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Abstract

This paper studies the iterations of holomorphic self-maps which have nonwandering points
over general pseudoconvex domains in C2. The authors give especially a Denjoy-Wolff-type
theorem on pseudoconvex domains with real-analytic boundaries, or even more general, on

domains of finite type.
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§1. Introduction

In a recent paper (see [17]), we discussed the dynamics of holomorphic self-maps of

strongly pseudoconvex domains. The strongly pseudoconvex domain is in a sense the weakest

domain that we can handle completely. The complex analytic properties of the weakly

pseudoconvex domains in CN , even if with smooth boundaries, can differ very much from

those of the strongly pseudoconvex domains (see [7]); the dynamical property is by no means

excepted. In a recent paper (see [10]), Hriljac studied the dynamics for some kind of two-

dimensional weakly pseudoconvex domains. He got the following theorem in quite a great

space.

Theorem 1.1. Let X be a two-dimensional compact complex-analytic manifold, with

a smoothly varying (1,1) form which induces a metric d on X. Let Ω ⊂ X be an open

connected submanifold satisfying the following condition (C):

for any ξ ∈ ∂Ω there exists a neighborhood Uξ of ξ in X

and a continuous plurisubharmonic function hξ : Uξ → R

such that Ω ∩ Uξ = {x ∈ Uξ | hξ(x) < 0}. (C)

If f ∈ H(Ω,Ω), {fn} is normal, and f has a nonwandering point p ∈ Ω. Then one of

the following holds:

(I) p is an attracting fixed point of f ;

(II) There is a submanifold S ⊂ Ω of dimension 1, such that p ∈ S, p ∈ f(S), and f |S is

an isomorphism. Furthermore, there exists a subsequence fnj such that fnj |S → idS, and

lim
n→∞

d(fn(z), S) = 0, (1.1)
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where d is the distance given on Ω.

(III) f ∈ Aut(Ω), and ∃fnj , fnj → idΩ.

When X = C2, a domain that satisfies Condition (C) must be a weakly pseudoconvex

domain. So Hriljac asked on page 728 of [10]: can the requirement that Ω satisfy Condition

(C) be replaced by the milder requirement that Ω be pseudoconvex in order that Theorem

1.1 still holds? We shall give an affirmative answer to this question in §2. Obviously, our

method is more direct and more simple. Furthermore, our proof can be applied to give

similar results for some weakly pseudoconvex domains of CN for general N > 2.

We got in [17] a complete description of the iterations of holomorphic self-maps over

strongly pseudoconvex domains. Many examples show that this is false for general weakly

pseudoconvex domains. As mentioned in the first paragraph, the complex analytic properties

of the weakly pseudoconvex domains can differ very much from those of strongly pseudo-

convex domains. However, for bounded weakly pseudoconvex domains with real-analytic

boundaries, it seems to be in many respects more similar to the strongly pseudoconvex case.

In §3 we shall give the Denjoy-Wolff-type theorem for such domains in C2 with exactly the

same form as that of the strongly pseudoconvex domains. As an application, we obtain the

Denjoy-Wolff-type theorem for contractible weakly pseudoconvex domains with real-analytic

boundaries in exactly the same form as the classical Denjoy-Wolff-type theorem; an analo-

gous result for contractible strongly pseudoconvex domains with C∞boundaries was got by

Daowei Ma in 1991 (see [13]).

§2. General Case

Theorem 2.1. Let Ω ⊂⊂ C2be a weakly pseudoconvex domain f ∈ H(Ω,Ω). If {fn} is

normal, and f has a nonwandering point p ∈ Ω, then one of the following holds:

(I) p is an attracting fixed point of f ;

(II) There is a submanifold S ⊂ Ω of dimension 1, such that p ∈ S, p ∈ f(S), and f |S is

an isomorphism. Furthermore, there exists a subsequence fnj such that fnj |S → idS, and

lim
n→∞

d(fn(z), S) = 0, (2.1)

where d is any distance on Ω.

(III) f ∈ Aut(Ω), and ∃fnj , fnj → idΩ.

Proof. Denote by Γ the closure of {fn} under the compact open topology, and by Γ′ the

set of all limiting maps of {fn}. Then the proof of the theorem follows immediately from

the following assertions.

Assertion 2.1. For any g ∈ Γ′, we have g(Ω) ⊂ ∂Ω or g ∈ H(Ω,Ω).

In fact, by the definition of the normality, any convergent subsequence fnj , {fnj}, is

either compactly divergent to g, g(Ω) ⊂ ∂Ω, or converges uniformly on compact subsets of

Ω to g ∈ H(Ω,Ω).

Assertion 2.2. There exists a g ∈ Γ′, such that g ∈ H(Ω,Ω).

Since f has a nonwandering point p, for any k let

Uk = {z ∈ Ω| |z − p| < 1

k
},
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then ∃nk such that

fnk(Uk) ∩ Uk ̸= ∅. (2.2)

If {nk} is bounded, then there is an nk0 such that

fnk0 (Uk) ∩ Uk ̸= ∅ (2.3)

holds for infinitely many k′s, this implies fnk0 (p) = p. So by Assertion 2.1 any convergent

subsequence of {fknk0 } converges to a g ∈ H(Ω,Ω).

If {nk} is unbounded, then again by Assertion 2.1 and (2.2) we know that the convergent

subsequence of {fnk} converges to a g ∈ H(Ω,Ω).

Assertion 2.3. There is a subsequence of {fn} converging to a retraction R, S = R(Ω)

is a submanifold of Ω, R|S = id|S .
To prove this, as in the proof of Theorem 3.1 of [17], we use the skills of H. Cartan (see

[5], and also [3], [15]).

By Assertion 2.2, ∃fmk → g ∈ H(Ω,Ω). Taking a subsequence if necessary, we can assume

that

kj = mj+1 −mj → ∞,

and

lj = kj −mj = mj+1 − 2mj → ∞.

Again taking the subsequences if necessary, we may assume that both subsequences {fkj}
and {f lj} are convergent. Let

fkj → R ∈ Γ′(f) ⊂ H(Ω, Ω̄),

f lj → h ∈ Γ′(f) ⊂ H(Ω, Ω̄).

By the relation

fmj+1 = fkj ◦ fmj ,

passing to the limit as j → ∞ we get g = R ◦ g. So R ∈ H(Ω,Ω) by Assertion 2.1, and this

again implies

g = g ◦R = R ◦ g. (2.4)

Similarly we have h ∈ H(Ω,Ω), and

R = g ◦ h = h ◦ g. (2.5)

Now from (2.4) and (2.5) we know

R2 = h ◦ g ◦ h ◦ g = h ◦R ◦ g = h ◦ g = R,

so R ∈ Γ(f) is a retraction and fkj → R.

By [6] (or [15], [3]), S is a submanifold of Ω, R|S = id|S .
Now we go to the proof of Theorem 2.1.

If dimS = 2, then (III) holds since in this case S = Ω, fkj → R = idΩ, and so f ∈ Aut(Ω).

If dimS ≤ 1, we first prove that Γ(f) ⊂ H(Ω,Ω).

In fact, if dimS = 0, then S = {a} for some a ∈ Ω and fkj (z) → R(z) ≡ a, so f(a) = a.

By Assertion 2.1, for any g ∈ Γ′(f), we have g ∈ H(Ω,Ω), so Γ(f) ⊂ H(Ω,Ω).
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If dimS = 1, we use the reduction to absurdity. Suppose not, then ∃fpj ,

fpj → ρ ∈ H(Ω, Ω̄), ρ(Ω) ⊂ ∂Ω.

On the other hand, it is easily seen that R ◦ f = f ◦R. So we have

f(S) = f ◦R(Ω) = R ◦ f(Ω) ⊂ R(Ω) = S. (2.6)

Consequently ρ(S) ⊂ f(S) ⊂ S̄, this implies ρ(S) ⊂ S̄ \S. By the proof of Proposition 12 of

[10], we know that this is impossible. So Γ(f) ⊂ H(Ω,Ω).

Now by Γ(f) ⊂ H(Ω,Ω), we know that Γ(f) is a compact Abel semigroup. So the theory

of semigroup (see [16]) provides a unique retraction in Γ(f), that is exactly the R we get

in Assertion 2.3. Repeating the proof of Assertion 2.3, we conclude that for any convergent

subsequence fpj of {fn}, if fpj → F , then F = R ◦ F.
So if dimS = 0, then F (z) ≡ a. This implies fn(z) → a,∀z ∈ Ω. It is clear that a = p,

this yields Conclusion (I).

If dimS = 1, then F (Ω) = R ◦ F (Ω) ⊂ R(Ω) = S, so d(F (z), S) = 0, that is,

lim
n→∞

d(fn(z), S) = 0.

Furthermore fkj |S → R|S = id|S , it is clear that p ∈ f(S), p ∈ S (since fn(Ω) → S), this

means that (II) holds.

Remarks.

1. When Ω is taut, H(Ω,Ω) is normal, so Theorem 2.1 holds without the additional

assumption that {fn} is normal.

2. When Ω is a weakly pseudoconvex domain with C1boundary, Ω is taut, so Theorem

2.1 holds without the additional assumption that {fn} is normal.

3. For general weakly pseudoconvex domain with C1boundary, general f ∈ H(Ω,Ω), we

have four possibilities for {fn}, besides (I)–(III), we may have that g(Ω) ⊂ ∂Ω holds for all

g ∈ Γ.

4. For general Ω ⊂ CN , whether Theorem 2.1 is true or not is still open. But if Ω is

complete under the Kobayashi metric, then we can show that an analogue of Theorem 2.1

holds without the additional assumption that {fn} is normal.

§3. Domains With Real-Analytic Boundaries

The weakly pseudoconvex domains with real-analytic boundaries, besides the strongly

pseudoconvex domains, are in a sense the most completely understood domains. In this

section, we shall set up the Denjoy-Wolff-type theorem on such domains. We discuss first

the properties of the horospheres beginning with a necessary definition and a sequence of

lemmas and propositions.

Definition 3.1. Let Ω ⊂⊂ CN be a domain, and choose a ∈ Ω, x ∈ ∂Ω and R > 0. Then

the small horosphere Ea(x,R) and the big horosphere Fa(x,R) with center x, pole a and

radius R are defined by

Ea(x,R) = {z ∈ Ω| lim sup
w→x

[KΩ(z, w)−KΩ(a,w)] <
1

2
logR},

Fa(x,R) = {z ∈ Ω| lim inf
w→x

[KΩ(z, w)−KΩ(a,w)] <
1

2
logR},
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where KΩ(·, ·) is the Kobayashi distance on Ω.

Lemma 3.1 ([8], Theorem 2.3). Let ϕ : R+ → R+ be a continuous function satisfying

the Dini condition
∫ 1

0
ϕ(x)
x dx < ∞. Let Ω ⊂⊂ CN be a domain and Ω1 ⊂ Ω be an open

subset of Ω. Assume that for every point A ∈ ∂Ω1 ∩ ∂Ω there exists a function PA ∈
C(Ω̄1) ∩H(Ω1), |PA| < 1 on Ω̄1 \ {A}, which peaks at A and satisfies

C|1− PA(z)| ≤ |z −A| ≤ ϕ(1− |PA(z)|, z ∈ Ω1. (3.1)

Then for every point p in the relative interior of ∂Ω1 ∩ ∂Ω there is a neighborhood U of p

and a constant K such that

KΩ(z, w) ≥
1

2
log

1

d(z)
−K, ∀z ∈ U ∩ Ω1, w ∈ Ω \ Ω1.

An immediate consequence of this lemma is

Corollary 3.1. Let Ω ⊂⊂ CN be a domain with C2 boundary, and p ∈ ∂Ω be a strongly

pseudoconvex point. Then there exist a δ > 0,

Ωk = {z ∈ Ω | |z − p| < kδ}, k = 1, 2,

and a constant K such that

KΩ(z, w) ≥
1

2
log

1

d(z)
−K, ∀z ∈ U ∩ Ω1, w ∈ Ω \ Ω2.

This result was mentioned without proofs in the Remark after Theorem 2.3 of [8]. Here

we give the main points for the proof.

(I) By Narasimhan’s Theorem (see [11], Lemma 2.3), there are a defining function ρ for

Ω, a neighborhood U ⊆ CN of p, and a biholomorphic coordinate change ϕ on U ,

ϕ(z) =
(
z1 +

1

2

N∑
j,k=1

∂2ρ

∂zj∂zk
(p)zjzk, z2, · · · , zN

)
,

such that ϕ(U ∩ ∂Ω) ⊂ CN is strongly convex.

(II) Choosing U sufficiently small, for each point q ∈ ϕ(U ∩ ∂Ω), one can easily find a

ball Bq such that ϕ(U ∩ Ω) ⊂ Bq and ϕ(U ∩ ∂Ω) is internally tangent to ∂Bq at q. These

Bq’s can be chosen with uniformly bounded diameters. Let αq be the unit outward normal

of ∂Bq at q. Define

gA(z) = exp⟨ϕ(z)− q, α⟩, z ∈ U ∩ Ω.

Then gA is a local peak function for Ω at the point

A = ϕ−1(q) ∈ ∂Ω ∩ U,

and
1

4
|1− gA(z)| ≤ |z −A| ≤ 2|1− |gA(z)||

1
3 (3.2)

holds in a neighborhood of A.

(III) Choosing δ > 0 sufficiently small, one can find a constant C such that

1

C
|1− gA(z)| ≤ |z −A| ≤ C|1− |gA(z)||

1
3 , ∀z ∈ Ω1, A ∈ ∂Ω1 ∩ ∂Ω.

So Corollary 3.1 follows immediately from Lemma 3.1.

Lemma 3.2 ([8], Proposition 2.5). If Ω is a domain whose boundary ∂Ω is of class

C1+ε(ε > 0) near a point A ∈ ∂Ω, then there exist a neighborhood U of A and a constant C
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such that for all z0, z1 ∈ Ω ∩ U,

KΩ(z0, z1) ≤
1

2

1∑
j=0

log
1

d(zj)
− 1

2

1∑
j=0

log
1

d(zj) + |z0 − z1|
+ C,

where d(z) is the Euclidean distance from z to ∂Ω.

This lemma implies directly the following

Corollary 3.2. Let Ω ⊂ CN be a domain with C1+ε boundary. Then for any a ∈ Ω, ∃K
such that

KΩ(z, a) ≤
1

2
log

1

d(z)
+K, ∀z ∈ Ω.

Using Corollaries 3.1 and 3.2, a nearly line by line copy of the proof of Theorem 1.7 in

[1] gives the following Proposition 3.1.

Proposition 3.1. Let Ω ⊂⊂ CN be a domain with C2 boundary which is strongly

pseudoconvex at a point p ∈ ∂Ω. Then for any a ∈ Ω, R > 0, we have

Fa(p,R) ∩ ∂Ω = {p}.

Proposition 3.2. Let Ω ⊂ C2 be a weakly pseudoconvex domain with real-analytic

boundary. Then for any a ∈ Ω, p ∈ ∂Ω, R > 0, we have

Fa(p,R) ∩ ∂Ω = {p}

or

Fa(p,R) ∩ ∂Ω = ∅.

Proof. Denote by A(Ω) the family of all holomorphic functions which are continuous on

Ω̄. Let

P(A(Ω)) = {p ∈ ∂Ω | ∃fp ∈ A(Ω), fp(p) = 1, |fp(z)| < 1, ∀z ∈ Ω̄ \ {p}}.

Bedford and Fornæss showed in 1978 that P(A(Ω)) = ∂Ω if Ω is a weakly pseudoconvex

domain with real-analytic boundary (see [4], Theorem 3.1, and also [14], [9]). In [2], Basener

proved that, if Ω is a Levi pseudoconvex domain with C∞ boundary, then P(A(Ω)) is

contained in the closure of the strongly pseudoconvex points (see also [11]). So the set of

strongly pseudoconvex points is dense in ∂Ω. Now by Proposition 3.1, for each strongly

pseudoconvex point p ∈ ∂Ω, we have

Fa(p,R) ∩ ∂Ω = {p}.

To prove Proposition 3.2 for general point x ∈ ∂Ω, we first prove that

Fa(x,R) ⊂
∞∪
k=1

∞∩
n=k

Fa(xn, R) (3.3)

for any sequence {xk} ⊂ ∂Ω with xk → x.

In fact, proving (3.3) is equivalent to proving that ∀z ∈ Fa(x,R), ∃k = k(z) such that

z ∈ Fa(xn, R) holds for all n ≥ k. Suppose that this is not true, then ∃k(j) → ∞ with

z /∈ Fa(xk(j), R), that is,

lim inf
w→xk(j)

KΩ(z, w)−KΩ(a,w) ≥
1

2
logR. (3.4)
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Now, since z ∈ Fa(x,R), we can find a sequence wj → x with

lim
n→∞

KΩ(z, wn)−KΩ(a,wn) <
1

2
logR. (3.5)

Choose for each k(j) a sequence uji → xk(j) (i → ∞) with ujj = wj . Then by (3.4) we have

lim inf
i→∞

KΩ(z, uji)−KΩ(a, uji) ≥
1

2
logR, ∀j = 1, 2, · · · .

So

lim inf
j→∞

KΩ(z, ujj)−KΩ(a, ujj) ≥
1

2
logR,

that is,

lim
j→∞

KΩ(z, wj)−KΩ(a,wj) ≥
1

2
logR.

This contradicts (3.5), so we have proved (3.3).

To finish the proof, we need to prove that if y ∈ Fa(x,R) ∩ ∂Ω, then y = x. To prove

this, we suppose that y ∈ ∂Ω, and y ̸= x. Let |x− y| = 2ε, choose {xn} ⊂ ∂Ω, xn → x and

|xn − y| > ε, where all the xn’s are strongly pseudoconvex. By Proposition 3.1,

Fa(xn, R) ∩ ∂Ω = {xn},

so we have
∞∪
k=1

Fa(xk, R) ∩ ∂Ω =

∞∪
k=1

{xk} ∪ {x} ≡ E.

By the choice of {xn} we know that dist(E, y) > ε. So ∃δ > 0 such that( ∞∪
k=1

Fa(xn, R)
)
∩B(y, δ) = ∅. (3.6)

So by (3.3) and (3.6) we get y /∈ Fa(x,R).

Remark 3.1. One can easily prove that
∞∪
k=1

∞∩
n=k

Fa(xn, R) ⊂ Fa(x,R).

So, by Proposition 3.2, if we can prove that

∞∪
k=1

∞∩
n=k

Fa(xn, R) ∩ ∂Ω ̸= ∅,

then we have

Fa(p,R) ∩ ∂Ω = {p}

for any p ∈ Ω.

Lemma 3.3. Let Ω ⊂ C2 be a weakly pseudoconvex domain with real-analytic boundary,

f ∈ H(Ω, Ω̄). Then either f ∈ H(Ω,Ω) or f(z) ≡ ξ for some ξ ∈ ∂Ω.

Proof. It Suffices to show that if f(a) = ξ ∈ ∂Ω for some a ∈ Ω, then f(z) ≡ ξ.

In fact, by [4] every boundary point of Ω is a peak point. So, if we denote by A(Ω) the

set of all functions continuous on Ω and holomorphic in Ω, then for ξ = f(a) ∈ ∂Ω one can

find a g ∈ A(Ω) with g(ξ) = 1, and

|g(z)| < 1,∀z ∈ Ω− {ξ}.
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Consider the holomorphic function h = g ◦ f, then

h(a) = g(f(a)) = g(ξ) = 1,

and |h(z)| ≤ 1, ∀z ∈ Ω. So the Maximum Modulus Theorem implies

h(z) ≡ 1, or g(f(z)) ≡ 1.

This means f(z) ≡ ξ by the choice of g.

Now we can prove our main theorem.

Theorem 3.1. Let Ω ⊂ C2 be a weakly pseudoconvex domain with real-analytic boundary,

f ∈ H(Ω,Ω). Then one of the following holds:

(I) The sequence {fm} converges to a point ξ ∈ Ω uniformly on the compact subset

of Ω;

(II) There exists a unique holomorphic retraction Rf ∈ Γ′(f) such that, for any g ∈
Γ′(f), ∃T ∈ Aut(V ) with g = T ◦Rf , and V = Rf (Ω) is a submanifold of Ω.

Proof. If f has a nonwandering point p, then the conclusion in Theorem 2.1 gives us the

desired results.

If all points of Ω are wandering, then all limiting mappings map Ω into ∂Ω. So by Lemma

3.3, any limiting map must be a constant map. Now, given a ∈ Ω, since all limit points of

{fk} lie in the boundary, we have

lim
m→∞

KΩ(a, f
m(a)) = ∞.

With no difficulty, one can choose a subsequence {mj},mj → ∞ and

KΩ(a, f
mj (a)) < KΩ(a, f

mj+k(a)), ∀k ∈ Z+. (3.7)

By the normality of {fm}, taking a subsequence if necessary, we can assume that fmj is

convergent. Let fmj → x ∈ ∂Ω. Then

lim
j→∞

fmj (a) = x,

lim
j→∞

fmj+k(a) = lim
j→∞

fmj (fk(a)) = x, ∀k = 1, 2, · · · . (3.8)

So given any z ∈ Ea(x,R), for k = 1, 2, · · · , by (3.7), (3.8) and the nonexpansivity of f ,

we have

lim inf
w→x

[KΩ(f
k(z), w)−KΩ(a,w)]

≤ lim inf
j→∞

[KΩ(f
k(z), fmj+k(a))−KΩ(a, f

mj+k(a))]

≤ lim inf
j→∞

[KΩ(z, f
mj (a))−KΩ(a, f

mj+k(a))]

≤ lim inf
j→∞

[KΩ(z, f
mj (a))−KΩ(a, f

mj (a))]

≤ lim sup
w→x

[KΩ(z, w)−KΩ(a,w)]

<
1

2
log,

that is, fk(z) ∈ Fa(x,R). This means that

fk(Ea(x,R)) ⊂ Fa(x,R).
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So for any convergent subsequence fkj we have

fkj (z) → χ ∈ Fa(x,R) ∩ ∂Ω.

By Proposition 3.2, it must hold that χ = x, that is, fk(z) → x. The theorem is proved.

When Ω is contractible, we have an even sharper result.

Theorem 3.2. Let Ω ⊂⊂ C2 be a contractible weakly pseudoconvex domain with real-

analytic boundary and f ∈ H( Ω,Ω). Then

(I) if Fix(f) = ∅, then fk(z) → χ ∈ ∂Ω;

(II) if Fix(f) ̸= ∅, then there is a holomorphic retraction Rf ∈ Γ′(f) such that for any

g ∈ Γ′(f),∃T ∈ Aut(V ) with g = T ◦Rf , and V = Rf (Ω) is a submanifold of Ω.

Proof. By Theorem 3.1, we need only to prove that Conclusion (II) of Theorem 3.1

ensures that Fix(f) ̸= ∅. The proof for this is essentially the same as that of Theorems 6

and 7 of [13]. Here we omit it.

Remark 3.2. In the proof of Theorem 3.1, we have used the result of Theorem 2.1,

which is proved only for domains in C2 and may not be true for domains in general CN .

But the existence of peak functions for A(Ω) implies that Ω is complete in the Kobayashi

metric. So the method used in [17] is available here for the proof of Theorem 3.1. The same

idea allows us to prove the result of Theorem 3.1 for any weakly pseudoconvex domain in

CN , which is of C∞ boundary and satisfies P(A(Ω)) = ∂Ω.

Remark 3.3. Proposition 3.2 is true for any smoothly weakly pseudoconvex domain Ω

in C2. To prove this, the main point is that the set of strongly pseudoconvex points is dense

on ∂Ω. In fact, the strongly pseudoconvex points are generic on the boundaries of such

domains. This can be proved by using the notion of finite type (see [9] for the definition)

and the Foliation Theorem (see [11], p.274), for the details of this see [12].

Recall that a domain Ω ⊂⊂ CN is said to be of simple boundary if all holomorphic

mappings h : {z ∈ C | |z| < 1} → ∂Ω are constants ( see [3] ). Especially when Ω ⊂⊂ C2 is

a smooth pseudoconvex domain of finite type, it is proved in [9] that at each point p ∈ ∂Ω

there exists a peak function f ∈ A(Ω). Hence the proof of Lemma 3.3 shows that ∂Ω is

simple. So by Remarks 3.2 and 3.3, using the proof of Theorems 3.1 and 3.2 we have

Theorem 3.3. When Ω ⊂ C2 is a weakly pseudoconvex domain with smoothly simple

boundary, especially, when Ω ⊂⊂ C2 is a smooth pseudoconvex domain of finite type, and

f ∈ H(Ω,Ω), the results of Theorem 3.1 hold.

Theorem 3.4. When Ω ⊂⊂ C2 is a contractible weakly pseudoconvex domain with

smoothly simple boundary, especially, when Ω ⊂⊂ C2 is a contractible smooth pseudoconvex

domain of finite type, and f ∈ H( Ω,Ω), the results of Theorem 3.2 hold.
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