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Abstract

This paper characterizes the irrational rotaion C∗-algebra associated with the Toeplitz C∗-
algebra over the L-shaped domain in IC2 in the sense of the maximal radical series, which is an

isomorphism invariant.
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§1. Preliminaries

Irrational rotation C∗-algebra on the unit circle was first studied by M. Rieffel in [13].

Since 1980’s many people have paid great attention to this subject (see [15], [16], [17], [18]

and [19]). It has played an important part in the analysis of C∗-algebras, K-theory and

index theory. In recent years the study of rotation C∗-algebrs on group C∗-algebras and

Toeplitz C∗-algebras has been developed. For Example, in [19] Handelman and Yin obtained

a complete invariant for rotation C∗-algebra of Toeplitz C∗-algebra on the polydisk. In this

paper from the view of groupoid we establish the structure of rotation C∗-algebras of Toeplitz

C∗-algebras on L-shaped domain in IC2. This idea will get further developing in our other

papers.

Suppose that Y is a locally compact Hausdoff and second countable space, and X is a

both open and compact subset of Y . IZn acts on Y on the right continuously so that (Y IZn) is

a transfomation group. For the n-tuple θ in ITn, define the homomorphism Cθ : Y ×IZn → IT

by

Cθ(y, p) = θp.

Denote the reduction of Y × IZn on X by G. Then the reduction of the skew product

(Y × IZn)(Cθ) on X × IT is the skew product G(Cθ).

Proposition 1.1. The groupoid G and G(Cθ) are r-discrete and amenable.

The skew product G(Cθ) = G×Cθ
IT is a locally compact groupoid with composable pairs

G(Cθ)
(2) = {((x, p, a), (y, q, b))|((x, p), (y, q)) ∈ G(2)and b = aθp}.
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The product is

(x, p, a)(y, q, b) = (x, p+ q, a),

and the inverse is

(x, p, a)−1 = (x+ p,−p, aθp).

The domain map is

d(x, p, a) = (x+ p, 0, θp),

and the range map is

r(x, p, a) = (x, 0, a).

So the unit space may be identified with X × IT .

Remark 1.1. Indeed, G(Cθ) is the reduction of the skew product of (Y × IZp)(Cθ) on

X × IT .

Proposition 1.2. C∗(G(Cθ)) ∼= C∗(G)×αθ
IZ.

Proposition 1.3. The groupoid (Y × IZp)(Cθ) is principal if there is no solution of

nonzero integers to the equation θp = 1.

Proof. We have to prove that the isotropy group (Y × IZn)(Cθ)|u at every point u in the

unit space is trivial. Suppose that (x,m, a) is in the isotropy group of u. Then we have

(x+ p, 0, θpa) = (x, 0, a) = u.

It follows that θp = 1. Therefore p = 0 and (x,m, a) = u.

Remark 1.2. G(Cθ) is principal if (Y × IZn)(Cθ) is.

It is easy to prove the following lemma.

Lemma 1.1. Suppose that G is a groupoid and A a group. Let c : G → A be a

homomorphism. G(c) is the skew product G ×c A. Suppose that E is a subset of G0.

Then E ×A is invariant in G(c) iff E is invariant in G.

Let Ω = {(z1, z2) ∈ IC2||z1| < δ1, |z2| < 1 or |z1| < 1, |z2| < δ2}, where δ1, δ2 < 1.

Then Ω, named L-shaped domain, is a Reinhardt domain in IC2. P. E. Curto and P. S.

Muhly have represented the Toeplitz C∗-algebra C∗(Ω) faithfully by a groupoid C∗-algebra

C∗(G)[7]. Let us repeat the procedure briefly here with some new notations introduced. Let

T (p) : A2(Ω) → A2(Ω) be the Toeplitz operator of the symbol zp. Then {T (p)|p ∈ IZ2
+} is a

contractable representation of IZ2
+ by a weighted function

w+(p, q) =
∥zp+q∥
∥zq∥

,

for p, q ∈ IZ2
+.

A direct calculation shows

w+(ϵ1, p) =

√
(p1 + 1)(δ2p1+4

1 + δ2p2+2
2 − δ2p1+4

1 δ2p2+2
2 )

(p1 + 2)(δ2p1+2
1 + δ2p2+2

2 − δ2p1+2
1 δ2p2+2

2 )
,

and

w+(ϵ2, p) =

√
(p2 + 1)(δ2p1+2

1 + δ2p2+4
2 − δ2p1+2

1 δ2p2+4
2 )

(p2 + 2)(δ2p1+2
1 + δ2p2+2

2 − δ2p1+2
1 δ2p2+2

2 )
.
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Extend each w+(p, ·) to IZ2 by taking zero on IZ2 \IZ2
+. Let A denote the translation-invariant

C∗-subalgebra of l∞(IZ2) generated by the family {w(p, ·)|p ∈ IZ+} not including the identity.

The maximal ideals space of A, denoted by Y , is locally compact and second countable.

The natural action, τ : IZ2 → Aut(A), defined by translation induces an action of IZ2 on

Y according to this prescription: (y + p)(a) = y(τp(a)). Since the evaluation at p gives a

multiplicative linear functional, say α(p), we get an injection α : IZ2 → Y both open and

continuous. The subset α(IZ2
+), denoted by X, is open and compact. G is the reduction of

Y × IZ2 by X as defined above. Then C∗(Ω) is faithfully represented by C∗(G) (see [7]).

According to [7], Y consists of four parts, i.e.,

Y = α(IZ2) ∪ α(IZ × {∞}) ∪ α({∞} × IZ) ∪ β([−∞,+∞]),

where

α(p1,∞) = lim
p2→+∞

α(p1, p2)

and

α(∞, p2) = lim
p1→+∞

α(p1, p2)

in Y ; and β : [−∞,+∞] → ∞G is the realization of the subset, ∞G, of Y consisting of all

the possible limits lim
k1,k2→+∞

α(k) in Y . Indeed, β(t) is uniquely determined by

(β(t)(w(ϵ1, ·)), β(t)(w(ϵ2, ·)) =


(δ1, 1) for t = −∞,(√

δ21 + exp(t)

1 + exp(t)
,

√
1 + δ22 exp(t)

1 + exp(t)

)
for t ∈ IR,

(1, δ2) for t = +∞.

Thus

X = α(IZ2
+) ∪ α(IZ+ × {∞}) ∪ α({∞} × IZ+) ∪ β([−∞,+∞]).

Given a pair of numbers θ = (θ1, θ2) ∈ IT 2, satisfying the condition that there is no nonzero

integer n such that θn1 = 1 or θn2 = 1, which is weaker than that in Proposition 1.3, there is

an automorphism φθ : Ω → Ω defined via

φθ(z1, z2) = (θ1z1, θ2z2), for (z1, z2) ∈ Ω.

Thus there is an induced C∗-dynamical system (C∗(Ω), IZ, φ̃θ), where φ̃θ is the induced

automorphism of C∗(Ω) such that φ̃θ(Tf ) = Tf•φ−1
θ

for f in C(Ω).

Proposition 1.4. C∗(G)×αθ
IZ ∼= C∗(Ω)×φ̃θ

IZ.

Remark 1.3. lim
p1→+∞

α(p1,+∞) = β(−∞) and lim
p2→+∞

α(+∞, p2) = β(+∞).

§2. Invariant Maximal Radical Series of C∗(G(Cθ))

The maximal radical series of a C∗-algebra is invariant under the isomorphism. It plays an

important part in the classification of some C∗-algebras. By the definition[20], the maximal

radical of a C∗-algebra A is the intersection of all closed two-sided maximal ideals of A, and

is denoted by m(A), the composition series

· · · ▹ m(m(A)) ▹ m(A) ▹ A.
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is called the maximal radical series. In this section we will determine the maximal radical

series of the rotational C∗-algebra C∗(G(Cθ)).

By [1], there is an order-preserving homomorphism from the family of the invariant open

subsets to the family of the closed ideals in the reduced groupoid C∗-algebra. And now, we

will first determine the minimal invariant closed subsets in the groupoid G(Cθ).

Lemma 2.1. There are only two minimal invariant closed subsets in the unit space of the

groupoid G(Cθ), i.e., {β(+∞)} × IT and {β(−∞)} × IT , denoted by F1 and F2 respectively.

Their complements are denoted by B1 and B2 respectively. Any invariant closed subset

contains at least one of the Fi’s.

Proof. The Fi’s are obviously minimal invariant and closed. Given an invariant closed

subset F , take any u in F .

1) If u is in either F1 or F2, then F1 ⊆ F or F2 ⊆ F .

2) If u is in β(IR)× IT , then

lim
m→+∞

(u+ (0,m)) = (β(+∞), t)

for some t in IT . Hence F ∩ F1 ̸= ∅, and by 1) F1 ⊂ F .

3) If u is in α(IZ+ × {∞})× IT , then

lim
m→+∞

(u+ (m, 0)) = (β(−∞), t)

for some t in IT . Hence F ∩ F2 ̸= ∅, and by 1) F2 ⊂ F .

4) If u is in α({∞} × IZ+)× IT , then by the same reason as above, F1 ⊂ F .

5) If u is in α(IZ2
+)× IT , then

lim
m→+∞

(u+ (m, 0)) = (α(∞, n), t)

for some t in IT . Hence by the same reason as in 4), F1 ⊂ F .

The lemma follows now.

Remark 2.1. We have used the fact that {θp|p ∈ IZ2
+} is dense in IT if there is no integer

n of nonzero such that θn1 = 1 or θn2 = 1.

Lemma 2.2. If the ratio
ln δ1
ln δ2

is irrational, the isotropy group G(Cθ)|u is trivial for

u /∈ F1 ∪ F2, i.e., u ∈ B.

Proof. For any (x, p, t) in G(Cθ)|u, we have two equalities

x+ p = x, (I)

θp = 1. (II)

(1) If x is in α(IZ2
+), say x = α(q), then equality (I) becomes α(q+p) = α(q). Consequently,

p = 0 since α is injective.

(2) If x is in α(IZ+×{∞}), say x = α(m,+∞), then equality (I) becomes α(m+p1,∞) =

α(m,∞). Thus p1 = 0. It follows that p2 = 0 from equality (II).

(3) If x is in α({∞} × IZ+), then p = 0 by the same reason as in case (2).

(4) If x is in β(−∞,+∞), say x = β(s), then equation (I) becomes β(s + 2p2 ln δ2 −
2p1 ln δ1) = β(s). It follows that p2 ln δ2 = p1 ln δ1. Therefore p = 0.

Finally we get (x, p, t) = u. The lemma follows.

Theorem 2.1. The maximal radical of the groupoid C∗-algebra C∗(G(Cθ)) is I(B).
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Proof. If 1,
arg θ1
2π

and
arg θ2
2π

are linearly independent over the field IQ of the rational

numbers, the groupoid is principal, the maximal closed ideals are I(B1) and I(B2). Therefore

the intersection of the maximal closed ideals is I(B).

If 1,
arg θ1
2π

and
arg θ2
2π

are linearly dependent over the field IQ, we will prove the following

claims

(1) There is indeed a maximal closed ideal in the groupoid C∗-algebra and the intersection

of the maximal closed ideals is contained in I(B).

(2) Each maximal closed ideal I in the groupoid C∗-algebra contains I(B).

And now

C∗(G(Cθ))/I(B1) ∼= C∗(G(Cθ)|F1)

= C∗(β{+∞}× IT × IZ2)

∼= C∗(IT × IZ2)

∼= C(IT 2)×αθ
IZ

where αθ(f)(λ1, λ2) = f(θ1λ1, θ2λ2) = f · φθ(λ1, λ2). Since the homeomophism φθ is not

minimal, the crossed product C(IT 2)×αθ
IZ is not simple by [1]. However, the nontrivial closed

ideal must be contained in some maximal ones since the crossed product is unital. Suppose

that I is the maximal closed ideal in the crossed product. Then the quotient C(IT 2)×αθ
IZ/I

is simple. So there is a surjective homomorphism from C∗(G(Cθ)) onto C(IT 2) ×αθ
IZ/I,

whose kernel is a maximal closed ideal in C∗(G(Cθ)).

Since the closed orbit {φn
θ (λ)|n ∈ IZ} is minimal for every λ ∈ IT 2, by [1] the intersection

of the maximal closed ideals in the crossed product is {0}. Hence the maximal radical is

contained in I(B1). A similar argument shows that the maximal radical is contained in

I(B2). The claim (1) follows.

For each maximal closed ideal I, there is an integrated representation, π = (µ,L,H), of

C∗(G(Cθ)) with kernel I. It follows that the representation π is weakly contained in the

induced left regular representation living on µ. Therefore I(F ) ⊆ ker(π), where F denotes

the support of µ. F is an invariant closed subset. By the proof of Lemma 2.1, F contains

either F1 or F2.

If F = F1 or F = F2, then I(B1) ⊆ I or I(B2) ⊆ I; thus I(B) ⊆ I.

If F ̸= F1 and F ̸= F2, then

1) F only contains F1. Then F \ F1 is a nontrivial invariant closed subset, say F̃2,

contained in F . Therefore it contains F1, i.e., F̃2 = F . By the proof of Proposition 4.4 in

[1],

sup
u∈F

|f(u)| ≤ ∥π(f)∥,

it follows that I ⊆ I(B1). Therefore I = I(B1). Thus I(B) ⊆ I.

2) F only contains F2. Then I(B) ⊆ I by the same reason as in case 1.

3) F contains both F1 and F2. Set

F ′ = F \ F1 ∪ F2, µ′(E) = µ(E ∩ F ′), µ1(E) = µ(E ∩ (F1 ∪ F2)).

Then π1 = (µ1, L,H) and π′ = (µ′, L,H) are the integrated representations of the groupoid
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C∗-algebra C∗(G(Cθ)). Moreover we have

π1(f)(ξ) = π(f)(χF1∪F2ξ) = χF1∪F2π(f)(ξ),

π′(f)(ξ) = π(f)(χF ′ξ) = χF ′π(f)(ξ),

ker(π) = ker(π1) ∩ ker(π′).

Since ker(π) is a maximal closed ideal, it coincides with either ker(π1) or ker(π
′).

(1) If I = ker(π1), it follows immediately that I(B) ⊆ I.

(2) If I = ker(π′), one of the following cases occurs.

(i) supp(µ′) = F ′ contains F1 ∪ F2. By the proof of Proposition 4.4 in [1] we get

sup
u∈F

|f(u)| ≤ ∥π(f)∥,

and it follows immediately that I = I(G(Cθ)
0 \ F ′). Since B1 and B2 are the maximal

invariant open subsets and

I(G(Cθ)
0 \ F ′) ⊆ I(B1) ∩ I(B2),

this case can not occur.

(ii) supp(µ′) contains only one of the Fi’s. Then by the above discussion we have I(B) ⊆ I.

The claim (2) follows now. The theorem follows from the above claims.

Lemma 2.3. The groupoid G(Cθ)|B, denoted by G(Cθ)
′, is r-discrete, principal and

amenable.

Lemma 2.4.The maximal radical of C∗(G(Cθ)
′) is I(α(IZ2

+)×IT ),denoted by C∗(G(Cθ)
′′).

Proof. By Lemma 2.2 and [1], there is an order-preserving isomorphism between the

family of the maximal closed ideals in C∗(G(Cθ)) and the family B of the maximal invariant

open subsets in G(Cθ). Let
∩

B∈B

I(B) = I. Then there is an invariant open subset B̃ such

that I = I(B̃). We find that B̃ = int
∩

B∈B

B. Let us determine the minimal invariant closed

subsets in the unit space of the groupoid G(Cθ)
′. Note first that any minimal invariant

closed subset of the unit space must be a closed orbit [t] for some t in the unit space.

The unit space of G(Cθ)
′ consists of four disjoint parts,

α(IZ2
+)× IT , α(IZ+ × {∞})× IT , α({∞} × IZ+)× IT

and β(IR)× IT . The first part is an invariant open subset, while the last ones are invariant

closed subsets.

Given u in the unit space, we proceed in the following four cases.

(1) u ∈ β(IR)× IT , say u = (β(s), t). Define the distance function d on β(IR)× IT by

d((β(s), t), (β(s′), t′)) = |s− s′|+ |t− t|′.

Then the distance is an invariance under the action of IZ2 on β(IR) × IT . For each v ∈ [u]

there is a sequence {pm}∞m=1 in IZ2 such that v = lim
m→∞

(u+ pm). However

lim
m→∞

d(u, v − pm) = lim d(u+ pm, v) = 0.

It follows that the closed orbits in β(IR) × IT are either disjoint or identical. So the closed

orbits in β(IR)× IT are the minimal invariant closed subsets in the unit space.

(2) u ∈ α(IZ+ × {∞})× IT , say u = (α(n,∞), t). Now the subset

S := {u+ (0,m) = (α(n,∞), tθm2 )|m ∈ IZ}
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is contained in the orbit [u]. It follows that {α(n,∞)} × IT is contained in the closed orbit

[u]. For any k ∈ IZ+,

u+ (k − n, 0) = (α(k,∞), tθk−n
1 ).

It follows that

α(IZ+ × {∞})× IT = [u].

Therefore α(IZ+ × {∞})× IT is a minimal invariant closed subset in the unit space.

(3) u ∈ α({∞} × IZ+)× IT . By the same reason as that in case (2), α({∞} × IZ+)× IT is

a minimal invariant closed subset in the unit space.

(4) u ∈ α(IZ2
+)× IT , say u = (α(p), t). Now the closed orbit [u] contains at least one point

in α(IZ+ ×{∞})× IT and therefore contains α(IZ+ ×{∞})× IT , so the closed orbit [u] is not

minimal.

So the family of the minimal invariant closed subsets in the unit space is

{α(IZ+ × {∞})× IT , α({∞} × IZ+)× IT , [u]|u ∈ β(IR)× IT},

whose union is

α(IZ+ × {∞})× IT ∪ α({∞} × IZ+)× IT ∪ β(IR)× IT .

Therefore the intersection of the maximal invariant open subsets in the unit space is α(IZ2
+)×

IT . The lemma follows now.

Lemma 2.5. The intersection of the maximal invariant open subsets in G(Cθ)|α(IZ2
+)×IT

is empty. Consequently the maximal radical of C∗(G(Cθ)
′′) is zero.

Proof. Given u in α(IZ2
+) × IT the closed orbit created by u is exactly the orbit created

by u. So every orbit in the unit space α(IZ2
+)× IT is a minimal invariant closed subset. The

lemma follows now.

In summary, we obtain the maximal radical series,

{0} ▹ C∗(G(Cθ)
′′) ▹ C∗(G(Cθ)

′) ▹ C∗(G(Cθ)),

for the groupoid C∗-algebra C∗(G(Cθ)) in the case that both
arg θ1
2π

and
arg θ2
2π

are irrational.

It is invariant under the isomorphism.

Remark 2.2. The classification and the K-theory of the rotational C∗-algebras will be

given in our following paper.
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