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Abstract

This paper gives the definitions and some properties of ε-directional derivate and ε-subgrad-

ients of cone-convex function. From them, the optimality conditions of local and global optimal
point of unconstrained cone-d.c. programming are gained. At last, the duality theorems of this
programming are presented.
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§1. Introduction

As well known, convex analysis plays more and more important role in the theory of

optimization with a single objective since 1950s. Along with it, the analysis and optimization

of convex function have obtained a great deal of results[1]. As the generalization of the

definition and properties of convex function, tremendous achievements have been made on

the analysis and optimization of the nonconvex function in the last two decades, especially

for the class of so called d.c. function[2]. Because of the particular structure of d.c. function,

the tools and techniques received from convex analysis are quite helpful[3,4,5].

But a lot remains unsolved in this area, such as for the vector-valued functions. In this

paper, we intend to give a discussion about the optimization and duality of vector-valued d.c.

function. Since the analysis of the vector-valued convex function has not widely carried out,

first of all, we should extend some results about convex function to cone-convex function,

as the tools for the discussion of cone-d.c. function.

This paper is organized as follows. Section 2 investigates the concepts of ε-directional

derivate and ε-subgradients of cone-convex function, which can be regarded as the prelimi-

nary of the following sections. Section 3 is devoted to the necessary and sufficient conditions

of local and global optimal point of unconstrained cone-d.c. programming. The duality

theorems of this programming are given in Section 4.
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§2. ε-Directional Derivate and ε-Subgradients of Cone-Convex Function

Assume that all spaces considered in this paper are finite dimensional Euclidean spaces,

and that D is a closed pointed convex cone with nonempty interior. We adopt the definitions

of positive polar cone Do of D, conical orders, (weak) efficient point and ideal point in

ordered vector space (ℜp, D), and D-convex function in [6]. Clearly, f :ℜn → ℜp is a D-

convex function if and only if its D-epigraph D-epif = {(x, y) ∈ ℜn × ℜp|f(x) ≤D y} is a

convex set in ℜn ×ℜp.

We call f :ℜn → ℜp a D-sublinear function, if f(λx) = λf(x), for any λ ∈ [0,+∞); and

f(x1 + x2) ≤D f(x1) + f(x2), for any x1, x2 ∈ ℜn.

Similar to the scalar sublinear function, we can easily prove the following lemma from

the generalized Hahn-Banach Theorem presented in [7].

Lemma 2.1. Suppose that f :ℜn → ℜp is a D-sublinear function. Then for every

x0 ∈ ℜn, there exists T ∈ ℜn×p such that

TTx0 = f(x0) and TTx ≤D f(x), ∀x ∈ ℜn.

For a set Y ⊂ ℜp, y∗ ∈ ℜp is called an order upper-bound of the order upper-bounded

set Y , if y ≤D y∗ for every y ∈ Y . y∗ is called order-supremum of Y , if it is an order

upper-bound of Y , and for every order upper-bound y′ of Y , y∗ ≤D y′. For a set Y without

order upper-bound we define its order-supremum as +∞.

The definitions of order lower-bound, order lower-bounded set and order-infimum are

similar.

The order-supremum is something different from the maximal ideal point of the set Y ,

which is denoted as IMax Y , since the order-supremum is not required to be in the set

whereas the other is.

Obviously, the order-supremum and order-infimum are unique if they exist, and denoted

by supY and infY respectively. But sometimes, even for the order upper(lower)-bounded set,

the order-supremum (infimum) does not exist. The ordered vector space (ℜp, D) is called

the order-complete vector space, if for every order upper(lower)-bounded set in (ℜp, D) there

exists the order-supremum (infimum) of this set.

The space (ℜp, D) is assumed to be the order-complete vector space in this paper.

In [8], we proved that D-convex function f is the locally D-Lipschitz function, which is

defined as: for every x ∈ ℜn, there exist a ball neighbourhood B(x; δ) with radius δ > 0 and

d ∈ D such that

−∥x1 − x2∥d ≤D f(x1)− f(x2) ≤D ∥x1 − x2∥d, ∀x1, x2 ∈ B(x; δ);

d is called the Lipschitz constant.

In the remainder of this section, we make some discussion on the ε-directional derivate

and ε-subgradients of cone-convex function.

Definition 2.1. For a D-convex function f :ℜn → ℜp and ε ∈ ℜp, its ε-directional

derivate f ′
ε:ℜn ×ℜn → ℜp ∪ {+∞,−∞} is defined by

f ′
ε(x; v) = inf

t>0

f(x+ tv)− f(x) + ε

t
.

Obviously, Definition 2.1 is the extension of the direction derivate f ′:ℜn × ℜn → ℜp for



No.4 Yin, Z. W. & Li, Y. X. OPTIMIZATION AND DUALITY OF CONE-D.C. PROGRAMMING 501

D-convex function f , which is presented in [8] as

f ′(x; v) = inf
t>0

f(x+ tv)− f(x)

t
.

In [8], it was proved that the direction derivate can be equivalently defined by

f ′(x; v) = lim
t→0+

f(x+ tv)− f(x)

t
; (2.1)

but it does not hold for the ε-directional derivate.

Theorem 2.1. Let f :ℜn → ℜp be a D-convex function, then for every pair (x; v) ∈
ℜn ×ℜn, f ′

ε exists in ℜp when ε ∈ D; and f ′
ε(x; v) = −∞ otherwise.

Proof. i) ε ∈ D. By the assumption that (ℜp, D) is an order-complete vector space, it

suffices to show that

{
f(x+ tv)− f(x) + ε

t
|t > 0

}
is order lower-bounded. This is imme-

diately from

f(x+ tv)− f(x) + ε

t
=D

f(x+ tv)− f(x)

t
=D f ′(x; v), ∀t > 0,

where f ′(x; v) is in ℜp.

ii)ε /∈ D. Suppose to the contrary that there is y ∈ ℜp, which is the order lower-bound

of

{
f(x+ tv)− f(x) + ε

t
|t > 0

}
. It follows that

y ≤D
f(x+ tv)− f(x)

t
+

1

t
ε, ∀t > 0. (2.2)

Since ε /∈ D and D is a closed convex cone, there is λ ∈ Do with ⟨λ, ε⟩ < 0. Taking inner

product of (2.2) with λ, we have

⟨λ, y⟩ ≤ ⟨λ, f(x+ tv)− f(x)

t
⟩+ 1

t
⟨λ, ε⟩. (2.3)

When t → 0, ⟨λ, f(x+ tv)− f(x)

t
⟩ → ⟨λ, f ′(x; v)⟩ ∈ ℜ. Meanwhile

1

t
⟨λ, ε⟩ → −∞ when

t → 0. Thus

⟨λ, f(x+ tv)− f(x)

t
⟩+ 1

t
⟨λ, ε⟩ → −∞.

It contradicts (2.3).

The proof is completed.

Definition 2.2. For a D-convex function f :ℜn → ℜp, T ∈ ℜn×p is called ε-strong

subgradient (resp. ε-subgradient, ε-weak subgradient) of f at x, if TT v ≤D f ′
ε(x; v) (resp.

TT v ̸≥D f ′
ε(x; v), TT v ̸>D f ′

ε(x; v)). ε-∂sf(x) (resp. ε-∂f(x), ε-∂wf(x)) denotes the set

of ε-strong subgradients (resp. ε-subgradients, ε-weak subgradients) at x, and is called the

ε-strong subdifferential (resp. ε-subdifferential, ε-weak subdifferential) of f at x.

Clearly, Definition 2.2 is the extension of the subdifferential ∂sf(x), ∂f(x) and ∂wf(x) of

D-convex function f , which are defined by TT v ≤D f ′(x; v), TT v ̸≥D f ′(x; v) and TT v ̸>D

f ′(x; v) respectively (see [8]).

Immediately from the definition, we have the following theorem.

Theorem 2.2. For a D-convex function f :ℜn → ℜp,

T ∈ ε-∂sf(x
0) if and only if TT (x− x0) ≤D f(x)− f(x0) + ε, ∀x ∈ ℜn;

if T ∈ ε-∂f(x0), then TT (x− x0) ̸≥D f(x)− f(x0) + ε, ∀x ∈ ℜn;
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if T ∈ ε-∂wf(x
0), then TT (x− x0) ̸>D f(x)− f(x0) + ε, ∀x ∈ ℜn.

Next, we discuss the relation between the ε-directional derivate and ε-subdifferentials.

Suppose that h:ℜn → ℜp is a D-convex function satisfying h(0) =D 0. Let H =∪
λ>0

D-epih

λ
∪{(0, 0)}, and g:ℜn → ℜp be defined by g(x) = inf{µ|(x, µ) ∈ H}. The

following lemma holds.

Lemma 2.2. g(0) = 0, and g(x) = inf
λ>0

h(λx)

λ
for x ∈ ℜn\{0}.

Proof. i) If x = 0, (0, µ) ∈
∪
λ>0

D-epih

λ
implies that there is λ > 0 such that (0, λµ) ∈

D-epih, i.e.,

µ =D
h(0)

λ
=D 0.

It follows from (0, 0) ∈ H that g(0) = 0.

ii) If x ∈ ℜn\{0}, (x, µ) ∈ H implies that there is λ > 0 such that (λx, λµ) ∈ D-epih,

that is, µ =D h(λx)/λ. Thus

g(x) =D inf
λ>0

h(λx)

λ
.

On the other hand, (λx, h(λx)) ∈ D-epih for any λ > 0. Then h(λx)/λ ∈ {µ|(x, µ) ∈ H}.
This means that

inf
λ>0

h(λx)

λ
=D g(x).

Therefore g(x) = inf
λ>0

h(λx)

λ
.

By Lemma 2.2, g(x) is a positively homogeneous function. Let Hx = {µ|(x, µ) ∈ H}.
Since H is a convex cone, Hx1 +Hx2 ⊂ Hx1+x2 . So

infHx1 + infHx2 =D infHx1+x2 .

It means that g is a D-sublinear function.

Theorem 2.3. Let f :ℜn → ℜp be a D-convex function. Then

f ′
ε(x

0; v0) = IMax{TT v0|T ∈ ε-∂sf(x
0)}, f ′

ε(x
0; v0) ∈ Max{TT v0|T ∈ ε-∂f(x0)},

and f ′
ε(x

0; v0) ∈ WMax {TT v0|T ∈ ε-∂wf(x
0)} for every pair (x0; v0) ∈ ℜn×ℜn and ε ∈ D.

Proof. Let h(v) = f(x0+v)−f(x0)+ ε. Then h is a D-convex function with h(0) =D 0.

It follows that f ′
ε(x

0; v) = inf
λ>0

h(λv)

λ
and f ′

ε(x
0; 0) = 0. From the discussion above, f ′

ε(x
0; ·)

is a D-sublinear function.

Then from Lemma 2.1 there exists T 0 ∈ ℜn×p such that

(T 0)T v0 = f ′
ε(x

0; v0) and (T 0)T v ≤D f ′
ε(x

0; v), ∀v ∈ ℜn.

It means that T 0 ∈ ε-∂sf(x
0). Since TT v0 ≤D f ′

ε(x
0; v0) for any T ∈ ε-∂sf(x

0), f ′
ε(x

0; v0) =

IMax{TT v0|T ∈ ε-∂sf(x
0)}.

Notice that ε-∂sf(x) ⊂ ε-∂f(x) and TT v0 ̸≥D f ′
ε(x

0; v0) when T ∈ ε-∂f(x). It is imme-

diate that f ′
ε(x

0; v0) ∈ Max{TT v0|T ∈ ε-∂f(x0)}.
Analogously, f ′

ε(x
0; v0) ∈ WMax{TT v0|T ∈ ε-∂wf(x

0)}.
The following corollary can be got by taking ε = 0 in Theorem 2.3.
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Corollary 2.1. Let f :ℜn → ℜp be a D-convex function. Then

f ′(x0; v0) = IMax{TT v0|T ∈ ∂sf(x
0)}, f ′(x0; v0) ∈ Max{TT v0|T ∈ ∂f(x0)},

and f ′(x0; v0) ∈ WMax {TT v0|T ∈ ∂wf(x
0)} for every pair (x0; v0) ∈ ℜn ×ℜn.

It is known from Theorem 2.1 that

ε-∂sf(x) = ε-∂f(x) = ε-∂wf(x) = ∅

when ε /∈ D. Theorem 2.3 shows that ε-∂sf(x), ε-∂f(x) and ε-∂wf(x) are all nonempty

sets, for ε ∈ D.

The succeeding theorem shows the relation of the function value and ε-directional derivate.

Theorem 2.4. let f :ℜn → ℜp be a D-convex function. Then

f(x+ v)− f(x) = sup
ε∈D

(f ′
ε(x; v)− ε).

In order to prove this theorem, the D-convex function f :ℜn → ℜp ∪ {+∞} is concerned,

and domf ⊂ ℜn denotes the effective domain of f , i.e., {x ∈ ℜn|f(x) <D +∞}. The concept
of strong conjugate function of f is given below.

Definition 2.3. For a D-convex function f :ℜn → ℜp ∪ {+∞}, its strong conjugate

function f∗
s :ℜn×p → ℜp ∪ {+∞} is defined by

f∗
s (T ) = sup{TTx− f(x)|x ∈ ℜn}.

The strong conjugate function of f∗
s , f

∗∗
s :ℜn → ℜp ∪ {+∞}, defined by

f∗∗
s (x) = sup{TTx− f∗

s (T )|T ∈ ℜn×p}

is called the strong biconjugate function of f .

Similar to the scalar function, we can also prove that

f∗∗
s (s) = f(x) for every x ∈ int(domf). (2.4)

Proof of Theorem 2.4. Define σv : ℜ1 → ℜp ∪ {+∞} by

σv(µ) =


µ(f(x+ v/µ)− f(x)), µ > 0,

lim
δ→0+

δ(f(x+ v/δ)− f(x)), µ = 0,

+∞, µ < 0.

For any µ1, µ2 > 0 and λ1, λ2 ∈ [0, 1] with λ1 + λ2 = 1,

f
(
x+

v

λ1µ1 + λ2µ2

)
= f

( λ1µ
1

λ1µ1 + λ2µ2

(
x+

v

µ1

)
+

λ2µ
2

λ1µ1 + λ2µ2

(
x+

v

µ2

))
≤D

λ1µ
1

λ1µ1 + λ2µ2
f
(
x+

v

µ1

)
+

λ2µ
2

λ1µ1 + λ2µ2
f
(
x+

v

µ2

)
,

thus,

(λ1µ
1 + λ2µ

2)
(
f
(
x+

v

λ1µ1 + λ2µ2

)
− f(x)

)
≤D λ1µ

1
(
f
(
x+

v

µ1

)
− f(x)

)
+ λ2µ

2
(
f
(
x+

v

µ2

)
− f(x)

)
.
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Since D is a closed cone, σv is a D-convex function.

σ∗
v(ε̄) = sup{µε̄− σv(µ)|µ ∈ ℜ} = sup

µ>0
{µε̄− σv(µ)}

= sup
µ>0

{µ(ε̄− f(x+ v/µ) + f(x))}

= − inf
µ>0

{µ(f(x+ v/µ)− f(x)− ε̄)} = −f ′
−ε̄(x; v).

Obviously 1 ∈ int(domσv). By (2.4), one has σv(1) = σ∗∗
v (1). So

f(x+ v)− f(x) = sup{ε̄− (−f ′
−ε̄(x; v)|ε̄ ∈ ℜp}.

Let ε = −ε̄, f(x+ v)− f(x) = sup{f ′
ε(x; v)− ε|ε ∈ ℜp}. It follows from Theorem 2.1 that

f(x+ v)− f(x) = sup
ε∈D

{f ′
ε(x; v)− ε}.

§3. Optimality Condition for Unconstrained Cone-D.C. Programming

Definition 3.1. f :ℜn → ℜp is called a D-d.c. function (difference of two D-convex

functions), if there exist D-convex functions g, h:ℜn → ℜp such that

f(x) = g(x)− h(x), ∀x ∈ ℜn.

D-d.c. function is a large class of the vector functions. For example, D-convex function

and D-concave function are D-d.c. functions; and f = (f1, · · · , fp)T :ℜn → ℜp is ℜp
+-

d.c. function, where fi is an indefinite quadratic function. In this section, we discuss the

necessary and sufficient conditions for local and global optimal points of unconstrained D-

d.c. programming.

As mentioned above, the D-convex function is a locally D-Lipschitz function. Then it is

easy to verify that D-d.c. function is also a D-Lipschitz function.

Before we go further, some definitions are presented. First, from (2.1) it can be derived

that the directional derivate of D-d.c. function is well-defined, and

f ′(x; v) = g′(x; v)− h′(x; v), ∀(x; v) ∈ ℜn ×ℜn.

Next, we give another kind of the concepts of subgradient, ε-subgradient and conjugate

mapping of D-convex function.

Definition 3.2. For a D-convex function f :ℜn → ℜp, T ∈ ℜn×p is called the subgradient

of f at x0, if TT (x − x0) ̸≥D f(x) − f(x0) for any x ∈ ℜn. The set of all subgradients is

denoted as ∂̃f(x0).

Of course, ∂̃sf(x
0), ∂̃wf(x

0) can be defined as well. But it is easy to verify that they are

equal to ∂sf(x
0), ∂wf(x

0) respectively; and ∂f(x0) ⊂ ∂̃f(x0).

Definition 3.3. T ∈ ℜn×p is called the ε-subgradient (ε-weak subgradient) of a D-convex

function f :ℜn → ℜp at x0, if

TT (x− x0) ̸≥D f(x)− f(x0) + ε(TT (x− x0) ̸>D f(x)− f(x0) + ε)

for any x ∈ ℜn. The set of them is denoted by ε-∂̃f(x0) (ε-∂̃wf(x
0)).

Immediately from Theorem 2.2, ε-∂f(x0) ⊂ ε-∂̃f(x0) and ε-∂wf(x
0) ⊂ ε-∂̃wf(x

0).

Definition 3.4. The conjugate mapping f∗:ℜn � ℜp (weak conjugate mapping f∗
w:ℜn �

ℜp) of D-convex function f is a set-valued mapping defined by f∗(T ) = Max{TTx−f(x)|x ∈
ℜn} (f∗

w(T ) = WMax{TTx− f(x)|x ∈ ℜn}).
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Apparently, T ∈ ∂̃f(x0) if and only if TTx0 − f(x0) ∈ f∗(T ), and T ∈ ∂wf(x
0) if and

only if TTx0 − f(x0) ∈ f∗
w(T ).

Definition 3.5. Let A,B be two subsets in ℜn×p, their star-difference A∗B is defined by

A∗B = {T ∈ ℜn×p|T +B ⊂ A}.
Now we consider the optimization of the following unconstrained D-d.c. programming:

(P):
D-min f(x)− g(x)

s.t. x ∈ ℜn;

where f, g:ℜn → ℜp are D-convex functions.

Theorem 3.1 (Necessary Condition of Local Efficient Solution). If x0 is a local efficient

solution of (P), then 0 ∈ ∂̃f(x0)∗∂sg(x0).

Proof. If x0 is a local efficient solution of (P), then there is a neighbourhood B(x0, ε)

such that

f(x)− f(x0) ̸≤D g(x)− g(x0), ∀x ∈ B(x0, ε).

For any T ∈ ∂sg(x
0), i.e., TT (x− x0) ≤D g(x)− g(x0), it is immediate that

f(x)− f(x0) ̸≤D TT (x− x0), ∀x ∈ B(x0, ε).

Notice that, for every x ∈ ℜn, there is δ > 0 sufficiently small such that δx+ (1− δ)x0 ∈
B(x0, ε). It is easy to verify that f(x) − f(x0) ̸≤D TT (x − x0) by the D-convexity of f .

Thus T ∈ ∂̃f(x0).

It means that 0 ∈ ∂̃f(x0)∗∂sg(x0).

Obviously, for the local weak efficient solution of x0, the necessary condition is: 0 ∈
∂wf(x

0)∗∂sg(x0). Then by Corollary 2.1, f ′(x0; v) − g′(x0; v) ̸<D 0 for any v ∈ ℜn\{0},
which has been got in [9].

Theorem 3.2 (Sufficient Condition of Local Efficient Solution). If 0 ∈ int[∂f(x0)∗∂s
g(x0)], then x0 is a local strict efficient solution of (P), that is, f(x0)−g(x0) ̸=D f(x)−g(x),

∀x ∈ B(x0, ε)\{x0} for some ε > 0.

Proof. From the assumption, there exists δ > 0 such that B(0, δ) + ∂sg(x
0) ⊂ ∂f(x0).

We claim that g′(x0; v) ̸=D f ′(x0; v) for every v ∈ ℜn\{0}.
In fact, if there is v ∈ ℜn\{0} such that g′(x0; v) =D f ′(x0; v), by Corollary 2.1 there is

T ∈ ∂sg(x
0) with TT v = g′(x0; v). Take d ∈ D\{0}. Let T̃ = vdT . Then T̃T v ∈ D\{0}.

When λ > 0 is sufficiently small, T ′ = λT̃ ∈ B(0, δ) and (T ′)T v ≥D 0. It follows that

T + T ′ ∈ ∂f(x0) and (T + T ′)T v ≥D f ′(x0; v).

This contradicts f ′(x0; v) ∈ Max{TT v|T ∈ ∂f(x0)}.
Therefore (f − g)′(x0; v) ̸≤D 0, for any v ∈ ℜn\{0}.
If the conclusion fails, then there is a sequence {xi|i = 1, 2, · · · } with xi ̸= x0 such that

f(xi)− g(xi) ≤D f(x0)− g(x0) and xi → x0.

When i is sufficiently large,
(f − g)(xi)− (f − g)(x0)

∥xi − x0∥
∈ (d−D)∩(−d+D) where d is the

Lipschitz constant of (f−g). Since

∥∥∥∥ xi − x0

∥xi − x0∥

∥∥∥∥ = 1 and (d−D)∩(−d+D) is a bounded set,

assume without loss of generality that
xi − x0

∥xi − x0∥
→ v̄ ̸= 0 and

(f − g)(xi)− (f − g)(x0)

∥xi − x0∥
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converges to a point in −D. Notice that

−
∥∥∥∥v̄ − (xi − x0)

∥xi − x0∥

∥∥∥∥ d ≤D
(f − g)(x0 + ∥xi − x0∥v̄)− (f − g)(xi)

∥xi − x0∥

≤D

∥∥∥∥v̄ − (xi − x0)

∥xi − x0∥

∥∥∥∥ d.
One has

(f − g)′(x0; v̄) = lim
i→∞

(f − g)(x0 + ∥xi − x0∥v̄)− (f − g)(x0)

∥xi − x0∥

= lim
i→∞

(f − g)(xi)− (f − g)(x0)

∥xi − x0∥
≤D 0,

a contradiction. The proof is completed.

Theorems 3.1 and 3.2 are the extensions of the corresponding ones of the scalar d.c.

function, they are the same as the optimality conditions in [2] when p = 1. Next, we give

the necessary and sufficient conditions for the global optimal point.

Theorem 3.3. (Necessary Condition of Global Efficient Solution). If x0 is an efficient

solution of (P), then 0 ∈ ε-∂̃f(x0)∗ε-∂sg(x0) for any ε ∈ D.

Proof. From the assumption, f(x)− f(x0) + ε ̸≤D g(x)− g(x0) + ε, ∀x ∈ ℜn.

For any T ∈ ε-∂sg(x
0), TT (x− x0) ≤D g(x)− g(x0) + ε. Thus,

TT (x− x0) ̸≤D f(x)− f(x0) + ε, ∀x ∈ ℜn.

It means T ∈ ε-∂̃f(x0).

Then 0 ∈ ε-∂̃f(x0)∗ε-∂sg(x0).

Theorem 3.4 (Sufficient Condition of Global Efficient Solution). If for every v ∈ ℜn

there is zv ̸≥D 0 such that g′ε(x
0; v) − f ′

ε(x
0; v) ∈ zv − D for any ε ∈ D, then x0 is an

efficient solution of (P).

Proof. By the assumption, it is immediate that sup
ε∈D

(g′ε(x
0; v)− f ′

ε(x
0; v)) ≤D zv. Since

sup
ε∈D

(g′ε(x
0; v)− ε)− sup

ε∈D
(f ′

ε(x
0; v)− ε) ≤D sup

ε∈D
(g′ε(x

0; v)− ε− f ′
ε(x

0; v) + ε) ≤D zv

and zv ̸≥D 0,

sup
ε∈D

(g′ε(x
0; v)− ε) ̸≥D sup

ε∈D
(f ′

ε(x
0; v)− ε).

By Theorem 2.4, it implies that

f(x0)− g(x0) ̸≥D f(x0 + v)− g(x0 + v), ∀v ∈ ℜn.

Thus x0 is the efficient solution.

Theorem 3.3 guarantees that 0 ∈ ε-∂̃f(x0)∗ε-∂sg(x0) for the efficient solution. If stronger

condition holds: 0 ∈ ε-∂f(x0)∗ε-∂sg(x0), it can be concluded that

g′ε(x
0; v) ̸≥D f ′

ε(x
0; v), ∀ε ∈ D, v ∈ ℜn, (3.1)

by Theorem 2.3. On the other hand, the assumption of Theorem 3.4 implies that

sup
ε∈D

(g′ε(x
0; v)− f ′

ε(x
0; v)) ̸≥D 0, ∀v ∈ ℜn,

which is stronger than (3.1). But in scalar case they are equivalent. So

ε-∂g(x0) ⊂ ε-∂f(x0), ∀ε = 0
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is the necessary and sufficient condition of the optimal solution of the unconstrained d.c.

programming. It is the main result of [3].

It seems that the assumption of Theorem 3.4 is too strong. But it does have unconstrained

cone-d.c. programming satisfying the assumption. Here is an example.

Example. The cone-d.c. programming is

ℜ2
+-min f(x)− g(x) =

(
(x)2 + 2x

−2x

)
−

(
|x|
|x|

)
.

Consider x0 = 0. It is clear that g′ε(0; v) = (|v|, |v|)T and

f ′
ε(0; v) =

(
2x+ 2

√
ε1|v|

−2v

)
.

Consequently,

g′ε(0; v)− f ′
ε(0; v) =

(
|v| − 2v − 2

√
ε1|v|

|v|+ 2v

)
≤D

(
|v| − 2v
|v|+ 2v

)
,

where

(
|v| − 2v
|v|+ 2v

)
̸≥D 0.

It satisfies the assumption of Theorem 3.4 for zv =

(
|v| − 2v
|v|+ 2v

)
, therefore x0 = 0 is an

efficient solution.

§4. Duality of Unconstrained Cone-D.C. Programming

Toland has developed the Toland’s duality for the unconstrained scalar d.c. programming

in [4,5], etc. In this section, we extend it to cone-d.c. programming.

Theorem 4.1. If x0 is a local efficient solution of (P), then

f(x0)− g(x0) ∈ Min{g∗s (T )− f∗(T )|T ∈ ∂sg(x
0)}.

Proof. i) For T ∈ ∂sg(x
0), g∗s (T ) = TTx0 − g(x0). By the assumption and Theorem 3.1,

T ∈ ∂̃f(x0). Thus −TTx0 + f(x0) ∈ −f∗(T ). It implies

f(x0)− g(x0) ∈ g∗s (T )− f∗(T ), ∀T ∈ ∂sg(x
0).

ii) Suppose that there exists T ∈ ∂sg(x
0) and y = TTx− f(x) ∈ f∗(T ) such that

f(x0)− g(x0) ≥D g∗s (T )− y.

Since −g(x0) = g∗s (T )− TTx0, TTx0 − f(x0) ≤D y. This contradicts

TTx0 − f(x0) ∈ f∗(T ) = Max{TTx− f(x)|x ∈ ℜn}.

In sum, f(x0)− g(x0) ∈ Min{g∗s (T )− f∗(T )|T ∈ ∂sg(x
0)}.

Theorem 4.2. If x0 is an efficient solution of (P), then

f(x0)− g(x0) ∈ Min{g∗s (T )− f∗(T )|T ∈ ℜn×p},

and T ∈ ∂sg(x
0) is the efficient solution of the dual programming.

Proof. i) By part i) in the proof of Theorem 4.1,

f(x0)− g(x0) ∈ {g∗s (T )− f∗(T )|T ∈ ℜn×p}.

ii) For any T ∈ ℜn×p,

f(x0)− g(x0) ̸≥D f(x)− g(x) = f(x)− TTx+ TTx− g(x), ∀x ∈ ℜn.
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Hence g∗s (T )− (f(x0)− g(x0)) ̸≤D TTx− f(x). Thus

g∗s (T )− (f(x0)− g(x0)) ̸≤D y, ∀y ∈ f∗(T ) = Max{TTx− f(x)|x ∈ ℜn}.

i) and ii) imply that f(x0)− g(x0) ∈ Min{g∗s (T )− f∗(T )|T ∈ ℜn×p}.
Finally, from part i) in the proof of Theorem 4.1, we draw the conclusion that T ∈ ∂sg(x

0)

is the efficient solution of the dual programming.

Obviously, for the local weak efficient solution x0, we have

f(x0)− g(x0) ∈ WMin{g∗s (T )− f∗
w(T )|T ∈ ∂sg(x

0)};

and for the global weak efficient solution x0,

f(x0)− g(x0) ∈ WMin{g∗s (T )− f∗
w(T )|T ∈ ℜn×p}.

If p = 1, Theorem 4.2 is exactly the Toland’s duality for the unconstrained scalar d.c.

programming.
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