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ANTI-SADDLES OF A POLYNOMIAL SYSTEM**

Ye Yanqian*

Abstract

By using the generalized Poincaré index theorem it is proved that if the n2 critical points of
an n-polynomial system form a configuration of type (2n−1)−(2n−3)+(2n−5)−· · ·+(−1)n−1,
and the 2n−1 outmost anti-saddles form the vertices of a convex (2n−1)-polygon, then among
these 2n− 1 anti-saddles at least one must be a node.
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We have conjectured in [1] that when a cubic polynomial differential system has 9 finite

critical points among which 3 are saddles and 6 are anti-saddles, then in the latter there

must be at least one node. We have proved in [2] that at this time the configuration

of the 9 critical points may have the type 5 − 3 + 1, 6 − 3 or 4 − 3 + 2. In this paper

we will prove that our conjecture is true when configuration of type 5 − 3 + 1 appears

and the outmost pentagon is convex by using the generalized Poincaré index theorem and

triangulation method introduced in [3] and [4]. Moreover, we can generalize this result to

the n-polynomial system which shows that conjecture I in [5] is true, if only the outmost

(2n− 1)-polygon is convex.

Since under the triangulation of the Poincaré hemisphere the equator is divided into

segments and each segment is a trajectory or a part of a trajectory, on which there may

situate saddles, nodes or saddle-nodes, we must know when an equator-segment is a side of

a triangle, quadrilateral, pentagon or an m-polygon, how to determine the value of ν and σ

(for the meaning see [2]) of this segment in order to apply the index theorem.

There are 8 cases to be considered:

1) If the equator-segment AB contains no critical point, then ν = 1, σ = 0, i.e., AB is

equivalent to an outer contact point.

In order to prove this, we draw a triangle ∆ABC containing no critical point as in Fig.

1(a). Contracting AB to a point D we get Fig. 1(b). Evidently we have ν = 1, σ = 0 both

at C and D, and indΣ′ =indΣ = 1 + 1
2 (0− 2) = 0, and hence the result.

2) If AB contains a saddle point, then ν = σ = 0.

This is shown by Figs.2(a) and (b), where E,F, and E′, F ′ each with ν = 1, σ = 0 are

outer contact points.
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3) If AB contains two saddle points, then ν = 0, σ = 1.

This is shown by Figs.3(a) and 3(b), where I ′,H ′, E′ are outer contact points, so D is an

inner contact point with ν = 0, σ = 1.

4) If AB contains a node, then ν = 2, σ = 0 (see Figs. 4(a),(b)).

5) If AB contains a node and a saddle, or a sddle-node, then ν = 1, σ = 0 (see Figs.

5(a),(b)), i.e., it is equivalent to Case 1).

6) If AB contains two saddles and a node, then ν = σ = 0 (see Figs. 6(a),(b), (c), (d)),

i.e., it is equivalent to Case 2).

7) If AB contains 3 saddles, then ν = 0, σ = 2 (see Figs. 7(a),(b)).

8) If AB contains 3 saddles and 1 node, then ν = 0, σ = 1 ( equivalent to Case 3)).

Let us denote the whole equator by E. We can summarize these 8 cases for the equivalent

values Vi of the equator-segments Ei ̸= E on the boundary of a plane region G in a table as

follows, where σ =number of inner contact points, ν =number of outer contact points.

s = no. of saddles 0 1 2 0 1 2 3 3 4 n 2 4 6 8 2n

n = no. of nodes 0 0 0 1 1 1 0 1 1 1 2 6 2 2 2
V = σ or −ν −1 0 1 −2 −1 0 2 1 2 n− 2 −1 −3 3 5 2n− 3

Table 1

From this table we can easily get the following rule:

Rule. Assume (si, ni) and Vi(i = 1, 2) denote any two cases in the Table 1, and let

(s3, n3) = (s1, n1) + (s2, n2) = (s1 + s2, n1 + n2) with E1 ∩ E2 = ∅, E1 ∪ E2 = E3 ̸= E.

Then

V3 = V1 + V2 + 1. (1)

The reason is, e.g., when Fig.2 and Fig.5 are put together to make Fig.6, the number of

outer contact points not lying on the equator decreases in number by 1. By this rule we can

get other results not contained in Figs.1-8, such as columns 9-15 in Table 1.

The following Table 2 refers to cases when the whole equator E is a boundary of G. It is

easily seen that in these cases s and n must be both even, and columns in this table cannot

be added as in Table 1.

s = no. of saddles 2 4 6 8 2n

n = no. of nodes 2 6 2 2 2
V = σ or −ν 0 −2 4 6 2n− 2

Table 2

In order to get Table 2 from Table 1, we should use the formula

V = Vi + 1, (2)

if the equator E contains the same number of saddles and nodes as Ei. This is because if

E = Ei ∪ E′
i, then E′

i contains no critical point, since Ei and E′
i are connected on both of

their ends, so we have V = Vi − 1 + 2 = Vi + 1. Thus from columns 11-15 we can get the

whole Table 2 by Formula (2).
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On the other hand, we have

V = V1 + V2 + 2, (3)

if E1 ∪ E2 = E, E1 ∩ E2 = ∅, but Ei ̸= E for i = 1, 2.

Now, assume that we have a configuration of type 5 − 3 + 1 for a certain cubic system

(Fig.9), where A,B,C,D,E are assumed to be all foci on the convex pentagon Γ. Then

there must be at least one outer contact point on the sides of Γ, since the sum of indices

of critical points within Γ is −2. Assume this outer contact point P lies on the side CD

of Γ. Then the straight line S determined by CD divides the upper hemisphere into two

simply-connected regions Gl and Gr, such that the interior of Γ lies in Gl. Since each of

Gl and Gr has a half equator as its boundary, which contains 3 saddles and one node or 2

saddles (hence Vl = Vr = 1), and S as a part of the boundary of Gl(Gr) contains 3 outer

contact points C,D, P (2 outer contact points C,D and one inner contact point P ), we can

calculate the sum of indices of critical points within Gl and Gr by Poincaré index formula:

Σl =
∑
i

indOi in Gl = 1 +
1− 3

2
= 0,

Σr =
∑
i

indOi in Gr = 1 +
2− 2

2
= 1.

But actually we have Σl = 1,Σr = 0, as is easily seen, so Fig.9 is impossible.

So we get

Theorem 1. If the 9 critical points of a cubic system make a configuration of type

5− 3 + 1, and the 5 outmost anti-saddles form the vertices of a convex pentagon, then they

cannot be all foci or centers.

This method of proof can be easily generalized to polynomial systems of degree greater

than 3. For example, assume the 16 critical points of a quartic system has a distribution of

type 7− 5+ 3− 1, and the 7 outmost critical points A,B,C,D,E, F,G forming the vertices

of a convex polygon Γ′ are all foci (Fig.10). Since the sum of indices of critical points within

Γ′ is −3, there must be an outer contact point on the sides of Γ′. Assume P is an outer

contact point on the segment AB of Γ′. There must be a fourth contact point Q on the

straight line l determined by AB. As before, let GL and GR denote the 2 simple-connected

regions when the upper hemisphere is divided by l. From Column 9 of Table 1, the totality

of critical points at infinity on the boundary of GL or GR is equivalent to 2 inner contact

points. So, when Q is an outer contact point with respect to GL, we have

ΣL = 1 +
2− 4

2
= 0, ΣR = 1 +

4− 2

2
= 2. (4)

When Q is an inner contact point with respect to GL (dotted line in Fig.10), we have

ΣL = 1 +
3− 3

2
= 1, ΣR = 1 +

3− 3

2
= 1. (5)

But actually we should have

Σl = 2, ΣR = 0,

so Fig.10 is impossible.

In the general case, i.e., for the n-polynomial differential system, if the n2 critical points
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form a configuration of type

(2n− 1)− (2n− 3) + (2n− 5) + · · ·+ (−1)n−1, (6)

and the outmost 2n− 1 anti-saddles are all foci and form the vertices of a convex (2n− 1)-

polygon, then from Column 10 of Table 1 the totality of critical points at infinity on the

boundary of GL or GR is equivalent to n− 2 inner contact points, so instead of (4) and (5)

we will have

ΣL = 0, 1, 2, · · · , or n− 3, ΣR = n− 2, n− 3, n− 4 · · · , or 1,

according as GL has n, n − 1, · · · , or 3 outer contact points on its boundary line l. But

actually we should have ΣL = n− 2, ΣR = 0. So the assumption that these vertices are all

foci is absurd.

So we get

Theorem 2. When the n2 critical points of an n-polynomial system make a configuration

of type (6) and the outmost (2n − 1)-polygon is convex, at least one of its vertices must be

a node.

Notice that Fig.11 shows: in case of a cubic system with 9 critical points forming a

configuration of type 5− 3+1, if the outmost pentagon Γ = ABCDEA is not convex, there

is a possibility for the 5 vertices to be all foci or centers.

On the other hand, if in Fig.9 instead of a focus we put on the vertex A of Γ a node

with ν = 2, σ = 0 as shown in Fig.12, then we can arrange the 5 contact points P1, · · · , P5

each on a line determined by a side of Γ in such a way that there are no finite critical point

outside Γ, and there are 3 saddles and one node on the equator. We believe that Fig.12 can

be realized by a certain cubic system.
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