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A NECESSARY AND SUFFICIENT CONDITION

OF EXISTENCE OF GLOBAL SOLUTIONS FOR

SOME NONLINEAR HYPERBOLIC EQUATIONS

Zhang Quande*

Abstract

The author considers the Klien–Gordon equations utt − ∆u + µu = f(u) (µ > 0, |f(u)| ≤
c|u|α+1). The necessary and sufficient condition of existence of global solutions is obtained for

E(0) = 1
2
(∥u1∥2L2 + ∥∇u0∥2L2 + µ∥u0∥2L2 )−

∫
Rn

∫ u0
0 f(s)dsdx < d (d is the given constant).
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In this paper, we consider the following Cauchy problem of nonlinear hyperbolic equation

utt −∆u+ µu =| u |α u, µ > 0, α > 0, (1)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Rn, (2)

where u0(x) ∈ H2(Rn), u1(x) ∈ H1(Rn).

Over the last 20 years there has been considerable interest in existence and nonexistence

of the global solutions for nonlinear hyperbolic equations. As far as I know, there are few

results which give the necessary and sufficient conditions of existence of global solutions.

We mention a remarkable work of F. John[1]. In [1] he showed an “almost” necessary and

sufficient condition of global existence of Cauchy problem for utt − ∆u =| u |p in three-

dimensional space, that is,

1) if 1 < p < 1 +
√
2, then the global solution vanishes identically for the initial data

satisfying u0 = 0, u1 ≥ 0;

2) if p > 1+
√
2, then there exists a unique C2-solution for small initial data with compact

support.

Maybe it is the best result at present. F. Asakura[4] generalized to the case of initial data

without compact support. In general n dimensional space, the papers [2,3] gave the sufficient

condition of blow up in finite time for generalized solutions in L1(Rn). The equation of the

form (1) occurs in the classical modelling of certain phenomena in field theory[9]. It is also

called Klein-Gordon equation. Berger[6,7] discussed the stationary states of (1) and (2). H.

A. Levine[10] discussed the blow up of solutions for more abstract equations putt−Au = F(u).

The object of this paper is to give the necessary and sufficient condition of global existence

or nonexistence in C0(R+,H1(Rn)) for (1) and (2).
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Our main result is the following

Theorem 1. Let µ > 0, 0 < α < 2
n−2 , n > 2 (n ≤ 2, 0 < α < +∞).

E(0) =
1

2
(∥u1∥2L2 + ∥∇u0∥2L2 + µ∥u0∥2L2)−

1

α+ 2
∥u0∥α+2

Lα+2 < d, (3)

where

d = inf
u∈H1,u̸=0

α(∥∇u∥2L2 + µ∥u∥2L2)
α+2
α /2(α+ 2)(∥u∥α+2

Lα+2)
2
α .

Then the global solution of (1) and (2) in C0(R+,H1) exists if and only if either

(∥∇u0∥2L2 + µ∥u0∥2L2) > ∥u0∥α+2
Lα+2 , (4)

or

(∥∇u0∥2L2 + µ∥u0∥2L2) = 0 (i.e., ∥u∥H1 = 0). (4’)

Lemma 1. Let

F (u) =
1

2
(∥∇u∥2L2 + µ∥u∥2L2)−

1

α+ 2
∥u∥α+2

Lα+2

△
=

1

2
a(u)− 1

α+ 2
b(u).

If a(u) = b(u) ̸= 0, then F (u) ≥ d > 0.

Proof. Since F (λu) = λ2

2 a(u)− λα+2

α+2 b(u),

sup
λ≥0

F (λu) = F
((a(u)

b(u)

) 1
α

u
)
=

α

2(α+ 2)

(a(u))
α+2
α

(b(u))
2
α

,

b(u) ̸= 0.

Therefore, when a(u) = b(u) ̸= 0,

sup
λ≥0

F (λu) = F (u) ≥ d.

Furthermore, from Sobolev embedding theorem,

∥u∥Lα+2 ≤ C0∥u∥H1 , if n > 2, 2 < α+ 2 ≤ 2n

n− 2
(n ≤ 2, 0 < α < +∞).

Therefore

d ≥


α

α+ 2
(

1

2C1
)

α+2
α , µ ≥ 1,

α

α+ 2
(

µ

2C1
)

α+2
α , 0 < µ < 1.

(5)

Lemma 2. Let 1 < α + 1 ≤ n
n−2 , for n > 2 (0 < α < ∞, for n ≤ 2). Then the local

solution of (1), (2) exists in C0([0, T0],H
1(Rn)) for some T0 > 0.

For a detailed proof of Lemma 2 see [5]. In fact, put u = eσtv, then equation (1) is

transformed to

vtt −∆v + λvt + µ′v = eσt | v |α v, λ > 0, µ′ > 0.

The local existence of ∥u∥2H2 and ∥ut∥2H1 can be derived via energy methods and fixed point

theorems. Furthermore, from

| ∥u(t1)∥H1 − ∥u(t2)∥H1 | ≤ ∥u(t1)− u(t2)∥H1

≤ sup
0≤t≤T

∥ut(t)∥H1 | t1 − t2 |,
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we see that ∥u∥H1(t) is continuous.

Proof of Theorem 1.

I) Sufficiency. From Lemma 2, the solution of (1) and (2) is continuous with respect to t

(within the interval of existence). We will show that the solution is global.

Multiplying the equation (1) by ut and integrating we have

1

2
∥ut∥2L2 + F (u) = E(0) < d. (6)

We assert that for all t ≥ 0, either

a(u)− b(u) > 0, a(u) ̸= 0, (7)

or

a(u) = b(u) = 0. (7’)

Suppose that neither (7) nor (7’) holds and let t1 be the smallest time for which

a(u) ≤ b(u) for t > t1.

We consider two cases a(u(t1)) = 0 and a(u(t1)) ̸= 0 respectively.

a) The case a(u(t1)) = 0. Noting that b(u) ≤ C0∥u∥α+2
H1 , we have b(u(t1)) = 0. Since ti

is the smallest time such that neither (7) nor (7′) holds, we have 0 < a(u) ≤ b(u) for some

ε > 0 and t1 < t < t1 + ε, i.e.,

a(u)

b(u)
≤ 1 for t1 < t < t1 + ε.

On the other hand, we have

a(u)

b(u)
≥ a(u)

C0∥u∥α+2
H1

≥ 1

C1
[a(u)]−

2
α for t1 < t < t1 + ε.

Therefore, we have

1

C1
[a(u)]−

2
α ≤ 1 for t1 < t < t1 + ε.

Then in virtue of Lemma 2, a(u(t)) is continuous in t and lim
t→t1+0

a(u(t)) = 0. But from the

above we see that

lim
t→t1+0

a(u)−
2
α ≤ C1 < +∞.

This implies a contradiction.

b) The case a(u(t1)) ̸= 0. Since

| ∥u(t)∥Lα+2 − ∥u(s)∥Lα+2 | ≤ ∥u(t)− u(s)∥Lα+2

≤ C∥u(t)− u(s)∥H1

≤ sup
t≥0

∥ut∥H1 | t− s |,

we see that b(u(t)) is continuous in t (within the interval of existence).

From (7) and (8) we have a(u(t1)) = b(u(t1)) > 0.

It follows from Lemma 1 that F (u(t1)) ≥ d. This contradicts (6).

Therefore, from a) and b) we see that (7) or (7’) holds.

From (6) and (7) or (7’) we have

∥ut∥2L2 ≤ d,
α

2(α+ 2)
(∥∇u∥2L2 + µ∥u∥2L2) ≤ F (u) ≤ E(0). (9)
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Hence ∥u∥H1 ≤ const.

We now prove that ∥u∥H1(t) is continuous with respect to t in R+.

Let u(t) be a generalized solution of (1) and (2) satisfying (3) and (4) or (4’). From (1)

we have

uxit +∆uxi + µuxi = (α+ 1) | u |α uxi , i = 1, 2, · · · , n, (10)

where uxi is a weak derivative. Therefore, we have

(∥uxit∥2L2 + ∥∇uxi
∥2L2 + µ∥uxi

∥2L2)′ = (α+ 1)(| u |α uxi
, uxit)

≤ C∥u∥αLnα∥uxi∥L 2n
n−2

∥uxit∥L2 .

Since 0 < α < 2
n−2 , from Sobolev’s embedding theorem and (9) we have

∥u∥Lαn ≤ C∥u∥H1 ≤ const.

and

∥uxi∥L 2n
n−2

≤ C∥uxi∥H1 ≤ const. (∥∇uxi∥2L2 + µ∥uxi∥2L2)
1
2 .

Therefore we have

(∥uxit∥2L2 + ∥∇uxi∥2L2 + µ∥uxi∥2L2)′

≤ C(∥uxit∥2L2 + ∥∇uxi∥2L2 + µ∥uxi∥2L2), i = 1, 2, · · · , n. (11)

In virtue of Gronwall’s inequality we have

∥uxit∥2L2 + ∥∇uxi∥2L2 + ∥uxi∥2L2 ≤ C(T ) for 0 ≤ t < ∞. (12)

C(T ) is constant depending on T. Hence we see that for any T > 0, t ∈ [0, T ], ut(t) ∈
H1(Rn), u(t) ∈ H2(Rn). Therefore, we have u ∈ C0([0, T ], H1(Rn)) for any T > 0.

Therefore, the global solution of (1) and (2) exists in C0([0,+∞], H ′(Rn)).

II) Necessity. If (4) or (4’) dose not hold, from (3) and Lemma 1 we have

∥∇u0∥2L2 + µ∥u0∥2L2 < ∥u0∥α+2
Lα+2 . (13)

From Lemma 2 we know that the local solution of (1) and (2) exists in C0([0, T0], H
1(Rn))

for some T0 > 0. It is similar to the proof of sufficiency that we can assert that (within the

interval of existence)

a(u) < b(u) for all t ≥ 0. (14)

If (14) does not hold, there is t1 ≥ 0 such that (14) holds for 0 ≤ t < t1 and a(u(t)) ≥ b(u(t))

for t ≥ t1.

By the continuity of a(u(t)) and b(u(t)),

a(u(t1)) = b(u(t1)).

Similarly, we consider two cases a(u(t1)) ̸= 0 and a(u(t1)) = 0 respectively.

a) If a(u(t1)) ̸= 0, from Lemma 1 we have F (u(t1)) ≥ d. This contradicts (6).

b) Let a(u(t1)) = 0. Since b(u) > a(u) ≥ 0 for 0 ≤ t < t1, we have

1 >
a(u)

b(u)
≥ a(u)

C∥u∥α+2
H1

≥ c(µ)(a(u))−
α
2 for t < t1.

This contradicts lim
t→t1−0

a(u(t)) = 0. Hence from a) and b) our assertion (14) holds for all

t ≥ 0.
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On the other hand, multiplying equation (1) by u we have

(∥u∥2L2)′′ = 2∥ut∥2L2 + 2(b(u(t))− a(u(t))) > 0 for all t ≥ 0. (15)

From (6) we have

(∥u∥2L2)′′ = (α+ 4)∥ut∥2L2 + α(∥∇u∥2L2 + µ∥ut∥2L2)− (α+ 2)E(0). (16)

By (15), (∥u∥2L2)′′ > 0. ∥u∥2L2 is a convex function in t. Hence we say that there exist t1and

t2 (t1 ≤ t2) such that

(∥u∥2L2)′(t1) ≥ 0, and αµ(∥u∥2L2)(t2) ≥ (α+ 2)E(0).

(This assertion will be proved later). Hence

(∥u∥2L2)′′ ≥ (α+ 4)∥ut∥2L2 for t ≥ t2, (17)

(∥u∥2L2)(∥u∥2L2)′′ −
α+ 4

4
[(∥u∥2L2)′]2 ≥ (α+ 4)[∥u∥2L2∥ut∥2L2 − (ut, u)

2] ≥ 0, (18)

(∥u∥−
α
2

L2 )′′ = −α

4
∥u∥−(α

2 +4)

L2 {∥u∥2L2(∥u∥2L2)′′ −
α+ 4

4
[(∥u∥2L2)′]2} ≤ 0. (19)

Therefore, ∥u∥−
α
2

L2 is concave for t ≥ t2 and

(∥u∥−
α
2

L2 )′ = −α

4
∥u∥−

α
2

L2 (∥u∥2L2)′ < 0

for t ≥ t2 ≥ t1. Then there exists a finite time T for which ∥u∥−
α
2

L2 → 0 as t → T − 0. In

other words

lim
t→T−0

∥u∥L2 = +∞. (20)

We now prove that there exist t1 and t2 (t1 ≤ t2), such that (∥u∥2L2)′ ≥ 0 for t ≥ t1 and

αµ∥u∥2L2 ≥ E(0) for all t ≥ t2.

If (∥u∥2L2)′ ≤ 0 for all t ≤ 0, then from (∥u∥2L2)′′ > 0 we have

lim
t→+∞

(∥u∥2L2)′ = B ≤ 0, lim
t→+∞

∥u∥2L2 = A ≥ 0.

It is clear that B = 0. Therefore, there is a sequence {tn} such that, as tn → ∞,

(∥u∥2L2)′′(tn) → 0. From (14) and (15) we have

lim
tn→∞

∥ut∥2L2 = 0 and lim
tn→∞

(b(u)− a(u)) = 0.

From (6) we have

lim
tn→∞

F (u) = E(0). (21)

On the other hand, from the definition of F (u) we have

lim
tn→∞

b(u) = lim
tn→∞

2(α+ 2)

α
[F (u) +

1

2
(b(u)− a(u))]

=
2(α+ 2)

α
E(0) = lim

tn→∞
a(u).

If E(0) > 0, lim
tn→∞

a(u)

b(u)
= 1. From Lemma 1 and (21) we have

E(0) = lim
tn→∞

F (u) = lim
tn→∞

F
([a(u(tn))

b(u(tn))

] 1
α

, u(tn)
)
≥ d.

This contradicts condition (3).
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If E(0) < 0, lim
tn→∞

b(u) = lim
tn→∞

a(u) < 0. It contradicts the fact that a(u) ≥ 0 and

b(u) ≥ 0.

If E(0) = 0, lim
tn→∞

b(u) = lim
tn→∞

a(u) = 0. But, from (14) and b(u) ≤ c[a(u)]
α+2
2 we have

1 >
a(u)

b(u)
≥ 1

c
(a(u))−

α
2 .

This contradiction is clear.

It follows therefore that ∥u∥2L2 → ∞ in a finite time, and the proof of Theorem 1 is

completed.

We also consider the initial boundary-value problem.

Corollary 1. Let u |∂Ω= 0, µ ≥ 0. If initial data satisfy conditions (3) and (4), then the

results of Theorem 1 hold.

The results are applicable to more general nonlinearity f(u) satisfying |f(u)| ≤ c|u|α+1.

In this case, we define (cf. Lemma 1)

a(u(t)) = ∥∇u∥2L2 + µ∥u∥2L2 , b(u(t)) =

∫
Rn

∫ u

0

f(s)dsdx,

F (λ, u) =
λ2

2
a(u(t))− λα+2b(u(t)).

sup
λ≥0

F (λ, u) =

{
+∞, b(u) ≤ 0,

α
2(α+2)

a
α+2
α (u)

((α+2)b(u))
2
α
,b(u) > 0,

d′ = inf
u∈H1, b(u)>0

α

2(α+ 2)

a
α+2
α (u)

((α+ 2)b(u))
2
α

.

It is similar to Lemma 1 that if a(u) = (α + 2)b(u) ̸= 0, then sup
λ≥0

F (λ, u) = F (1, u) =

1
2a(u)− b(u) ≥ d′.

Corollary 2. Let f(u) satisfy |f(u)| ≤ c|u|α+1 and α, µ be as in Theorem 1 and

E(0) =
1

2
(∥u1∥2L2 + a(u0))− b(u0) < d′. (22)

Then {
utt −∆u+ µu = f(u),

u(0, x) = u0, ut(0, x) = u1

(23)

has a global solution in C0(R1, H1) if and only if

a(u0) > (α+ 2)b(u0) or a(u0) = 0. (24)

As in [11], to consider the ‘averaged’ version of (1)

utt −∇u+ µu = ∥u∥αL2u, α > 0, µ > 0, (25)

we can improve the conditions of blow up of the solutions in Theorem 1 of paper [10].

Corollary 3. If µ ≥ 0, (u1, u0) =
∫
Rn u0u1dx ≥ 0,

∥u1∥2L2 + ∥∇u0∥2L2 + µ∥u0∥2L2 < ∥u0∥α+2
L2 , (26)

then the solution of (25) blows up infinite time.
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Proof. It is similar to the proof of Theorem 1 that we have

1

2
(∥ut∥2L2 + ∥∇u∥2L2 + µ∥u∥2L2)−

1

α+ 2
∥u∥α+2

L2 = E1(0), (27)

where E1(0) =
1
2 (∥u1∥2L2 + ∥∇u0∥2L2 + µ∥u0∥2L2)− 1

α+2∥u0∥α+2
L2 ,

(∥u∥2L2)′′ = 2[∥ut∥2L2 + ∥u∥2+α
L2 − (∥∇u∥2L2 + µ∥u∥2L2)]

≥ 2[2∥ut∥2L2 + ∥u∥2+α
L2 − (∥ut∥2L2 + ∥∇u∥2L2 + µ∥u∥2L2)]. (27)

From (26) we have

(∥u∥2L2)′′ |t=0> 0, (∥u∥2L2)′ |t=0≥ 0.

Therefore there exists ε > 0 such that (∥u∥2L2)′(t) > 0 for 0 < t ≤ ε. Hence ∥u∥2L2(t) is

increasing for 0 ≤ t ≤ ε. Let

∥u∥α+2
L2 (t) = ∥u0∥α+2

L2 + δ(t),

(∥ut∥2L2 + ∥∇u∥2L2 + µ∥u∥2L2)(t) = ∥u1∥2L2 + ∥∇u0∥2L2 + µ∥u0∥2L2 + σ(t)

for 0 ≤ t ≤ ε. From (27) we have δ(t) = α+2
2 σ(t). Therefore we have

(∥u∥2L2)′′ > 0, (∥u∥2L2)′ > 0 for 0 ≤ t ≤ ε.

Hence we can assert

(∥u∥2L2)′′ > 0, and (∥u∥2L2)′ > 0 for all t > 0.

From (26) and (27) we have

(∥u∥2L2)′′ ≥ (α+ 4)∥ut∥2L2 + α∥u∥2L2 − 2(α+ 2)E1(0). (29)

Since ∥u∥2L2 is increasing, there is a t1 such that α∥u∥2L2 ≥ 2 for t ≥ t1, and we have

(∥u∥2L2)′′ ≥ (α+ 4)∥ut∥2L2 for t ≥ t1. (30)

From the proof of Theorem 1 there is a constant T, such that

lim
t→T−0

∥u∥2L2 = +∞.

The proof of Theorem 2 is completed.

If µ < 0 in (1) and (2) (or (23)), we have the following result.

utt −∆u− λ2u = ϕ(u), (31)

u(x, 0) = εf(x), ut(x, 0) = εg(x), ε > 0, (32)

where ϕ(u) =| u |α u (or ∥u∥αL2u).

Corollary 4. If f(x) ∈ H1, g(x) ∈ L2,
∫
Rn fgdx ≥ 0,

λ2∥f∥2L2 − ∥∇f∥2L2 + ∥g∥2L2 ≥ 0, (33)

then the global solution of (30) and (31) vanishes identically.
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