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Abstract

In 1980’s, differential geometric methods are successfully used to study curved exponential
families and normal nonlinear regression models. This paper presents a new geometric structure
to study multinomial distribution models which contain a set of nonlinear parameters. Based

on this geometric structure, the authors study several asymptotic properties for sequential
estimation. The bias, the variance and the information loss of the sequential estimates are
given from geometric viewpoint, and a limit theorem connected with the observed and expected
Fisher information is obtained in terms of curvature measures. The results show that the

sequential estimation procedure has some better properties which are generally impossible for
nonsequential estimation procedures.

Keywords Multinomial distribution model, Statistical curvature, Sequential estimation,

Stopping rule, Fisher information, Information loss.
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§1. Introduction

Multinomial distributions are widely used in statistical inference. In this paper, we present

a differential geometric method to study a kind of multinomial distribution models in which a

set of nonlinear parameters are of interest. The differential geometric method in statistical

inference had been well studied in 1980’s and a nice review was given by Kass[1]. There

are two approaches and two kinds of models which are widely accepted and proved to

be successful in statistical analysis. One was given by Efron[2] and Amari[3] for curved

exponential families by introducing a Riemannian geometric framework; the other was given

by Bates and Watts[4] for nonlinear regression models by proposing two kinds of curvature

measures in Euclidean space. The geometry and models discussed in this paper are different

from those of Efron and Amari (EA) and Bates and Watts (BW). The models we study are

close to those of EA, but here the multinomial distribution model can not be regarded as

a full, regular and minimally represented exponential family and may cause some problems

from EA viewpoint[5]. The geometry we present is close to that of BW, but we introduce a

Fisher information inner product as a metric to Euclidean space. Besides, the models, and

the problems of sequential maximum likelihood estimates we shall study in this paper, are

substantially different from nonlinear regression models studied by BW. We try to combine
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the advantages of both EA and BW approaches, and apply our geometric method to study

asymptotics of sequential estimation, which have not been seen in the literature.

In Section 2, we first review some basic results for multinomial distributions, and then

propose a differential geometric framework in Euclidean inner product space for these mod-

els. In Section 3, the stochastic expansions for the sequential estimates are obtained from

geometric viewpoint. Section 4 studies the information loss, the bias and the asymptotic

variance of the sequential estimate. A limit theorem connected with the observed and ex-

pected Fisher information is also given in terms of curvature measures.

§2. Geometry of Multinomial Distribution Models

Let {Xk} be a set of n independent m × 1 vectors where each Xk = (x1
k, · · · , xm

k)T

satisfies

P (xk
i = 1) = πi, P (xk

i = 0) = 1− πi, 0 < πi < 1,∑
i

πi = 1,
∑
i

xk
i = 1 (k = 1, · · · , n; i = 1, · · · ,m).

Then the joint density function of X = (X1, · · · ,Xn)T has the form

P (x, π) =
m∏
i=1

πyi

i , yi =
m∑
i=1

xk
i , (2.1)

where Y = (y1, · · · , ym)T =
∑
k

Xk is a sufficient statistic. It is easily seen that

E(Xk) = π, Var(Xk) = Φ, Φ = g − ππT , (2.2)

where π = (π1, · · · , πm)T , g = diag(π1, · · · , πm). Let the log likelihood of X be l(π) =

log[P (x, π)]. Then the score function l̇ and the observed information −l̈ of X for model

(2.1) satisfy

l̇(π) = g−1Y, −l̈(π) = g−2diag(y1, · · · , ym),

whereY = (y1, · · · , ym)T . In what follows, dots over the functions will denote the derivatives.

Note that since there is constraint on π:
∑
i

πi = 1, equations E[l̇(π)] = 0 and E[−l̈(π)] =

Var[l̇(π)] do not hold. This is not the regular case. Now we assume that for model (2.1),

π is a function of a vector parameter θ = (θ1, · · · , θp)T of interest (p ≤ m − 1). This is a

commonly encountered situations (see, for example, [6] and [1]). In this case, model (2.1)

can be denoted by

P (x, π(θ)) =
m∏
i=1

{πi(θ)
yi}, (2.3)

π = π(θ),
m∑
i=1

πi(θ) = 1. (2.4)

Our discussions will be based on this model. We assume that π(θ) is thrice continuously

differentiable with respect to θ in some neighborhood Θ◦ of parameter space Θ. The first

two derivatives of π(θ) are denoted by

D(θ) =
∂π

∂θT
, W =

∂2π

∂θ∂θT
,
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where D(θ) is an m × p full rank matrix and W (θ) is an m × p × p array with elements

Dia = ∂πi

∂θa
and Wiab = ∂2πi

∂θa∂θb
respectively, where i = 1, · · · ,m and a, b = 1, · · · , p. By

equation (2.4), D(θ) and W (θ) have the following specific properties:

πT g−1D = 1TD = 0, [πT g−1][W ] = [1T ][W ] = 0, (2.5)

where 1 = (1, · · · , 1)T is an n-vector, [·][·] indicates array multiplication as defined in [4]

(1980). For the sake of simplicity, we denote l(π(θ)) and g(π(θ)) by l(θ) and g(θ) respectively.

Similar notation are used for some other quantities in the rest of this paper. It follows from

(2.3)–(2.5) that the score function l̇(θ) and the observed information -l̈(θ) of X for model

(2.1) satisfy

l̇ = DT g−1(θ)r(θ), E[l̇(θ)] = 0, (2.6)

r(θ) = Y − nπ(θ), (Y − π(θ)) → 0 (a.s.), (2.7)

n− 1
2 r(θ)

L→ N(0,Φ), Φ = g − ππT as n → ∞,

where Y = n−1Y, “a.s.” denotes the convergence almost surely, “L” denotes the conver-

gence by law. Thus from the above equations we have

−l̈(θ) = nDT g−1D − [rT g−1][W − Γ], (2.8)

Γ = DT g−1Gg−1D, (2.9)

where G is an m×m×m array with Giii = πi and zeros elsewhere.

Now let θ̂ be the maximum likelihood estimate of θ based on X. We assume that -l̈(θ)

is positive definite in a neighborhood Θ◦ of θ̂ in Θ. It follows from equations (2.6) that θ̂

satisfies

DT (θ̂)g−1(θ̂)r(θ̂) = 0. (2.10)

The geometric interpretation of (2.10) can be described as follows: In Euclidean space

Rm, the “residual vector” r̂ = r(θ̂) is orthogonal to all column vectors of D(θ̂) with respect

to the matrix g−1(θ̂) inner product.

Now we can introduce a geometric framework for model (2.1) based on this interpretation.

Take π = (π1, · · · , πm)T as a coordinate in Euclidean space Rm. Then zn = nπ(θ) denotes

a p-dimensional surface in Rm, which is denoted by Mn and may be called the solution locus

(see [4]). It is easily seen that the tangent space Tθ of Mn at θ is spanned by the columns of

D(θ). For any two vectors a and b in Rm, we define an inner product as ⟨a, b⟩ = aT g−1(θ)b.

Under this inner product, the corresponding normal space is denoted by T ′
θ. Now we can

define curvatures for the solution locus z = nπ(θ). To this aim, we choose orthonormal basis

for spaces Tθ and T ′
θ. Suppose that the QR decomposition of D(θ) is given by

D(θ) = (Q,N)

(
R

0

)
= QR,

where R and L = R−1 are p × p nonsingular upper triangular matrices and the columns

of Q and N are orthonormal basis for the tangent space and normal space of solution

locus zn = nπ(θ) at θ in Rm. The matrices Q and N satisfy QT g−1Q = Ip, Q
T g−1N = 0,

NT g−1N = Im−p, where Im and Im−p are identity matrices of order p andm−p respectively.

For the solution locus zn = nπ(θ), we have Dn = ∂(nπ(θ))
∂θT = nD = QRn, Rn = nR;
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Wn = ∂2(nπ(θ))
∂θ∂θT = nW . Denoting Un = (Ln)

TWnLn, where Ln = (Rn)
−1, we define the

intrinsic curvature array AI
n and the parameter-effects curvature array AP

n as follows

AI
n = [NT g−1][Un], AP

n = [QT g−1][Un].

It follows that

AI
n = n−1AI , AP

n = n−1AP , (2.11)

AI =[NT g−1][U ], AP = [QT g−1][U ], (2.12)

where U = LTWL. AI and AP are curvature arrays for the surface z = π(θ). If the sample

size n is fixed, the solution locus zn = nπ(θ) can be regarded as a similar transformation

of the surface z = π(θ). It is easy to see from (2.5) that the unit vector π(θ) is always in

normal space T ′
θ. Then we can set N = (π(θ), N1), π

T g−1N1 = 0.

By (2.10), the residual vector r̂ is in normal space of solution locus at θ̂ so that r̂ can be

represented as

r̂ = Y − nπ(θ̂) = nN(θ̂)λ̂ , Y − π(θ̂) = N(θ̂)λ̂, (2.13)

where nλ̂ is the coordinate of r̂ in normal space in which the columns of N(θ̂) are an

orthonormal basis. So we may extend (2.13) in following way (see [15]).

Let u be an arbitrary point in Rm by the solution locus Mn. Then under some conditions

there exists a point nπ(θ) on Mn such that u − nπ(θ) = nN(θ)λ. Denoting ω = (θ, λ),

ω̂ = (θ̂, λ̂), ω◦ = (θ, 0), we have

u = nh(ω) = nπ(θ) + nN(θ)λ,

Y = h(ω̂) = h(θ̂, λ̂), π(θ) = h(ω0) = h(θ, 0). (2.14)

In this paper, we suppose that the following conditions hold:

(A) λ is defined on an open set Λ which contains λ = 0. Denote the closure of Λ by Λ.

(B) π(θ) and N(θ) are continuous on Θ and thrice differentiable with respect to θ in Θ

and ∂h(ω)/∂ωT is a nonsingular matrix.

Under the above assumptions, ω can be uniquely represented as ω = g(u), where g(·) is
the inverse function of h(·). In particular, we have

ω̂ = g(Y), ω0 = g(π(θ)). (2.15)

It follows from (2.7) that

(θ̂, λ̂) → (θ, 0), (a.s.) as n → ∞.

Lemma 2.1. Let F = (Fvia) =
∂Niv

∂θa
and N = (Niv) (i = 1, · · · ,m; a = 1, · · · , p; v =

1, · · · ,m− p). Then under the conditions stated above we have

DT g−1F = −RT ÃIR, (2.16)

ÃI = AI − ΓI , ΓI = [NT g−1][LTΓL]. (2.17)

Proof. Denote D = (Dia). Then DT g−1N = 0, which implies
m∑
i=1

DiaNivπ
−1
i = 0
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for any a and v. Differentiating these equations with respect to θ and denoting W = (Wiab)

give
m∑
i=1

(WiabNivπ
−1
i +DiaFvibπ

−1 − π2
iDiaDibNiv) = 0,

this equation implies

[NT g−1][W ] +DT g−1F − [NT g−1][DT g−1Gg−1D] = 0.

Thus we obtain

DT g−1F = −R(AI − ΓI)R.

Note that Ã = AI − ΓI is also an intrinsic curvature. In fact, let γi(θ) = logπi(θ),

(i = 1, · · · ,m) , γ(θ) = (γ1(θ), · · · , γm(θ))T , then γ(θ) can be regarded as the dual parameter

of π(θ) (see [5]). Now take γ as a coordinate in Rm and define an inner product for any two

vectors a and b as ⟨a, b⟩ = aT gb. The solution locus Mγ is defined as γ = γ(π(θ)) in this

space. Then the tangent space of Mγ at θ is spanned by columns of Dγ = ∂γ/∂θT . We can

define curvature arrays as follows. Suppose that the QR decomposition of Dγ with respect

to above inner product is Dγ = (Qγ , Nγ)(R
T
γ , 0) = QγRγ which satisfies QT

γ gQγ = Ip,

QT
γ gNγ = 0, NT

γ gNγ = In−p respectively. Then AI
γ and AP

γ are respectively defined as

AI
γ = [NT

γ g][Uγ ], AP
γ = [QT

γ g][Uγ ], Uγ = LT
γWγLγ ,

where Lγ = R−1
γ and Wγ = ∂2γ

∂θ∂θT . By direct calculations we have

Dγ = g−1D, Wγ = [g−1][W − Γ], Qγ = g−1Q,

Rγ = R, Nγ = g−1N, Uγ = [g−1][U − LTΓL].

Therefore the curvature arrays AI
γ and AP

γ can be expressed as

AI
γ = ÃI = AI − ΓI , ΓI = [NT g−1][LTΓL],

AP
γ = AP − ΓP , ΓP = [QT g−1][LTΓL]. (2.18)

§3. Sequential Estimation and Stochastic Expansions

Sequential estimation procedures can be defined in two stages (a) definition of a stopping

rule, and (b) definition of the estimation procedure once the stopping rule is determined.

Following [8] and [9], we adopt a stopping rule by which the random sample size n satisfies

Eθ(n) = Kν1(π(θ)) +O(1),

where K is a large number playing the role of the average number of observations and ν1(·)
is a smooth positive scalar function (see [7],[8] and [9]). Similar to [9], we assume that the

number n of observations is determined by our stopping rule such that

n(K) = Kν1(Y) + c1(Y) + ε

holds, where c1(Y) is a function of order 1 and ε is a small order term asymptotically

independent of Y satisfying E(ε) = o(1).

By equation (2.14) and assumptions stated above, n(K) can be represented as

n(K) = Kν(θ̂, λ̂) + c(θ̂, λ̂) + ε, (3.1)
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where ν(θ̂, λ̂) = ν1(h(θ̂, λ̂)) and c(θ̂, λ̂) = c1(h(θ̂, λ̂)) and θ̂ is the maximum likelihood

estimator of θ.

From geometric point of view, when sample size is fixed, the surface zn = nπ(θ) is a similar

transformation of z = π(θ). Thus by (2.11) the curvatures of the surface zn = nπ(θ) are 1/n

of that of z = π(θ). In sequential case, however, the sample size n is a random variable so that

the surface zn = nπ(θ) is the conformal transformation of z = π(θ) and it is possible from

geometrical viewpoint to determine n such that the sequential estimation procedure has some

better properties which are generally impossible for nonsequential estimation procedure.

By (2.1) and (2.7), r(θ) can be represented as

r(θ) =
n∑

i=1

Ti =
n∑

i=1

(Xi − π(θ)). (3.2)

It is easy to see from Wald identity[10] that

E(r) = 0, Var(r) = Kν[π +O(K−1)], (3.3)

J(X) = E[−l̈(θ)] = Kν[DT g−1D +O(K−1)]. (3.4)

Lemma 3.1. Under the assumptions stated above we have

K−1n(K)
p→ ν(θ, 0) and e = [Kν(θ, 0)]−

1
2 r

L→ N(0,Φ) (3.5)

as K → ∞ , where “p” denotes the convergence in probability.

Proof. Let Ω = {X = (X1, · · · ,Xn, · · · , ): inf
X
[ν(θ̂, λ̂)] ≥ 0}. It follows from (2.7) and

(2.14) that

Y → π(θ) (a.s.), ν(θ̂, λ̂) → ν(θ, 0) > 0 (a.s.) as n → ∞,

which implies that Pθ(Ω) = 1. Hence it is easy to see from (3.1) that n(K) → ∞ and

K−1n(K)
p→ ν(θ, 0) as K → ∞. Then we obtain (3.5) by using Lemma 4.3.6 in [11].

It is easily seen from (3.5) that

e = Op(1), (Kν)
1
2 [Y − π(θ)] = Op(1),

and it follows from (2.15) that

(θ̂, λ̂)− (θ, 0) = g(Y)− g(π(θ)) = Op(K
− 1

2 ),

∆θ = (Kν)
1
2 (θ − θ̂) = Op(1), λ = (Kν)

1
2 λ̂ = Op(1).

Now we derive the stochastic expansions for the sequential ML estimator θ̂ from geomet-

rical viewpoint.

Theorem 3.1. Under the assumptions stated above, the second order expansion of θ̂ may

be given by

∆θ = (Kλ)−
1
2Lτ +(Kλ)−1L{[ηT ][ÃI ]τ − 1

2
τTAP τ − (τT s̄1)τ − (ηT s2)τ}+Op(K

− 3
2 ), (3.6)

where τ = QT g−1e and η = NT g−1e are uncorrelated and τ has asymptotically normal

distribution N(0, Ip) ; ηT = (η1, η
T
2 ), η1 = 0 (a.s.) and η2 has asymptotically normal distri-

bution N(0, Im−p−1); s1 = LT s1, s1 = ∂(logν)
∂θ ; s2 = ∂(logν)

∂λ ; all the quantities are evaluated

at (θ, 0).
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Proof. It follows from (3.5) and (2.13) that

e = n(Kν)−
1
2 {Y − π(θ̂) + π(θ̂)− π(θ)}

= n(Kν)−1{N(θ̂)λ+D(θ)∆θ +
1

2
(Kν)−

1
2 (∆θ)TW (∆θ) +Op(K

−1)}.

Expanding N(θ̂) and (3.1) we obtain

N(θ̂) = N(θ) + (Kν)−
1
2F (θ)∆θ +Op(K

−1),

n(Kν)−1 = 1 + (Kν)−
1
2 (∆θ

T
s1 + λ

T
s2) +Op(K

−1). (3.7)

Substituting these two equations into the expression of e gives

e = Nλ+D∆θ + (Kν)−
1
2 [λ

T
][F ]∆θ +

1

2
(Kν)−

1
2 (∆θ)TW (∆θ)

+ (Kν)−
1
2 (∆θ

T
s̄1 + λ

T
s2)(Nλ+D∆θ) +Op(K

−1). (3.8)

Multiplying this equation by QT g−1 and NT g−1 respectively gives

∆θ = Lτ +Op(K
− 1

2 ), λ
T
= η +Op(K

− 1
2 ). (3.9)

Substituting these equations into quadratic terms of (3.8) gives

e = Nλ+D∆θ + (Kν)−
1
2 [ηT ][F ]Lτ +

1

2
(Kν)−

1
2 τTUτ

+ (Kν)−
1
2 (τTLT s1 + ηT s2)(Nη +Qτ) +Op(K

−1).

Multiplying this equation by QT g−1 gives

τ = R∆θ + (Kν)−
1
2 [ηT ][QT g−1F ]Lτ +

1

2
(Kν)−

1
2 (QT g−1)(τTUτ)

+ (Kν)−
1
2 (τTLT s1 + ηT s2)τ +Op(K

−1).

Using (2.12) and (2.16), we can obtain (3.6) from the above equations. The asymptotic

normality of τ and η can be obtained from (3.5). The asymptotic variances of τ and η are

given by

Var(τ) = QT g−1(g − ππT )g−1Q = Ip,

Var(η) = NT g−1(g − ππT )g−1N = Im−p −NT g−1ππT g−1N

= Im−p − diag(1, 0, · · · , 0).

Hence we have Var(η1) = 0, η1 = 0 (a.s.). Similarly, we have Cov(τ, η) = 0 so that τ and η

are asymptotically independent. Then the theorem is proved.

§4. Some Characteristics of Sequential

Estimates Related to Statistical Curvatures

By Theorem 3.1 we have

(1) (Kν)
1
2 (θ̂ − θ) = ∆θ = (DT g−1D)−1DT g−1e + Op(K

− 1
2 ) has asymptotically normal

distribution N(0, (DT g−1D)−1) .

(2) The asymptotic distribution of λ̂ does not depend on θ so that λ̂ is an asymptotic

ancillary statistic.

(3) The bias of MLE θ̂ can be given by

bias(θ̂) = E(θ̂ − θ) = −(2Kν)−1L{tr[AP ] + 2LT s1}+Op(K
− 3

2 ),
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where tr[AP ] = (tr(AP
1 ), · · · ,tr(AP

p ))
T , and Ai is the i-th face of AP (i = 1, · · · , p).

Now we study some asymptotic properties of sequential MLE θ̂ related to the statistical

curvatures.

For our models, the information loss of θ̂ is defined as

∆J(θ̂) = J(X)− J(θ̂),

where J(X) and J(θ̂) are Fisher information matrices of the observed vector X and the

MLE θ̂ respectively. It can be shown that ∆J(θ̂) can be expressed as ([2], [3])

∆J(θ̂) = Eθ

{
Varθ

( ∂l

∂θ

∣∣∣θ̂)}.
Theorem 4.1. Under the assumptions stated above, the information loss of θ̂ may be

given by

∆J(θ̂)≃RTAISR, (4.1)

AIS =

m−p∑
i=2

{(ÃI
i )

2 + s221Ip − 2s2iÃ
I
i }, (4.2)

where ÃI
i is the i-th face of ÃI , and s2i is the i-th component of s2.

Proof. Now we first derive the stochastic expansion for ∂l
∂θ . It follows from (2.6) and

(3.5) that

∂l

∂θ
= DT g−1r = (Kν)

1
2DT g−1e.

The substitution of (3.8) into this equation gives

∂l

∂θ
= (Kν)

1
2DT g−1D∆θ + [λ

T
][DT g−1F ]∆θ +

1

2
DT g−1{(∆θ)TW (∆θ)}

+ (∆θ
T
s1 + λ

T
s2)D

T g−1D∆θ +Op(K
− 1

2 )

= [ηT ][−RT ÃIR]∆θ + s2R
TR∆θ + (Kν)

1
2RTR∆θ

+ (∆θ)T s1R
TR∆θ − 1

2
DT g−1{(∆θ)TW (∆θ)}+Op(K

− 1
2 ).

Substituting this equation into (4.11) gives

Var
( ∂l

∂θ

∣∣∣θ̂) ≃ Var{[ηT ][−RT ÃIR]∆θ + ηT s2R
TR∆θ)|θ̂}

≃ Var
{(m−p∑

i=2

RT ÃI
iR∆θηi

)∣∣∣θ̂}+Var
{(m−p∑

i=2

RTR∆θs2iηi

)∣∣∣θ̂}
− Cov

{(m−p∑
i=2

RT ÃI
iR∆θηi,

m−p∑
i=2

RTR∆θs2iηi

)∣∣∣θ̂}
− Cov

{(m−p∑
i=2

RTR∆θs2iηi,

m−p∑
i=2

RT ÃI
iR∆θηi

)∣∣∣θ̂}
≃

m−p∑
i=2

{RT ÃI
iR∆θ(∆θ)TRT ÃI

iR+RTR∆θ(∆θ)TRTRs22i

−RT ÃI
iR∆θ(∆θ)T s22i −RTR∆θ(∆θ)TRT ÃI

iRs2i}. (4.3)

Substituting (3.9) into this equation we obtain (4.2) and (4.3). So the theorem is proved.
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Theorem 4.1 shows that in the sequential case, the information loss not only depends on

the intrinsic curvature ÃI but also depends on s2 which is determined by the stopping rule

so that it is possible to minimize the loss of information in some sense by adapting a suitable

stopping rule.

Theorem 4.2. The trace of relative loss of information is minimized by the stopping

rule satisfying s2i = ãIi = p−1tr(ÃI
i ), (i = 2, · · · ,m− p).

Proof. From (3.4) and (4.3) we have

Kνtr{∆J(θ̂)J−1(X)} ≃ tr{RTAISR(RTR)−1} ≃ tr(AIS)

=

m−p∑
i=2

{tr(ÃI
i )

2 + ps22i − 2ps2iã
I
i }

=

m−p∑
i=2

{tr(ÃI
i )

2 + p(s2i − ãIi )
2 − p(ãIi )

2}.

Obviously, the trace attains its minimum when s2i = ãIi . This completes the proof.

It can be shown that the loss of information of nonsequential MLE is given by
m−p∑
i=2

tr(ÃI
i )

2.

Hence p(ãIi )
2 corresponds to the information recovered by the sequential estimation. This

shows that the sequential procedure is better than nonsequential procedure for our model

from the viewpoint of reducing loss of information.

Corollary 4.1. If θ is a one-dimensional parameter, then when s2i = tr(ÃI
i ), (i =

2, · · · ,m− 1), the information loss vanishes approximately.

The relationship between the observed information and the expected information is a

commonly concerned problem in statistical inference, which has been studied by Efron[12],

Efron and Hinkley[13], Amari[14], Wei[15] and so on. For our models, let

Ω = (Kν)1/2{−l̈(θ̂)J−1(X)− Ip}θ=θ̂ (4.4)

which can be rewritten as (Kν)1/2{−l̈(θ̂) − J(X)}J−1(X), and represents the relative dif-

ference between the observed information and the expected information of θ contained in

X. For the sake of convenience, let vec[A] be a p2 × k matrix whose i-th column is vec(Ai)

for a k× p× p array A, where vec(Ai) is the vectorization of Ai, i = 1, · · · , k. Then we have

Theorem 4.3. Under the notation and assumptions stated above, vec(Ω) and tr(Ω) are

asymptotically normal and satisfy

vec(Ω)
L−→ N(0,Σ), (4.5)

tr(Ω)
L−→ N(0, σ2), (4.6)

where Σ = V Im−p−1V
T , σ2 = vT Im−p−1v, V = {(L ⊗ RT (vec[ÃI ]) − vec(Ip) ⊗ sT2 }, v =

tr[ÃI ]− ps2, and Im−p−1 = diag(0, 1, · · · , 1) is an (m− p)× (m− p) matrix.

Proof. Expanding (3.1) gives

n = Kν + (Kν)
1
2 sT2 λ+Op(1),

where ν, s2 are evaluated at (θ̂, 0). Hence we have

(Kν)
1
2 {( n

Kν
)Ip − Ip} = sT2 (θ̂, 0)λIp +Op(K

1
2 ). (4.7)



496 CHIN. ANN. OF MATH. Vol.16 Ser.B

Substituting (2.8) and (3.4) into (4.4) gives

Ω = (Kν)
1
2 {( n

Kν
)Ip − (Kν)−1[rg−1][W − Γ](DT g−1D)−1 − Ip}θ=θ̂ +Op(K

− 1
2 ).

From θ̂ − θ = Op(K
− 1

2 ) , we have D(θ̂) = D(θ) +Op(K
− 1

2 ). Similar relations hold for W, g

and Γ. Substituting these and (4.7) into Ω given above we have

Ω = sT2 λIp − [êT g−1][W − Γ]LLT +Op(K
− 1

2 ),

where ê = (Kν)−
1
2 r̂ and it follows from (3.8) that ê = Nλ + Op(K

− 1
2 ). Hence it follows

from (2.12), (2.17) and (3.9) that

Ω = sT2 ηIp −RT [ηT ][ÃI ]LT +Op(K
− 1

2 ), (4.8)

Vec(Ω) = sT2 ηVec(Ip)− (L⊗RTVec([ηT ][ÃI ]) +Op(K
− 1

2 )

= {Vec(Ip)⊗ sT2 − (L⊗RT )(Vec[ÃI ])}η +Op(K
− 1

2 ).

Thus we obtain (4.5) from the asymptotic normality of η.

From (4.8) we have

tr(Ω) = psT2 η − tr([ηT ][ÃI ]) +Op(K
− 1

2 )

= (ps2 − tr[ÃI ])T η +Op(K
− 1

2 ),

which results in (4.6).

Corollary 4.2. If s2i = p−1tr(ÃI
i ) (i = 2, · · · ,m−p), then tr(Ω) ≃ 0(a.s.). In particular,

for a one-dimensional parameter θ, if s2i = ÃI
i (i = 2, · · · ,m− p), then Ω ≃ 0 (a.s.).

This corollary shows that in the sequential case the observed information is approximately

equal to the expected information in some sense while it is generally impossible for the fixed

sample case.

Now we calculate the asymptotic variance of θ̂.

Lemma 4.1. Under the assumptions stated above, we have

E(τaτb) = δab +Op(K
− 1

2 ),

E(τaτbτc) = (Kν)−
1
2 (ΓP

abc +∆s
abc) +Op(K

− 1
2 ), (4.9)

E(τaτbτcτd) = (δabδcd + δacδbd + δadδbc) +Op(K
− 1

2 ) (4.10)

for a, b, c, d = 1, · · · , p, where δab = 1(a = b), δab = 0(a ̸= b), ∆s
abc = s1aδbc+s1bδac+s1cδab,

∆s = (∆s
abc) is a p× p× p array, and ΓP is given in (2.18).

Proof. It is easily seen that for our model the fundamental lemma of [10] holds. It is

similar to Lemma 2.1 of [8] that we have

τ =

n∑
i=1

zi, zi = QT g−1 (X
i − π(θ))

(Kν)
1
2

, (4.11)

E(τaτbτc) = E(n)E(z1az1bz1c) + E(nz1a)E(z1bz1c)

+ E(nz1b)(z1az1c) + E(nz1c)E(z1az1b), (4.12)

where z1a, z1b, and z1c are the components of z1. Denote H = QT g−1. Then the moment-

generating function of z1 is

M(t) =
m∑
i=1

πie
Ai , Ai =

p∑
a=1

(Kν)−
1
2

p∑
a=1

Haita,
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and hence the first four derivatives of M(t) are given by

E(z1a) = M ′(0) =

m∑
i=1

πi
Hai

Kν
1
2

= 0,

E(z1az1b) = M ′′
ab(0) = (Kν)−1

m∑
i=1

πiHaiHbi = (Kν)−1δab,

E(z1az1bz1c) = M
(3)
abc(0) = (Kν)−

3
2

m∑
i=1

πiHaiHbiHci

= (Kν)−
3
2Γp

abc,

E(z1az1bz1cz1d) = M
(4)
abcd(0) = O(K−2).

It follows from E(n) = Kν +Op(1) that

n(Kν)−1 = 1 + (sT1 τ + sT2 η)/(Kν)1/2 +Op(K
−1),

E(nz1a)E(z1bz1c) = δbcE{z1a + (sT1 τz1a + sT2 ηz1a)/(Kν)1/2}+Op(K
−1)

= δbcE
{ p∑

t=1

n∑
i=1

s1tz1tz1a/(Kν)1/2
}
= O(K−1)

= δbc

p∑
t=1

sT1tE(n)E(z1tz1a)/(Kν)1/2 +O(K−1)

= δbc

p∑
t=1

s1tδat/(Kν)1/2 +O(K−1)

= s1tδbc/(Kν)1/2 +O(K−1).

Substituting the above equations into (4.12) gives (4.9) and (4.10) can be obtained by the

derivation similar to the Lemma 2.1 of [8].

Theorem 4.4. Under the assumptions stated above, the asymptotic variance of θ̂ can be

approximately represented as

Var(θ̂) ≃ J−1(X) + J−1(X)∆J(θ̂)J−1(X)

+ (Kν)−2L(Vp + Vs + Vps + V ps)L
T , (4.13)

where

(Vp)ij =
1

2
tr(Ap

iA
p
j −Ap

iΓ
p
j −Ap

jΓ
p
i ),

Vs = (sT1 LL
T s1)Ip + LT s1s

T
1 L− 2[sT1 L][Γ

p +∆s],

Vps = ApLT s1 + (ApLT s1)
T ,

(V ps)ij = −1

2
tr(Ap

i∆
s
j +Ap

j∆
s
i ),

(Vp)ij and (V ps)ij denote the elements of Vp and V ps at (i, j) position; AP
i , Γ

P
i and ∆s

i are

the i−th face of arrays AP , ΓP , and ∆s respectively.

Proof. To calculate Var(θ̂), we use the following well-known formula

Var(θ̂) = E[Var(θ̂|τ)] + Var[E(θ̂|τ)].

By Theorem 3.1, η and τ are asymptotically normal and asymptotically independent. Thus
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from (3.6) we have

Var(θ̂|τ) ≃ (Kν)−2LVar{([ηT ][ÃI ]τ − ηT s2τ)|τ}LT ,

E{Var(θ̂|τ)} ≃ (Kν)−2LAIsL
T ≃ J−1(X)∆J(θ̂)J−1(X).

It follows from (3.6) that

Var{E(θ̂|τ)} = LVar{(Kν)−
1
2 τ − 1

2
(Kν)−1τTApτ − (Kν)−1τT s̄1τ}LT . (4.14)

The element of Cov{τ(Kν)−
1
2 , (−2Kν)−1τTAP τ} at (i, j) is

− 1

2
(Kν)−

3
2E

{ p∑
k=1

p∑
l=1

Ap
jklτiτkτl

}
= −1

2
(Kν)−2

p∑
k=1

p∑
l=1

Ap
jkl(Γ

p
ikl +∆s

ikl) +O(K− 5
2 )

= −1

2
(Kν)−2tr(Ap

jΓ
p
i +Ap

j∆
s
i ) +O(K− 5

2 ).

By similar derivations we can get other terms in (4.14) and the details are omitted here.

Combining all above results, we can get (4.13) to complete the proof of the theorem.

Theorem 4.4 shows that the first term of Var(θ̂) is C-R lower bound and the second term

indicates the relationship between the variance of θ̂ and the information loss of θ̂. This

term depends only on the intrinsic curvature. The other terms of Var(θ̂) depend on the

parameter-effects curvature and the stopping rule.
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