$$

Denote the reduction of $Y \times \mathbb{Z}^n$ on X by G. Then the reduction of the skew product $(Y \times \mathbb{Z}^n)(C_{\theta})$ on $X \times \mathbb{I}$ is the skew product $G(C_{\theta})$.

Proposition 1.1. The groupoid G and $G(C_{\theta})$ are r-discrete and amenable.

The skew product $G(C_{\theta}) = G \times_{C_{\theta}} \mathbb{I}$ is a locally compact groupoid with composable pairs

$$G(C_{\theta})^{(2)} = \{((x, p, a), (y, q, b)) | ((x, p), (y, q)) \in G^{(2)} \text{ and } b = a\theta^{p} \}.$$

Manuscript received January 10, 1994.

^{*}Institute of Mathematics, Fudan University, Shanghai 200433, China.

^{**}Project supported by the National Natural Science Foundation of China, Fok Yingtung Foundation and the Science Foundation of State Education Commission.

The product is

(x, p, a)(y, q, b) = (x, p+q, a),

and the inverse is

 $(x, p, a)^{-1} = (x + p, -p, a\theta^p).$

The domain map is

 $d(x, p, a) = (x + p, 0, \theta^p),$

and the range map is

r(x, p, a) = (x, 0, a).

So the unit space may be identified with $X \times I\!\!T$.

Remark 1.1. Indeed, $G(C_{\theta})$ is the reduction of the skew product of $(Y \times \mathbb{Z}^p)(C_{\theta})$ on $X \times \mathbb{I}$.

Proposition 1.2. $C^*(G(C_\theta)) \cong C^*(G) \times_{\alpha_\theta} \mathbb{Z}$.

Proposition 1.3. The groupoid $(Y \times \mathbb{Z}^p)(C_\theta)$ is principal if there is no solution of nonzero integers to the equation $\theta^p = 1$.

Proof. We have to prove that the isotropy group $(Y \times \mathbb{Z}^n)(C_\theta)|_u$ at every point u in the unit space is trivial. Suppose that (x, m, a) is in the isotropy group of u. Then we have

$$x + p, 0, \theta^p a) = (x, 0, a) = u.$$

It follows that $\theta^p = 1$. Therefore p = 0 and (x, m, a) = u.

(

Remark 1.2. $G(C_{\theta})$ is principal if $(Y \times \mathbb{Z}^n)(C_{\theta})$ is.

It is easy to prove the following lemma.

Lemma 1.1. Suppose that G is a groupoid and A a group. Let $c : G \to A$ be a homomorphism. G(c) is the skew product $G \times_c A$. Suppose that E is a subset of G^0 . Then $E \times A$ is invariant in G(c) iff E is invariant in G.

Let $\Omega = \{(z_1, z_2) \in \mathbb{C}^2 | |z_1| < \delta_1, |z_2| < 1 \text{ or } |z_1| < 1, |z_2| < \delta_2\}$, where $\delta_1, \delta_2 < 1$. Then Ω , named *L*-shaped domain, is a Reinhardt domain in \mathbb{C}^2 . P. E. Curto and P. S. Muhly have represented the Toeplitz C^* -algebra $C^*(\Omega)$ faithfully by a groupoid C^* -algebra $C^*(G)^{[7]}$. Let us repeat the procedure briefly here with some new notations introduced. Let $T(p) : A^2(\Omega) \to A^2(\Omega)$ be the Toeplitz operator of the symbol z^p . Then $\{T(p) | p \in \mathbb{Z}^2_+\}$ is a contractable representation of \mathbb{Z}^2_+ by a weighted function

$$w_+(p,q) = \frac{\|z^{p+q}\|}{\|z^q\|},$$

for $p, q \in \mathbb{Z}_+^2$.

A direct calculation shows

$$w_{+}(\epsilon_{1},p) = \sqrt{\frac{(p_{1}+1)(\delta_{1}^{2p_{1}+4} + \delta_{2}^{2p_{2}+2} - \delta_{1}^{2p_{1}+4}\delta_{2}^{2p_{2}+2})}{(p_{1}+2)(\delta_{1}^{2p_{1}+2} + \delta_{2}^{2p_{2}+2} - \delta_{1}^{2p_{1}+2}\delta_{2}^{2p_{2}+2})}}$$

and

$$w_{+}(\epsilon_{2},p) = \sqrt{\frac{(p_{2}+1)(\delta_{1}^{2p_{1}+2} + \delta_{2}^{2p_{2}+4} - \delta_{1}^{2p_{1}+2}\delta_{2}^{2p_{2}+4})}{(p_{2}+2)(\delta_{1}^{2p_{1}+2} + \delta_{2}^{2p_{2}+2} - \delta_{1}^{2p_{1}+2}\delta_{2}^{2p_{2}+2})}}$$

Extend each $w_+(p, \cdot)$ to \mathbb{Z}^2 by taking zero on $\mathbb{Z}^2 \setminus \mathbb{Z}_+^2$. Let A denote the translation-invariant C^* -subalgebra of $l^{\infty}(\mathbb{Z}^2)$ generated by the family $\{w(p, \cdot) | p \in \mathbb{Z}_+\}$ not including the identity. The maximal ideals space of A, denoted by Y, is locally compact and second countable. The natural action, $\tau : \mathbb{Z}^2 \to \operatorname{Aut}(A)$, defined by translation induces an action of \mathbb{Z}^2 on Y according to this prescription: $(y + p)(a) = y(\tau_p(a))$. Since the evaluation at p gives a multiplicative linear functional, say $\alpha(p)$, we get an injection $\alpha : \mathbb{Z}^2 \to Y$ both open and continuous. The subset $\overline{\alpha(\mathbb{Z}_+^2)}$, denoted by X, is open and compact. G is the reduction of $Y \times \mathbb{Z}^2$ by X as defined above. Then $C^*(\Omega)$ is faithfully represented by $C^*(G)$ (see [7]).

According to [7], Y consists of four parts, i.e.,

$$Y = \alpha(\mathbf{\mathbb{Z}}^2) \cup \alpha(\mathbf{\mathbb{Z}} \times \{\infty\}) \cup \alpha(\{\infty\} \times \mathbf{\mathbb{Z}}) \cup \beta([-\infty, +\infty])$$

where

$$\alpha(p_{1,\infty}) = \lim_{p_2 \to +\infty} \alpha(p_1, p_2)$$

and

$$\alpha(\infty, p_2) = \lim_{p_1 \to +\infty} \alpha(p_1, p_2)$$

in Y; and $\beta : [-\infty, +\infty] \to \infty_G$ is the realization of the subset, ∞_G , of Y consisting of all the possible limits $\lim_{k_1, k_2 \to +\infty} \alpha(k)$ in Y. Indeed, $\beta(t)$ is uniquely determined by

$$(\beta(t)(w(\epsilon_1, \cdot)), \beta(t)(w(\epsilon_2, \cdot)) = \begin{cases} (\delta_1, 1) & \text{for } t = -\infty, \\ \left(\sqrt{\frac{\delta_1^2 + \exp(t)}{1 + \exp(t)}}, \sqrt{\frac{1 + \delta_2^2 \exp(t)}{1 + \exp(t)}}\right) & \text{for } t \in \mathbb{R}, \\ (1, \delta_2) & \text{for } t = +\infty. \end{cases}$$

Thus

$$X = \alpha(\mathbf{\mathbb{Z}}_{+}^{2}) \cup \alpha(\mathbf{\mathbb{Z}}_{+} \times \{\infty\}) \cup \alpha(\{\infty\} \times \mathbf{\mathbb{Z}}_{+}) \cup \beta([-\infty, +\infty])$$

Given a pair of numbers $\theta = (\theta_1, \theta_2) \in \mathbb{I}^2$, satisfying the condition that there is no nonzero integer *n* such that $\theta_1^n = 1$ or $\theta_2^n = 1$, which is weaker than that in Proposition 1.3, there is an automorphism $\varphi_{\theta} : \Omega \to \Omega$ defined via

$$\varphi_{\theta}(z_1, z_2) = (\theta_1 z_1, \theta_2 z_2), \text{ for } (z_1, z_2) \in \Omega.$$

Thus there is an induced C^* -dynamical system $(C^*(\Omega), \mathbb{Z}, \tilde{\varphi}_{\theta})$, where $\tilde{\varphi}_{\theta}$ is the induced automorphism of $C^*(\Omega)$ such that $\tilde{\varphi}_{\theta}(T_f) = T_{f \bullet \varphi_{\theta}^{-1}}$ for f in $C(\overline{\Omega})$.

Proposition 1.4. $C^*(G) \times_{\alpha_{\theta}} \mathbb{Z} \cong C^*(\Omega) \times_{\tilde{\varphi}_{\theta}} \mathbb{Z}$. **Remark 1.3.** $\lim_{p_1 \to +\infty} \alpha(p_1, +\infty) = \beta(-\infty)$ and $\lim_{p_2 \to +\infty} \alpha(+\infty, p_2) = \beta(+\infty)$.

§2. Invariant Maximal Radical Series of $C^*(G(C_{\theta}))$

The maximal radical series of a C^* -algebra is invariant under the isomorphism. It plays an important part in the classification of some C^* -algebras. By the definition^[20], the maximal radical of a C^* -algebra A is the intersection of all closed two-sided maximal ideals of A, and is denoted by m(A), the composition series

$$\cdots \triangleleft m(m(A)) \triangleleft m(A) \triangleleft A.$$

is called the maximal radical series. In this section we will determine the maximal radical series of the rotational C^* -algebra $C^*(G(C_{\theta}))$.

By [1], there is an order-preserving homomorphism from the family of the invariant open subsets to the family of the closed ideals in the reduced groupoid C^* -algebra. And now, we will first determine the minimal invariant closed subsets in the groupoid $G(C_{\theta})$.

Lemma 2.1. There are only two minimal invariant closed subsets in the unit space of the groupoid $G(C_{\theta})$, i.e., $\{\beta(+\infty)\} \times \mathbb{I}$ and $\{\beta(-\infty)\} \times \mathbb{I}$, denoted by F_1 and F_2 respectively. Their complements are denoted by B_1 and B_2 respectively. Any invariant closed subset contains at least one of the F_i 's.

Proof. The F_i 's are obviously minimal invariant and closed. Given an invariant closed subset F, take any u in F.

1) If u is in either F_1 or F_2 , then $F_1 \subseteq F$ or $F_2 \subseteq F$.

2) If u is in $\beta(I\!\!R) \times I\!\!T$, then

$$\lim_{m \to +\infty} (u + (0, m)) = (\beta(+\infty), t)$$

for some t in \mathbb{I} . Hence $F \cap F_1 \neq \emptyset$, and by 1) $F_1 \subset F$.

3) If u is in $\alpha(\mathbb{Z}_+ \times \{\infty\}) \times \mathbb{I}$, then

$$\lim_{m \to +\infty} (u + (m, 0)) = (\beta(-\infty), t)$$

for some t in \mathbb{I} . Hence $F \cap F_2 \neq \emptyset$, and by 1) $F_2 \subset F$.

4) If u is in $\alpha(\{\infty\} \times \mathbb{Z}_+) \times \mathbb{I}$, then by the same reason as above, $F_1 \subset F$.

5) If u is in $\alpha(\mathbb{Z}_+^2) \times \mathbb{I}$, then

$$\lim_{m \to \pm\infty} (u + (m, 0)) = (\alpha(\infty, n), t)$$

for some t in \mathbb{I} . Hence by the same reason as in 4), $F_1 \subset F$.

The lemma follows now.

Remark 2.1. We have used the fact that $\{\theta^p | p \in \mathbb{Z}_+^2\}$ is dense in \mathbb{I} if there is no integer n of nonzero such that $\theta_1^n = 1$ or $\theta_2^n = 1$.

Lemma 2.2. If the ratio $\frac{\ln \delta_1}{\ln \delta_2}$ is irrational, the isotropy group $G(C_{\theta})|_u$ is trivial for $u \notin F_1 \cup F_2$, i.e., $u \in B$.

Proof. For any (x, p, t) in $G(C_{\theta})|_{u}$, we have two equalities

$$+p = x, \tag{I}$$

$$\theta^p = 1.$$
 (II)

(1) If x is in $\alpha(\mathbb{Z}_+^2)$, say $x = \alpha(q)$, then equality (I) becomes $\alpha(q+p) = \alpha(q)$. Consequently, p = 0 since α is injective.

(2) If x is in $\alpha(\mathbb{Z}_+ \times \{\infty\})$, say $x = \alpha(m, +\infty)$, then equality (I) becomes $\alpha(m+p_1, \infty) = \alpha(m, \infty)$. Thus $p_1 = 0$. It follows that $p_2 = 0$ from equality (II).

(3) If x is in $\alpha(\{\infty\} \times \mathbb{Z}_+)$, then p = 0 by the same reason as in case (2).

x

(4) If x is in $\beta(-\infty, +\infty)$, say $x = \beta(s)$, then equation (I) becomes $\beta(s + 2p_2 \ln \delta_2 - 2p_1 \ln \delta_1) = \beta(s)$. It follows that $p_2 \ln \delta_2 = p_1 \ln \delta_1$. Therefore p = 0. Finally we get (x, p, t) = u. The lemma follows.

Theorem 2.1. The maximal radical of the groupoid C^* -algebra $C^*(G(C_{\theta}))$ is $\mathbf{I}(B)$.

Proof. If 1, $\frac{\operatorname{arg} \theta_1}{2\pi}$ and $\frac{\operatorname{arg} \theta_2}{2\pi}$ are linearly independent over the field \mathcal{Q} of the rational numbers, the groupoid is principal, the maximal closed ideals are $\mathbf{I}(B_1)$ and $\mathbf{I}(B_2)$. Therefore the intersection of the maximal closed ideals is $\mathbf{I}(B)$.

If 1, $\frac{\arg \theta_1}{2\pi}$ and $\frac{\arg \theta_2}{2\pi}$ are linearly dependent over the field Q, we will prove the following claims

(1) There is indeed a maximal closed ideal in the groupoid C^* -algebra and the intersection of the maximal closed ideals is contained in $\mathbf{I}(B)$.

(2) Each maximal closed ideal I in the groupoid C^* -algebra contains $\mathbf{I}(B)$. And now

$$C^*(G(C_\theta))/\mathbf{I}(B_1) \cong C^*(G(C_\theta)|_{F_1})$$

= $C^*(\beta\{+\infty\} \times \mathbf{I} \times \mathbf{Z}^2)$
 $\cong C^*(\mathbf{I} \times \mathbf{Z}^2)$
 $\cong C(\mathbf{I} \times \mathbf{Z}^2)$
 $\cong C(\mathbf{I} \times \mathbf{Z}^2)$

where $\alpha_{\theta}(f)(\lambda_1, \lambda_2) = f(\theta_1\lambda_1, \theta_2\lambda_2) = f \cdot \varphi_{\theta}(\lambda_1, \lambda_2)$. Since the homeomophism φ_{θ} is not minimal, the crossed product $C(I\!\!I^2) \times_{\alpha_{\theta}} I\!\!I$ is not simple by [1]. However, the nontrivial closed ideal must be contained in some maximal ones since the crossed product is unital. Suppose that I is the maximal closed ideal in the crossed product. Then the quotient $C(I\!\!I^2) \times_{\alpha_{\theta}} I\!\!I/I$ is simple. So there is a surjective homomorphism from $C^*(G(C_{\theta}))$ onto $C(I\!\!I^2) \times_{\alpha_{\theta}} I\!\!I/I$, whose kernel is a maximal closed ideal in $C^*(G(C_{\theta}))$.

Since the closed orbit $\overline{\{\varphi_{\theta}^{n}(\lambda)|n \in \mathbb{Z}\}}$ is minimal for every $\lambda \in \mathbb{I}^{2}$, by [1] the intersection of the maximal closed ideals in the crossed product is $\{0\}$. Hence the maximal radical is contained in $\mathbf{I}(B_1)$. A similar argument shows that the maximal radical is contained in $\mathbf{I}(B_2)$. The claim (1) follows.

For each maximal closed ideal I, there is an integrated representation, $\pi = (\mu, L, \mathcal{H})$, of $C^*(G(C_{\theta}))$ with kernel I. It follows that the representation π is weakly contained in the induced left regular representation living on μ . Therefore $\mathbf{I}(F) \subseteq \ker(\pi)$, where F denotes the support of μ . F is an invariant closed subset. By the proof of Lemma 2.1, F contains either F_1 or F_2 .

If $F = F_1$ or $F = F_2$, then $\mathbf{I}(B_1) \subseteq I$ or $\mathbf{I}(B_2) \subseteq I$; thus $\mathbf{I}(B) \subseteq I$.

If $F \neq F_1$ and $F \neq F_2$, then

1) F only contains F_1 . Then $\overline{F \setminus F_1}$ is a nontrivial invariant closed subset, say \widetilde{F}_2 , contained in F. Therefore it contains F_1 , i.e., $\widetilde{F}_2 = F$. By the proof of Proposition 4.4 in [1],

$$\sup_{u \in F} |f(u)| \le ||\pi(f)||,$$

it follows that $I \subseteq \mathbf{I}(B_1)$. Therefore $I = \mathbf{I}(B_1)$. Thus $\mathbf{I}(B) \subseteq I$.

2) F only contains F_2 . Then $I(B) \subseteq I$ by the same reason as in case 1.

3) F contains both F_1 and F_2 . Set

$$F' = F \setminus F_1 \cup F_2, \ \mu'(E) = \mu(E \cap F'), \ \mu_1(E) = \mu(E \cap (F_1 \cup F_2)).$$

Then $\pi_1 = (\mu_1, L, \mathcal{H})$ and $\pi' = (\mu', L, \mathcal{H})$ are the integrated representations of the groupoid

 C^* -algebra $C^*(G(C_\theta))$. Moreover we have

$$\pi_1(f)(\xi) = \pi(f)(\chi_{F_1 \cup F_2}\xi) = \chi_{F_1 \cup F_2}\pi(f)(\xi)$$
$$\pi'(f)(\xi) = \pi(f)(\chi_{F'}\xi) = \chi_{F'}\pi(f)(\xi),$$
$$\ker(\pi) = \ker(\pi_1) \cap \ker(\pi').$$

Since $\ker(\pi)$ is a maximal closed ideal, it coincides with either $\ker(\pi_1)$ or $\ker(\pi')$.

(1) If $I = \ker(\pi_1)$, it follows immediately that $\mathbf{I}(B) \subseteq I$.

(2) If $I = \ker(\pi')$, one of the following cases occurs.

(i) $\operatorname{supp}(\mu') = \overline{F'}$ contains $F_1 \cup F_2$. By the proof of Proposition 4.4 in [1] we get

$$\sup_{u \in F} |f(u)| \le ||\pi(f)||,$$

and it follows immediately that $I = \mathbf{I}(G(C_{\theta})^0 \setminus \overline{F'})$. Since B_1 and B_2 are the maximal invariant open subsets and

$$\mathbf{I}(G(C_{\theta})^{0} \setminus \overline{F'}) \subseteq \mathbf{I}(B_{1}) \cap \mathbf{I}(B_{2}),$$

this case can not occur.

(ii) $\operatorname{supp}(\mu')$ contains only one of the F_i 's. Then by the above discussion we have $\mathbf{I}(B) \subseteq I$. The claim (2) follows now. The theorem follows from the above claims.

Lemma 2.3. The groupoid $G(C_{\theta})|_{B}$, denoted by $G(C_{\theta})'$, is r-discrete, principal and amenable.

Lemma 2.4. The maximal radical of $C^*(G(C_{\theta})')$ is $\mathbf{I}(\alpha(\mathbb{Z}_+^2) \times \mathbb{I})$, denoted by $C^*(G(C_{\theta})'')$.

Proof. By Lemma 2.2 and [1], there is an order-preserving isomorphism between the family of the maximal closed ideals in $C^*(G(C_{\theta}))$ and the family \mathfrak{B} of the maximal invariant open subsets in $G(C_{\theta})$. Let $\bigcap_{B \in \mathfrak{B}} \mathbf{I}(B) = I$. Then there is an invariant open subset \widetilde{B} such that $I = \mathbf{I}(\widetilde{B})$. We find that $\widetilde{B} = \operatorname{int} \bigcap_{B \in \mathfrak{B}} B$. Let us determine the minimal invariant closed subsets in the unit space of the groupoid $G(C_{\theta})'$. Note first that any minimal invariant closed subset of the unit space must be a closed orbit [t] for some t in the unit space.

The unit space of $G(C_{\theta})'$ consists of four disjoint parts,

$$\alpha(\mathbb{Z}_+^2) \times \mathbb{I}, \quad \alpha(\mathbb{Z}_+ \times \{\infty\}) \times \mathbb{I}, \quad \alpha(\{\infty\} \times \mathbb{Z}_+) \times \mathbb{I}$$

and $\beta(\mathbb{I} R) \times \mathbb{I} \Gamma$. The first part is an invariant open subset, while the last ones are invariant closed subsets.

Given u in the unit space, we proceed in the following four cases.

(1)
$$u \in \beta(\mathbb{R}) \times \mathbb{I}$$
, say $u = (\beta(s), t)$. Define the distance function d on $\beta(\mathbb{R}) \times \mathbb{I}$ by

$$d((\beta(s), t), (\beta(s'), t')) = |s - s'| + |t - t|'$$

Then the distance is an invariance under the action of \mathbb{Z}^2 on $\beta(\mathbb{R}) \times \mathbb{I}$. For each $v \in \overline{[u]}$ there is a sequence $\{p_m\}_{m=1}^{\infty}$ in \mathbb{Z}^2 such that $v = \lim_{m \to \infty} (u + p_m)$. However

$$\lim_{m \to \infty} d(u, v - p_m) = \lim d(u + p_m, v) = 0.$$

It follows that the closed orbits in $\beta(I\!\!R) \times I\!\!T$ are either disjoint or identical. So the closed orbits in $\beta(I\!\!R) \times I\!\!T$ are the minimal invariant closed subsets in the unit space.

(2) $u \in \alpha(\mathbb{Z}_+ \times \{\infty\}) \times \mathbb{I}$, say $u = (\alpha(n, \infty), t)$. Now the subset

$$S := \{ u + (0, m) = (\alpha(n, \infty), t\theta_2^m) | m \in \mathbb{Z} \}$$

is contained in the orbit [u]. It follows that $\{\alpha(n,\infty)\} \times \mathbb{I}$ is contained in the closed orbit $\overline{[u]}$. For any $k \in \mathbb{Z}_+$,

$$u + (k - n, 0) = (\alpha(k, \infty), t\theta_1^{k-n}).$$

It follows that

$$\alpha(\mathbb{Z}_+ \times \{\infty\}) \times \mathbb{I} = \overline{[u]}.$$

Therefore $\alpha(\mathbb{Z}_+ \times \{\infty\}) \times \mathbb{I}$ is a minimal invariant closed subset in the unit space.

(3) $u \in \alpha(\{\infty\} \times \mathbb{Z}_+) \times \mathbb{I}^r$. By the same reason as that in case (2), $\alpha(\{\infty\} \times \mathbb{Z}_+) \times \mathbb{I}^r$ is a minimal invariant closed subset in the unit space.

(4) $u \in \alpha(\mathbb{Z}_+^2) \times \mathbb{I}$, say $u = (\alpha(p), t)$. Now the closed orbit $\overline{[u]}$ contains at least one point in $\alpha(\mathbb{Z}_+ \times \{\infty\}) \times \mathbb{I}$ and therefore contains $\alpha(\mathbb{Z}_+ \times \{\infty\}) \times \mathbb{I}$, so the closed orbit $\overline{[u]}$ is not minimal.

So the family of the minimal invariant closed subsets in the unit space is

whose union is

$$\alpha(\mathbb{Z}_+ \times \{\infty\}) \times \mathbb{I} \cup \alpha(\{\infty\} \times \mathbb{Z}_+) \times \mathbb{I} \cup \beta(\mathbb{I} R) \times \mathbb{I} .$$

Therefore the intersection of the maximal invariant open subsets in the unit space is $\alpha(\mathbb{Z}_+^2) \times \mathbb{I}$. The lemma follows now.

Lemma 2.5. The intersection of the maximal invariant open subsets in $G(C_{\theta})|_{\alpha(\mathbb{Z}_{+}^{2})\times\mathbb{I}}$ is empty. Consequently the maximal radical of $C^{*}(G(C_{\theta})'')$ is zero.

Proof. Given u in $\alpha(\mathbb{Z}_+^2) \times \mathbb{I}$ the closed orbit created by u is exactly the orbit created by u. So every orbit in the unit space $\alpha(\mathbb{Z}_+^2) \times \mathbb{I}$ is a minimal invariant closed subset. The lemma follows now.

In summary, we obtain the maximal radical series,

$$\{0\} \triangleleft C^*(G(C_\theta)'') \triangleleft C^*(G(C_\theta)') \triangleleft C^*(G(C_\theta)),$$

for the groupoid C^* -algebra $C^*(G(C_\theta))$ in the case that both $\frac{\arg \theta_1}{2\pi}$ and $\frac{\arg \theta_2}{2\pi}$ are irrational. It is invariant under the isomorphism.

Remark 2.2. The classification and the K-theory of the rotational C^* -algebras will be given in our following paper.

References

- Renault, J., A groupoid approach to C*-algebra, Lecture Notes in Mathematics, vol. 793, Springer-Verlag, New York, 1980.
- [2] Upmeier, H., Toeplitz operators on bounded symmetric domains, Ann. of Math., 119 (1984), 549-576.
- [3] Venugopalkrishna, U., Fredholm operators associated with strongly pseudoconvex domains on *Cⁿ*, J. Funct. Anal., 9 (1972), 349-373.
- [4] Muhly, P. & Renault, J., C*-algebra of multivariable Wiener-Hopf operators, Trans. Amer. Math. Soc., 208 (1975), 1-44.
- [5] Coburn, L., Singular integral operators and Toeplitz operators on odd spheres, *Indiana Univ. Math. J.*, 23 (1973), 1193-1199.
- [6] Berger, C. A., Coburn, L. A.& Zhu, K. H., Function theory on Cartan domains and the Berezin-Toeplitz symbol calculus, *Amer. Jour. of Math.*, **110** (1988), 921-953.
- [7] Curto, R. E. & Muhly, P. S., C*-algebras of multiplication operators on Bergman spaces, J. of Funct. Anal., 64 (1985), 315-329.

- [8] Pedersen, G., C^{*}-algebras and their automorphism groups, Academic Press, New York.
- [9] Rieffel, M. A., Strong Morita equivalence of certain transformation group C*-algebras, Math. Ann., 222 (1976), 7-22.
- [10] Salinas, N., The \(\overline{\Delta}\)-formalism and the C*-algebra of the Bergman n-tuple, J. Funct. Anal., 64 (1985), 315-329.
- [11] Salinas, N., Sheu, A. & Upmeier, H., Toeplitz operators on pseudoconvex domains and foliation C^{*} -algebras, Annals of Mathematics, 130 (1989), 531-565.
- [12] Sheu, A. J. L., Reinhardt domains, boundary geometry, and Toeplitz C*-algebras, J. Funct. Anal., 92 (1990), 264-311.
- [13] Rieffel, M. A., C*-algebras associated with irrational rotations, Pacific J. Math., 93 (1981), 415-429.
- [14] Sheu, A. J. L., How are the Toeplitz C*-algebras of Reinhardt domains affected by taking pseudoconvex hulls, Proceeding of Symposia in pure Math., 51:2 (1990), 321-332.
- [15] Brabanter, M. D., The classification of rational rotation C*-algebras, Arch. Math., (Basel) 43:1 (1984), 79-83.
- [16] Pimsner, M. & Voiculescu, D., Imbedding the irrational rotation C*-algebra into an AF-algebra, J. Operator Theory, 4 (1980), 201-210.
- [17] Yin, H. S., Classification of crossed-product C^* -algebras associated with characters on free groups, Transactions of the American Mathematical Society, **320**:1 (1990), 105-143.
- [18] Yin, H. S., A simple proof of the classification of rational rotation C*-algebras, Proc. of Amer. Math. Soc., 98 (1986), 469-470.
- [19] Handelman, D. & Yin, H. S., Toeplitz algebras and rotational automorphisms associated to polydiscs, Amer. J. Math., 110 (1988), 887-920.