
Chin. Ann. of Math.
16B: 4(1995),477-486.

AN EMBEDDING THEOREM BETWEEN

SPECIAL LINEAR GROUPS OVER ANY FIELDS
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Abstract

Abstract homomorphisms between subgroups of algebraic groups were studied in detail
by A.Borel, J.Tits[1] and B.Weisfeiler[2] provided that the images of the homomorphisms are

Zariski dense subsets and that the fields over which algebraic groups are defined are infinite. The
purpose of this paper is to determine all embedding homomorphisms of SLn(k) into SLn(K)
when k and K are any fields of the same characteristic, without assumption of Zariski density
and infinitude of fields. The result in this paper generalizes a result of Chen Yu on homomor-

phisms of two dimensional linear groups[3].
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Let D and E be two division rings. Dicks and Hartley conjectured that all non-trivial

homomorphisms of SLn(D) to SLn(E) arise from homomorphisms of D to E. The conjec-

ture has been verified by themselves[4] when n = 2, charD =charE, charD ̸= 2, 3, |D| ̸= 5

and E is finite dimensional over its center. Earlier, the conjecture had been verified by Chen

Yu when n = 2, D and E are fields and |D| > 5. Our contribution to this problem is the

following result.

Theorem 1. Let k and K be any fields of the same characteristic. Suppose that σ :

SLn(k) −→ SLn(K) is an embedding homomorphism, where n ≥ 3. Then there exist

Q ∈ GLn(K) and a homomorphism α : k −→ K such that for any A ∈ SLn(k),

σ(A) = QAαQ−1 or σ(A) = Q((Aα)′)−1Q−1,

where Aα = (α(aij)) if A = (aij). Moreover, α is unique and Q is unique up to a scalar

element of GLn(K).

For any field F and any positive integer n ≥ 2, we first introduce the following subgroups

of SLn(F ). We write U+(F ) and U−(F ) for the subgroups of upper and lower triangular

n × n matrices over F with ones on the diagonal, respectively. And for 1 ≤ i, j ≤ n, i ̸= j,

we write Tij(F ) for the root subgroup consisting of the matrices I + aEij , where a ∈ F .

We have the following fundamental commutator relations if we denote by Tij(a) the matrix

I + aEij for any a ∈ F .

(Tij(a) Trs(b)) = 1, if j ̸= r, i ̸= s,

(Tij(a) Tjs(b)) = Tis(ab), if i ̸= s.
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Lemma 1. Let

U+(F ) = U+(F )(1) ⊃ U+(F )(2) ⊃ · · · ⊃ U+(F )(n−1) ⊃ U+(F )(n) = 1,

U−(F ) = U−(F )(1) ⊃ U−(F )(2) ⊃ · · · ⊃ U−(F )(n−1) ⊃ U−(F )(n) = 1

denote the lower central series of U+(F ) and U−(F ). Then for 1 ≤ s ≤ n − 1, U+(F )(s) is

generated by Tij(F ) with j − i ≥ s and U−(F )(s) is generated by Tij(F ) with i − j ≥ s. In

particular,

U+(F )(n−1) = T1n(F ), U−(F )(n−1) = Tn1(F ).

Proof. By the fundamental commutator relations Lemma 1 is immediate.

We may characterize unipotent matrices in such a way. A matrix A ∈ SLn(F ) is unipotent

if and only if

i) when char F = p > 0, there exists a positive integer r such that Apr

= I;

ii) when char F = 0, Ak ̸= I and there exists a positive integer r such that the matrices

Akr

are conjugate to each other in SLn(F ), where k = 1, 2, 3, · · · .
By using the characterization of unipotent matrices, it is easy to get

Lemma 2. Let k and K be any fields with chark = charK. Suppose that σ : SLn(k) −→
SLn(K) is an embedding homomorphism. Then there exists a matrix Q ∈ SLn(K) such

that

Qσ(U+(k))Q
−1 ⊆ U+(K).

Proof. For any A ∈ U+(k), σ(A) is a unipotent matrix by the above characterization,

and then σ(U+(k)) is a unipotent subgroup of SLn(K). Now the existence of the matrix Q

is clear (see [5], Chapter 5, Theorem 2.1).

From now on we always assume that k and K are fields of the same characteristic,

and F is any field. Let H(F ) denote the subgroup of diagonal matrices of SLn(F ), and

B±(F ) = H(F )U±(F ). We have the following key lemma.

Lemma 3. Suppose that σ : SLn(k) −→ SLn(K) is an embedding homomorphism and

σ(U+(k)) ⊆ U+(K). Then there exists a matrix Q = DB, where B ∈ B+(K), D is a

diagonal matrix in GLn(K) such that

i) Qσ(U+(k))Q
−1 ⊆ U+(K), Qσ(T1n(1))Q

−1 = T1n(1);

ii) Qσ(Tn1(k))Q
−1 ⊆ Tn1(K).

Proof. It is clear that if we replace U+(k) and U+(K) by U−(k) and U−(K), the result

of Lemma 2 is still true. Then there exists a matrix A ∈ SLn(K) such that

Aσ(U−(k))A
−1 ⊆ U−(K).

Lemma 1 implies that Aσ(Tn1(k))A
−1 ⊆ Tn1(K). By the Bruhat decomposition A can be

written as A = CNB, where C ∈ U−(K), B ∈ B+(K) and N is a permutation matrix, so

Bσ(Tn1(k))B
−1 ⊆ N−1C−1Tn1(K)CN ⊆ Tij(K)

for some root subgroup Tij(K). Since

Bσ(U+(k))B
−1 ⊆ BU+(K)B−1 ⊆ U+(K)

and, by Lemma 1, Bσ(T1n(k))B
−1 ⊆ T1n(K), we have

Bσ((T1n(1) Tn1(1)) T1n(1))B
−1 ∈ ((T1n(K) Tij(K)) T1n(K)).
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If Tij(K) ̸= Tn1(K),

((T1n(K) Tij(K)) T1n(K)) = I,

but ((T1n(1) Tn1(1)) T1n(1)) ̸= I, which is a contradiction. Thus

Bσ(Tn1(k))B
−1 ⊆ Tn1(K).

Assume that Bσ(T1n(1))B
−1 = T1n(a) for some a ∈ K∗. Take

D = diag(1, · · · , 1, a),

then the matrix Q = DB is required.

We hope that we can make induction on n to prove Theorem 1, so we need the following

simple lemma, which is immediate by a direct computation.

Lemma 4. Let A = (aij) ∈ SLn(F ), a be any element of F ∗.

i) AT1n(a)A
−1 ∈ T1n(F ) if and only if a21 = · · · = an1 = · · · = ann−1 = 0;

ii) ATn1(a)A
−1 ∈ Tn1(F ) if and only if a12 = · · · = a1n = · · · = an−1n = 0.

For n = 2 we restate Theorem 1 in a slightly different way. The result is implicit in Chen

Yu’s work.

Lemma 5. Let σ : SL2(k) −→ SL2(K) be an embedding homomorphism. Assume that

σ(T12(k)) ⊆ T12(K), σ(T21(k)) ⊆ T21(K)

and σ(T12(1)) = T12(1). Then there exists a homomorphism α : k −→ K such that for any

A ∈ SL2(k)

σ(A) = Aα.

Proof. First, it is clear that

σ(B+(k)) ⊆ B+(K) and σ(B−(k)) ⊆ B−(K)

by Lemma 4. Then

σ(H(k)) = σ(B+(k) ∩B−(k)) ⊆ B+(K) ∩B−(K) ⊆ H(K).

It follows that σ(−I) = −I since (σ(−I))2 = I and σ(−I) ∈ H(K). Let

σ

(
0 1
−1 0

)
=

(
x y
u v

)
, σ

(
1 0
−1 1

)
=

(
1 0
s 1

)
.

If we apply σ to both sides of the following identity(
0 1
−1 0

)(
1 1
0 1

)
=

(
1 0
−1 1

)(
0 1
−1 0

)
,

we have (
x y
u v

)(
1 1
0 1

)
=

(
1 0
s 1

)(
x y
u v

)
,

which implies x = 0 and u = −y−1. From the identity(
0 y

−y−1 v

)2

=

(
−1 yv

−y−1v v2 − 1

)
= σ

(
0 1
−1 0

)2

= −I

it follows that v = 0. Then

σ

(
0 1
−1 0

)
=

(
0 1
−1 0

)
, σ

(
1 0
−1 1

)
=

(
1 0
−1 1

)
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since we have the identity(
0 y

−y−1 0

)
=

(
1 1
0 1

)(
1 0
s 1

)(
1 1
0 1

)
=

(
1 + s 2 + s
s 1 + s

)
,

which is obtained by applying σ to the both sides of the identity(
0 1
−1 0

)
=

(
1 1
0 1

)(
1 0
−1 1

)(
1 1
0 1

)
.

We define maps α and β of k to K by

σ(T12(x)) = T12(α(x)), σ(T21(x)) = T21(β(x))

for any x ∈ k. Obviously, α and β are well defined and both are homomorphisms of k to K,

as additive groups. By applying σ to both sides of the identity(
0 1
−1 0

)(
1 x
0 1

)
=

(
1 0
−x 1

)(
0 1
−1 0

)
,

we have (
0 1
−1 −α(x)

)
=

(
0 1
−1 −β(x)

)
,

which means that, in fact, α = β. Moreover, it is easy to see that for all x ∈ k∗,

σ

(
x 0
0 x−1

)
=

(
α(x) 0
0 α(x−1)

)
if we apply σ to the identity(

x 0
0 x−1

)
=

(
1 x
0 1

)(
1 0

−x−1 1

)(
1 x
0 1

)(
0 −1
1 0

)
.

Thus, for x, y ∈ k∗,(
α(xy) 0

0 α(xy)−1

)
= σ

(
x 0
0 x−1

)
σ

(
y 0
0 y−1

)
=

(
α(x)α(y) 0

0 α(x−1)α(y−1)

)
.

Therefore, α(xy) = α(x)α(y) and α is a homomorphism of k∗ to K∗, as multiplicative group.

Since SL2(k) is generated by T12(k) and T21(k), for any A ∈ SL2(k), σ(A) = Aα.

Before we proceed to prove Theorem 1, we need one more lemma.

Lemma 6. Suppose that σ : SLn(k) −→ SLn(K) is an embedding homomorphism and,

for 1 ≤ i ≤ n− 1,

σ(Ti i+1(k)) ⊆ Ti i+1(K), σ(Ti+1 i(k)) ⊆ Ti+1 i(K).

Then there exist a diagonal matrix D ∈ GLn(K) and a homomorphism α : k −→ K such

that

Dσ(A)D−1 = Aα

for any A ∈ SLn(k).

Proof. For 1 ≤ i ≤ n− 1, assume σ(Ti i+1(1)) = Ti i+1(ai) for some ai ∈ K∗. Let

D = diag(d1, d2, · · · , dn),

where di = aiai+1 · · · an−1, 1 ≤ i ≤ n− 1, dn = 1. Then

D−1σ(Ti i+1(1))D = Ti i+1(1).

By Lemma 5 we see that there exist homomorphisms αi : k −→ K such that

D−1σ(Ti i+1(x))D = Ti i+1(αi(x))
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for all x ∈ k. By applying σ to the identity

Ti i+2(x) = (Ti i+1(1) Ti+1 i+2(x)) = (Ti i+1(x) Ti+1 i+2(1)),

it follows that

α1 = α2 = · · · = αn−1 = α.

Hence, D−1σ(A)D = Aα for any A ∈ SLn(k) since SLn(k) is generated by

Ti i+1(k), Ti+1 i(k), 1 ≤ i ≤ n− 1.

Now we state the result which is slightly stronger than the statement of Theorem 1, so

that we can make induction on n. For any A ∈ SLn(K), let γ(A) = P (A′)−1P−1, where

P =


1

1
·

·
·

1

 ,

γ is called a graph automorphism of SLn(K), and for any x ∈ K,

γ(Tij(x)) = Tn+1−j n+1−i(x).

Theorem 2. Suppose that σ : SLn(k) −→ SLn(K) is an embedding homomorphism and

σ(U+(k)) ⊆ U+(K). Then there exist a matrix Q ∈ GLn(K), which is upper triangular, and

a homomorphism α : k −→ K such that for any A ∈ SLn(k),

Qσ(A)Q−1 = Aα

or

Qγ(σ(A))Q−1 = Aα.

Proof. Lemma 3 together with Lemma 5 implies that there exists an upper triangular

matrix B ∈ GLn(K) such that

Bσ(U+(k))B
−1 ⊆ B+(K),

Bσ(T1n(1))B
−1 = T1n(1),

Bσ(Tn1(1))B
−1 = Tn1(1).

Denote by σ′ the homomorphism, where σ′(A) = Bσ(A)B−1 for any A ∈ SLn(k).

1) When n = 2, by Lemma 5 Theorem 2 is clearly true.

2) Assume that n = 3. In this case, it is easy to see that

σ′(U−(k)) ⊆ U−(K)

by applying σ′ to both sides of U−(k) = NU+(k)N
−1, where

N =

 0 0 1
0 1 0
1 0 0


is fixed under the action of σ′ by Lemma 5. For each a ∈ k∗, let

σ′(T12(a)) = T23(y)T12(x)T13(z).
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Then

σ′(T32(−a)) = σ′(NT12(a)N
−1) = T21(y)T32(−x)T31(−z).

Since (T12(k) T32(k)) = 1, we have 1 x z
0 1 y
0 0 1

 1 0 0
y 1 0
−z −x 1

 =

 1 0 0
y 1 0
−z −x 1

 1 x z
0 1 y
0 0 1

 ,

which forces z = 0, x = 0 or y = 0. It implies that

σ′(T12(a)) ∈ T12(K) or σ′(T12(a)) ∈ T23(K)

for any a ∈ k∗. For T23(a) we have the same conclusion. Since (T12(x) T23(y)) = T13(xy),

it follows that

σ′(T12(k)) ⊆ T12(K), σ′(T23(k)) ⊆ T23(K)

or

σ′(T12(k)) ⊆ T23(K), σ′(T23(k)) ⊆ T12(K).

If the latter case occurs,

Dγσ′(T12(k))D
−1 ⊆ T12(K), Dγσ′(T23(k))D

−1 ⊆ T23(K),

where D =diag(−1, 1, 1) and the aim of introducing D is to guarantee

Dγσ′(T13(1))D
−1 = T13(1).

Thus the latter case can be reduced to the first one. If the first case occurs, then

σ′(T32(k)) = σ′(NT12(k)N
−1) ⊆ T32(K)

and similarly σ′(T21(k)) ⊆ T21(K). By Lemma 6, for n = 3 Theorem 2 follows.

3) For n ≥ 4, let G̃(F ) and G(F ) denote the subgroups of SLn(F ) consisting of all

matrices  a1
A

an

 ,

where a1, an ∈ F ∗, A ∈ GLn−2(F ), and 1
A

1

 ,

where A ∈ SLn−2(F ), respectively. It is clear that G̃(F )′ = G(F ), where G̃(F )′ is the

derived subgroup of G̃(F ), unless |F | = 2 and n = 4, and G̃(F ) = G(F ) when |F | = 2. By

Lemma 4, σ′(G̃(k)) ⊆ G̃(K), and

σ′(G(k)) = σ′(G̃(K)′) ⊆ G(K) ⊆ G̃(K)

when |k| > 2 or n > 4. For |k| = 2 and n = 4, write

σ′(T32(1)) =

 a1
A

a4

 .

Since σ′(T32(1))
2 = 1, it forces a1 = a4 = 1 and σ′(T32(1)) ∈ G(K). Then, in any way, we

have σ′(G(k)) ⊆ G(K). The restriction of σ′ to G(k) satisfies the assumption of Theorem
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2, so the induction hypothesis can be applied. Thus, there exist an upper triangular matrix

C ∈ GLn(K) and a homomorphism σ′′ : SLn(k) −→ SLn(K), where for any A ∈ SLn(k)

σ′′(A) = Cσ′(A)C−1

or when n > 4,

σ′′(A) = Cγσ′(A)C−1,

such that the following conditions are satisfied:

i) σ′′(U+(k)) ⊆ U+(K),

ii) σ′′(Tij(k)) ⊆ Tij(K), σ′′(Tij(1)) = Tij(1),

for 2 ≤ i, j ≤ n− 1, or i = 1, j = n, or i = n, j = 1. Let

N =



1
1

·
·

·
−1

−1


n×n

,

which is fixed under the action of σ′′. Since

σ′′(U
(n−2)
+ (k)) ⊆ U

(n−2)
+ (K)

by Lemma 1, we may write

σ′′(T1n−1(a)) = T2n(y)T1n−1(x)T1n(z)

for a ∈ k∗, and

σ′′(Tn2(−a)) = σ′′(NT1n−1(a)N
−1) = Tn−1 1(−y)Tn2(−x)Tn1(−z).

It follows that z = 0, x = 0 or y = 0 as we see in the proof of 2) when n = 3. This means

that

σ′′(T1n−1(a)) ∈ T1n−1(K), σ′′(Tn2(−a)) ∈ Tn2(K)

or

σ′′(T1n−1(a)) ∈ T2n(K), σ′′(Tn2(−a)) ∈ Tn−1 1(K)

for a ∈ k∗. It implies that

σ′′(T1n−1(k)) ⊆ T1n−1(K) or σ′′(T1n−1(k)) ⊆ T2n(K).

Otherwise, if there exist a, b ∈ k such that

σ′′(T1n−1(a)) ∈ T1n−1(K), σ′′(T1n−1(b)) ∈ T2n(K),

we would have σ′′(Tn2(−b)) ∈ Tn−1 1(K), which gives a contradiction since

(T1n−1(a) Tn2(−b)) = 1

and

(σ′′(T1n−1(a)) σ′′(Tn2(−b))) ̸= 1.

By the same reason we have the same conclusion for T2n(k), that means

σ′′(T2n(k)) ⊆ T2n(K) or σ′′(T2n(k)) ⊆ T1n−1(K).
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If σ′′(T1n−1(k)) and σ′′(T2n(k)) are both contained in T1n−1(K), then σ′′(Tn−1 1(k)) and

σ′′(Tn2(k)) are both contained in Tn2(K), which is impossible since the subgroups T1n−1(K)

and Tn2(K) are commutative elementwise, but T1n−1(k) and Tn−1 1(k) are not. Similarly,

it is impossible that σ′′ sends T1n−1(k) and T2n(k) into T2n(K). Thus, the case that can

occurs is

σ′′(T1n−1(k)) ⊆ T1n−1(K), σ′′(T2n(k)) ⊆ T2n(K)

or

σ′′(T1n−1(k)) ⊆ T2n(K), σ′′(T2n(k)) ⊆ T1n−1(K).

Applying σ′′ to both sides of the following relations

(Tn1(k) T1n−1(k)) = Tnn−1(k), (Tn1(k) T2n(k)) = T21(k),

we have

σ′′(Tnn−1(k)) ⊆ Tnn−1(K), σ′′(T21(k)) ⊆ T21(K)

or

σ′′(Tnn−1(k)) ⊆ T21(K), σ′′(T21(k)) ⊆ Tnn−1(K),

which is equivalent to the fact that

σ′′(T12(k)) ⊆ T12(K), σ′′(Tn−1n(k)) ⊆ Tn−1n(K)

or

σ′′(T12(k)) ⊆ Tn−1n(K), σ′′(Tn−1n(k)) ⊆ T12(K)

since

NTnn−1(k)N
−1 = T12(k), NT21(k)N

−1 = Tn−1n(k).

Now Theorem 2 follows if the first case occurs. When n = 4, if the second case occurs, the

homomorphism σ′′′ : SL4(k) −→ SL4(K), defined by

σ′′′(A) = Dγσ′′(A)D−1

for any A ∈ SL4(k), satisfies the same conditions which are satisfied by σ′′, where

D = diag(−1,−1, 1, 1).

Thus, the second case can be reduced to the first one for n = 4. When n > 4, the second case

can not occur since T12(k) and Tn−2,n−1(k) are commutative elementwise, but Tn−2n−1(K)

and Tn−1n(K) are not.

Proof of Theorem 1. What we only need to do is to prove the uniqueness. Let α1, α2

be homomorphisms of fields from k to K, and Q1, Q2 ∈ GLn(K). If

Q1A
α1Q−1

1 = Q2A
α2Q−1

2

or

Q1((A
α1)′)−1Q−1

1 = Q2((A
α2)′)−1Q−1

2

for all A ∈ SLn(k), then Q1Tij(1)Q
−1
1 = Q2Tij(1)Q

−1
2 for 1 ≤ i, j ≤ n. This clearly means

that Q−1
2 Q1 is a scalar and therefore α1 = α2, which has proved the uniqueness if we can

claim that it is impossible to have

Q1A
α1Q−1

1 = Q2((A
α2)′)−1Q−1

2 .
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But it is obvious since, otherwise, we would have

Q−1
2 Q1Tij(1)Q

−1
1 Q2 = Tji(−1).

And by an easy computation it is absurd when n ≥ 3.

When k is a subfield of K, for any homomorphism α : k −→ K, SLn(k)
α can be viewed as

a subgroup of SLn(K) in a natural way. We call subgroups G1 and G2 of SLn(K) equivalent

if there exists an automorphism τ of SLn(K) such that τ(G1) = G2. Theorem 1 implies

Corollary 1. Let k be a subfield of K. Then any subgroup G of SLn(K) which is

isomorphic to SLn(k) is equivalent to SLn(k)
α for some homomorphism α : k −→ K. In

particular, if K is an algebraically closed field, then all subgroups of SLn(K) which are

isomorphic to SLn(k) are equivalent.

As an end, we generalise Theorem 1 to general linear groups.

Theorem 3. If σ : GLn(k) −→ GLn(K) is an embedding homomorphism, where n ≥ 3,

then σ is of the form

σ(A) = QAαQ−1χ(detA)I

or

σ(A) = Q((Aα)′)−1Q−1χ(detA)I

for all A ∈ GLn(k), where Q ∈ GLn(K), α is a homomorphism of fields from k to K and χ

is a homomorphism of groups from k∗ to K∗. Moreover, both α and χ are unique while Q

is unique up to a scalar element of GLn(K).

Proof. By Lemma 2, σ sends unipotent subgroups of GLn(k) to unipotent subgroups of

GLn(K), then the restriction of σ to SLn(k) is an embedding homomorphism of SLn(k) to

SLn(K). There exist Q ∈ GLn(K) and a homomorphism α : k −→ K such that

σ′(A) = Q−1σ(A)Q = Aα

or

σ′(A) = Q−1(σ(A)′)−1Q = Aα

for any A ∈ SLn(k). We see easily that a matrix D ∈ GLn(K) is a diagonal matrix if and

only if DTij(1)D
−1 ∈ Tij(K) for 1 ≤ i, j ≤ n. So it is clear that σ′ maps diagonal matrices

of GLn(k) into diagonal matrices of GLn(K). For any a ∈ k∗, suppose

σ′(diag(1, · · · , 1, a)) = diag(b1, b2, · · · , bn),

where b1, b2, · · · , bn ∈ K∗. We obtain

b1 = b2 = · · · = bn−1 = b

and bn = α(a)b by applying σ′ to the both sides of the following identities

DTi i+1(1)D
−1 = Ti i+1(1), 1 ≤ i ≤ n− 2,

DTn−1n(1)D
−1 = Tn−1n(a

−1),

where D =diag(1, · · · , 1, a) ∈ GLn(k). Now define a map χ : k∗ −→ K∗ by

σ′(diag(1, · · · , 1, a)) = diag(χ(a), · · · , χ(a), α(a)χ(a))
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for any a ∈ k∗. Obviously, χ is a homomorphism of groups from k∗ to K∗. Since every

matrix A can be written uniquely in the form

A = A1diag(1, · · · , 1, detA)

for some A1 ∈ SLn(k), and moreover

Aα = Aα
1 diag(1, · · · , 1, α(detA)),

we have

σ′(A) = Aα
1 diag(1, · · · , 1, α(detA))I = Aαχ(detA)I,

as requested. Finally, the proof of the uniqueness of Q,α, and χ is similar to that of Theorem

1.
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