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ALMOST PERIODIC SOLUTIONS OF NEUTRAL

FUNCTIONAL DIFFERENTIAL EQUATIONS

WITH NONAUTONOMOUS OPERATOR**
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Abstract

This paper presents some existence theorems on almost periodic solutions for almost peri-
odic neutral functional differential equation and its perturbed systems by means of Liapunov
functional, and extends the corresponding results in [2,4,5,10,11].
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The existence on almost periodic solutions has been widely investigated. There have been

many theorems on the existence of almost periodic solutions to almost periodic functional

differential equations by means of Liapunov functional (see [2, 4-6, 8, 10-12]). In [11], the

author established some theorems on the existence of almost periodic solutions to NFDE,

neutral functional differential equations, by Liapunov functional (where the operator is au-

tonomous). Up to now, the author has not seen any existence theorems on almost periodic

solutions to NFDE with nonautonomous operator. Using the inherence of stable operator

and the same idea as [11], we can still establish some existence theorems on almost periodic

solutions to NFDE with nonautonomous operator by means of Liapunov functional. Now,

all the theorems are generalization of the theorems of [2, 4, 5, 10, 11].

Consider NFDE
d

dt
D(t)xt = f(t, xt) (1)

and its product systems

d

dt
D(t)xt = f(t, xt),

d

dt
D(t)yt = f(t, yt). (1∗)

We also consider the perturbed systems

d

dt
D(t)xt = f(t, xt) + h(t), (2)

d

dt
D(t)xt = f(t, xt) + ηg(t, xt) (3)
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and its product systems

d

dt
D(t)xt = f(t, xt) + h(t),

d

dt
D(t)yt = f(t, yt) + h(t), (2∗)

d

dt
D(t)xt = f(t, xt) + ηg(t, xt),

d

dt
D(t)yt = f(t, yt) + ηg(t, yt), (3∗)

where h : R → Rn is continuous; f, g : R × C → Rn are continuous and local Lipschitzian

in ϕ; C = C([−r, 0], Rn). We define xt ∈ C by xt(θ) = x(t + θ), θ ∈ [−r, 0] for a given

continuous function x : R→ Rn. For any given norm | · | in Rn, (C, || · ||) is a Banach space

with ||ϕ|| = sup
θ∈[−r,0]

|ϕ(θ)|. D : R → C∗, where C∗ denotes the dual space of C with the

operator norm. For any t ∈ R, we define linear operator D(t) : C → Rn by

D(t)ϕ = ϕ(0)−
∫ 0

−r

[dθµ(t+ θ)]ϕ(θ), ∀ϕ ∈ C,

where µ(t, θ) is an n × n bounded variation matrix function, and there exists a continuous

nondecreasing function l(s), s ∈ [0, r], l(0) = 0, such that∣∣∣∫ 0

−s

[dθµ(t, θ)]
∣∣∣ ≤ l(s) sup

−s≤θ≤0
|ϕ(θ)|, ∀ϕ ∈ C.

We always suppose that D : R→ C∗ is almost periodic (see [7]); the Frechét derivative of

D exists on R (denoted by Ḋ(t)) and is uniformly continuous on R; h(t) is almost periodic;

f, g : R × CH∗ → Rn are almost periodic in t uniformly for ϕ ∈ CH∗ (see [7,9]) and for

α > 0, there is n(α) > 0 such that

|f(t, ϕ)| ≤ n(α), ||ϕ|| < α and (t, ϕ) ∈ R× CH∗ ,

with CH∗ = {ϕ ∈ C; ||ϕ|| < H∗}.
Clearly, for each t ∈ R, D(t) : CH∗ → Rn is a continuous linear operator. Under the

above hypotheses, it is well known that D : R → C∗ is uniformly bounded on R and Ḋ(t)

is also almost periodic (see [7]). So, Ḋ(t) is a bounded operator. Thus, there exists L > 0

such that

||D(t2)−D(t1)|| ≤ L|t2 − t1|.

It is also well known that there is a unique solution xt(σ, ϕ) of (1) through every initial

value (σ, ϕ) ∈ R×CH∗ , the solution xt(σ, ϕ) is continuous in (t, σ, ϕ), and xt(σ, ϕ) exists on

[0,+∞) whenever |xt(σ, ϕ)| ≤ H < H∗ (see [1,3]).

Let C([τ,+∞), Rn) be the set that consists of continuous functions H : [τ,+∞) → Rn,

where τ is a fixed number. For H ∈ C([τ,+∞), Rn), we consider{
D(t)xt = D(σ)ϕ+H(t)−H(σ), t ≥ σ ≥ τ,

xσ = ϕ.
(4)

Let x(σ, ϕ,H)(t), t ≥ σ, denote a solution of (4).

Definition 1[1]. Suppose that H ⊂ C([τ,∞), Rn). We say that the operator D(t) is

uniformly stable with respect to H if there are constants K,M such that for any ϕ ∈ C, σ ∈
[τ,+∞) and H ∈ H, the solution x(σ, ϕ,H) of (4) satisfies

||xt(σ, ϕ,H)|| ≤ K||ϕ||+M sup
σ≤u≤t

|H(u)−H(σ)|. (5)
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Lemma 1[1]. If D(t) is a uniformly stable operator with respect to C([τ,∞), Rn), then

there are positive constants a, b, c, d such that for any h̄ ∈ C([τ,+∞), Rn), σ ∈ [τ,+∞), the

solution x(σ, ϕ, h̄) of the equation

D(t)xt = h̄(t), t ≥ σ, xσ = ϕ

satisfies

||xt(σ, ϕ, h̄)|| ≤ e−a(t−σ)(b||ϕ||+ c · sup
σ≤u≤t

|h̄(u)|) + d · sup
σ≤u≤t

|h̄(u)|, t ≥ σ. (6)

Furthermore, the constants a, b, c, d can be chosen so that for any s ∈ [σ,∞),

||xt(σ, ϕ, h̄)|| ≤ e−a(t−s)(b||ϕ||+ c · sup
σ≤u≤t

|h̄(u)|) + d · sup
s≤σ≤t

|h̄(u)| (7)

for t ≥ s+ r.

Remark 1. Clearly, if the operator D(t) is uniformly stable with respect to C([τ,∞),

Rn), then for any σ ≥ 0, the operator D(t + σ) is also uniformly stable with respect to

C([τ,∞), Rn) with the same numbers K,M, a, b, c, d as Definition 1 and Lemma 1.

Lemma 2[13]. Suppose that D(t) is a uniformly stable operator with respect to H. If

x(t) is a solution of Equation (1), ||xt|| ≤ α, t ∈ R, and
∫ t

0
f(s, xs)ds ∈ H, then for any

t1, t2 ∈ R, we have

||xt2 − xt1 || ≤M · [n(α) + L̄α] · |t2 − t1|.

Here M is the number in (5).

Lemma 3. Suppose that the operator D(t) is uniformly stable with respect to C((−∞,

+∞);Rn), u : R→ Rn is a solution of Equation (1) and ||ut|| ≤ H < H∗ for t ∈ R+. Then

the closure cl{ut; t ∈ R+} is a compact set in C.

Proof. By Lemma 1, ut is uniformly continuous on R+. Take any sequence {utk}, tk
≥ 0. Clearly, the sequence of function {u(tk + θ)} is uniformly bounded and equicontinuous

on [−r, 0]. Hence, cl{ut; t ∈ R+} is a compact set in C by Arzela-Ascoli theorem.

Let AP = {ϕ ∈ C(R,Rn);ϕ(t) is an almost periodic function }. For β > 0 and N > 0,

we set

Bβ,N = {ϕ ∈ AP ||ϕ(t)| ≤ β, t ∈ R; |ϕ(t1)− ϕ(t2)| ≤ N |t1 − t2|
for t1, t2 ∈ R; and mod(ϕ) ⊂ mod(D, f, g)}.

Similar to the proof in [11], we can obtain

Lemma 4. For β > 0 and N > 0, Bβ,N is a compact set in Banach space C0(R,R
n),

where C0(R,R
n) is the set that consists of continuously bounded functions from R into Rn

with supremum norm || · ||∞. Furthermore, if ϕ ∈ Bβ,N and t ∈ R, then g(t, ϕt) ∈ AP and

is bounded uniformly on ϕ ∈ Bβ,N and t ∈ R.

From the condition that g is local Lipschitzian in ϕ and Lemma 3, it follows that there

is a K > 0, such that

|g(t, ϕt)− g(t, ψt)| ≤ K||ϕ− ψ||∞

for any ϕ, ψ ∈ Bβ,N and t ∈ R.

Similar to the proof in [11], we can obtain
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Theorem 1. Suppose that D(t) is uniformly stable with respect to C((−∞,+∞);Rn)

and Equation (1) has a solution ξ(t), |ξt| ≤ H < H∗, t ≥ 0. If ξ(t) is asymptotically almost

periodic (see [2, 5]), then Equation (1) has an almost periodic solution.

Suppose that V : R+ × CH∗ × CH∗ → R+ is continuous. We define the derivative of V

along the solution of Equation (1∗) by

V ′
(1∗)(t, ϕ, ψ) = lim sup

h→o+

1

h
[V (t+ h, xt+h(t, ϕ), yt+h(t, ψ))− V (t, ϕ, ψ)],

where (x(t, ϕ), y(t, ψ)) is a solution of Equation (1∗) through (t, (ϕ, ψ)), ϕ, ψ ∈ CH∗ .

Theorem 2. Suppose that D(t) is uniformly stable with respect to C((−∞,+∞);Rn),

and there is V : R+ × CH∗ × CH∗ → R+ such that

(i) u(|D(t)ϕ−D(t)ψ|) ≤ V (t, ϕ, ψ) ≤ v(||ϕ− ψ||), u, v ∈ CIP, v(0) = 0;

(ii) |V (t, ϕ1, ψ1)− V (t, ϕ2, ψ2)| ≤ L[|D(t)ϕ1 −D(t)ϕ2|+ |D(t)ψ1 −D(t)ψ2|];
(iii) V ′

(1∗)(t, ϕ, ψ) ≤ −c0V (t, ϕ, ψ), for some constant c0 > 0.

If there is a solution ξ(t) of Equation (1) such that |ξt| ≤ H < H∗ for t ≥ t0 ≥ 0, then

Equation (1) has a unique almost periodic solution p(t) which is uniformly asymptotically

stable, and mod(p) ⊂ mod(D, f). Furthermore, if D(t+ω) = D(t) and f(t+ω, ϕ) = f(t, ϕ),

then Equation (1) has an ω-periodic solution.

Proof. Let a, b, c, d be the numbers in Lemma 2. We complete the proof by dividing it

into four steps.

(1) Prove that Equation (1) has an almost periodic solution.

We can assume t0 ≥ 0. Put W1 = cl{ξt; t ≥ 0}. It follows from Lemma 3 that W1 is a

compact set in C. Let α = {αn}, αn → ∞ as n→ ∞, be any sequence. We can suppose that

{αn} is increase (if necessary, take subsequence). Since D(t) and Ḋ(t) are almost periodic

and f(t, ϕ) is almost periodic in t uniformly for ϕ ∈ CH∗ , we can suppose that D(t + αn)

and Ḋ(t + αn) converge uniformly on R as n → ∞ and f(t + αn, ϕ) converges uniformly

on R ×W1 as n → ∞ (if necessary, take subsequence). Thus, for any ϵ > 0 (ϵ < H), there

exists l0 = l0(ϵ,W1) such that when m ≥ k ≥ l0, we have αk ≥ r,

2He−aαk{b+ [l(r) + 1]c} < ϵ/2,

|f(t+ αk, ϕ)− f(t+ αm, ϕ)| ≤
u(ϵ/2d)c0

6L
, (t, ϕ) ∈ R×W1,

||D(t+ αk)−D(t+ αm)|| ≤ u(ϵ/2d)c0

6LM [n(H) + LH]
, t ∈ R,

and

||Ḋ(t+ αk)− Ḋ(t+ αm)|| ≤ u(ϵ/2d)c0
6LH

, t ∈ R.

Now, we consider functional V (t, ξt, ξt+αm−αk
), t ≥ 0,m ≥ k ≥ l0.

V ′(t, ξt, ξt+αm−αk
)

= lim sup
h→0+

1

h
[V (t+ h, ξt+h, ξt+αm−αk+h)− V (t, ξt, ξt+αm−αk

)]

≤ lim sup
h→0+

1

h
[V (t+ h, xt+h(t, ξt), yt+h(t, ξt+αm−αk

))− V (t, ξt, ξt+αm−αk
)]

+ lim sup
h→0+

1

h
[V (t+ h, ξt+h, ξt+αm−αk+h)− V (t+ h, xt+h(t, ξt), yt+h(t, ξt+αm−αk

))]
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≤ −c0V (t, ξt, ξt+αm−αk
) + lim sup

h→0+

L

h
[|D(t+ h)(ξt+h − xt+h(t, ξt))|

+ |D(t+ h)(ξt+αm−αk+h − yt+h(t, ξt+αm−αk
))|]

= −c0V (t, ξt, ξt+αm−αk
)

+ lim sup
h→0+

L

h
|[D(t+ αm − αk + h)ξt+αm−αk+h −D(t+ αm − αk)ξt+αm−αk

]

− [D(t+ h)yt+h(t, ξt+αm−αk
)−D(t)ξt+αm−αk

]

+ [D(t+ h)−D(t+ αm − αk + h)](ξt+αm−αk+h − ξt+αm−αk
)

+ {[D(t+ h)−D(t)]− [D(t+ αm − αk + h)−D(t+ αm − αk)]}ξt+αm−αk
|. (8)

Since ξ(t) is a solution of Equation (1), ξ(t+ αm − αk) is a solution of the system

d

dt
D(t+ αm − αk)wt = f(t+ αm − αk, wt). (9)

Using Remark 1 and Lemma 2, we obtain

||ξt+αm−αk+h − ξt+αm−αk
|| ≤M [n(H) + LH]h.

From (8), it follows that

V ′(t, ξt, ξt+αm−αk
) ≤ −c0V (t, ξt, ξt+αm−αk

) +
u(ϵ/2d)c0

2
.

By using differential inequality, we have

V (t, ξt, ξt+αm−αk
) ≤ e−c0t

[
V (0, ξ0, ξαm−αk

)− u(ϵ/2d)

2

]
+
u(ϵ/2d)

2
, t ≥ 0.

For the above ϵ > 0, there exists T > 0 such that when t > T , we have

e−c0tv(2H) ≤ u(ϵ/2d)

2
.

Thus, when t ≥ T , we have

V (t, ξt, ξt+αm−αk
) ≤ u(ϵ/2d).

It implies that

|D(t)(ξt − ξt+αm−αk
)| ≤ ϵ/2d, t ≥ T.

It follows from (7) that

||ξt − ξt+αm−αk
||

≤ e−aαk{2Hb+ 2H[l(r) + 1]c}+ d sup
t≤u≤t+αk

|D(u)(ξu − ξu+αm−αk
)|

≤ ϵ, ∀t ≥ T,m ≥ k ≥ l0.

In this time, there is an l1 such that for any t ∈ R+ we have t+ αl1 ≥ T . So, we obtain

||ξt+αl1
+αk

− ξt+αl1
+αm || ≤ ϵ, ∀t ∈ R+,m ≥ k ≥ l0.

This implies that η(t) = ξ(t+ αl1) is an asymptotically almost periodic function (see [2,5]).

Clearly, ξ(t) is also an asymptotically almost periodic function. It follows from Theorem 1

that Equation (1) has an almost periodic solution p(t).

(2) Show that p(t) is uniformly stable for t ≥ t0(t0 ∈ R).

Put

Ĥ =

{
H + 1, H∗ = ∞,
H+H∗

2 , H∗ <∞.



524 CHIN. ANN. OF MATH. Vol.16 Ser.B

For any ϵ > 0 (ϵ < Ĥ), we take δ : bδ < ϵ/2 and v(δ) < 1
2u(ϵ/2(c+ d)). For any t0 ∈ R, ϕ ∈

CH∗ : ||ϕ− pt0 || < δ, let x(t) = x(t0, ϕ)(t) be a solution of Equation (1) through (t0, ϕ). Let

β = sup{t; t ≥ t0 and {xs; s ∈ [t0, t)} ⊂ CĤ}. Then

W2 = cl{xt; t ∈ [t0, β)} ∪ cl{pt; t ∈ R}

is a compact set in C by Lemma 3. Since D(t) and Ḋ(t) are almost periodic and f(t, ϕ) is

almost periodic in t uniformly for ϕ ∈ CH∗ , there is τ1, τ1 + t0 ≥ 0, such that

|f(t+ τ1, ϕ)− f(t, ϕ)| ≤ u(ϵ/2(c+ d))c0
12L

, ∀(t, ϕ) ∈ R×W2,

||D(t+ τ1)−D(t)|| ≤ u(ϵ/2(c+ d))c0

12LM [n(Ĥ) + LĤ]
, t ∈ R,

and

||Ḋ(t+ τ1)− Ḋ(t)|| ≤ u(ϵ/2(c+ d))c0

12LĤ
, t ∈ R.

Now
V ′(t+ τ1, xt, pt)

= lim sup
h→0+

1

h
[V (t+ τ1 + h, xt+h, pt+h)− V (t+ τ1, xt, pt)]

≤ lim sup
h→0+

1

h
|[D(t+ h)xt+h(t, xt)−D(t)xt]

− [D(t+ τ1 + h)xt+τ1+h(t+ τ1, xt)−D(t+ τ1)xt+τ1(t+ τ1, xt)|

+ lim sup
h→0+

1

h
|[D(t+ τ1 + h)−D(t+ h)](xt+h − xt)|

+ lim sup
h→0+

1

h
|{[D(t+ τ1 + h)−D(t+ τ1)]− [D(t+ h)−D(t)]}xt|.

Since x(t) is a solution of Equation (1), we have

||xt+h − xt|| ≤M [n(Ĥ) + LĤ]h, t ∈ [t0, β).

Thus, we have

lim sup
h→0+

1

h
|D(t+ τ1 + h)[xt+h − xt+τ1+h(t+ τ1, xt)]| ≤

u(ϵ/2(c+ d))c0
4L

.

Similarly, we obtain

lim sup
h→0+

1

h
|D(t+ τ1 + h)[pt+h − yt+τ1+h(t+ τ1, pt)]| ≤

u(ϵ/2(c+ d))c0
4L

.

It follows that

V ′(t+ τ1, xt, pt) ≤ −c0V (t+ τ1, xt, pt) +
u(ϵ/2(c+ d))c0

2
. (10)

Using this differential inequality, we obtain

V (t+ τ1, xt, pt)

≤ e−c0(t−t0)
[
V (t0 + τ1, xt0 , pt0)−

u(ϵ/2(c+ d))

2

]
+
u(ϵ/2(c+ d))

2

≤ v(δ) +
u(ϵ/2(c+ d))

2
≤ u(ϵ/2(c+ d)), ∀t ∈ [t0, β).

It imples that

|D(t+ τ1)(xt − pt)| < ϵ/2(c+ d), ∀t ∈ [t0, β).
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By (6) in Lemma 1, we obtain

||xt − pt|| ≤ e−a(t−t0)[b||xt0 − pt0 ||+ c · sup
t0≤u≤t

|D(u+ τ1)(xu − pu)|]

+ d · sup
t0≤u≤t

|D(u+ τ1)(xu − pu)| < ϵ, ∀t ∈ [t0, β).

So, it is easy to know that β = +∞. Thus, we have

|x(t)− p(t)| < ϵ, t ≥ t0.

This implies that p(t) is uniformly stable.

(3) Show that p(t) is quasi-uniformly asymptotically stable for t ≥ t0(t0 ∈ R).

Since p(t) is uniformly stable, there is a δ0 > 0 such that when ||ϕ− pt0 || < δ0,

||xt(t0, ϕ)− pt|| < H(< H∗ −H) for t ≥ t0

by the second step. Put xt = xt(t0, ϕ). Thus,

W3 = cl{xt; t ∈ [t0,∞)} ∪ cl{pt; t ∈ R}

is a compact set in C by lemma. For any ϵ > 0 (ϵ < H), there is τ2, τ2 + t ≥ 0, such that

|f(t+ τ2, ϕ)− f(t, ϕ)| ≤ u(ϵ/2d)c0
12L

, ∀(t, ϕ) ∈ R×W3,

||D(t+ τ2)−D(t)|| ≤ u(ϵ/2d)c0

12LM [n(H +H) + L(H +H)]
, t ∈ R,

and

||Ḋ(t+ τ2)− Ḋ(t)|| ≤ u(ϵ/2d)c0

12L(H +H)
, t ∈ R.

Similar to (10), we can obtain

V ′(t+ τ2, xt, pt) ≤ −c0V (t+ τ2, xt, pt) +
u(ϵ/2d)

2
, t ≥ t0.

Using this differential inequality, we have

V (t+ τ2, xt, pt) ≤ e−c0(t−t0)
[
V (t0 + τ2, xt0 , pt0)−

u(ϵ/2d)

2

]
+
u(ϵ/2d)

2
, ∀t ≥ t0.

Take a T1 > 0 such that it satisfies

e−c0T1v(δ0) <
u(ϵ/2d)

2
and

e−aT1 [bδ0 + c(l(r) + 1)H] < ϵ/2.

Then, when t ≥ t0 + T1, we have

|D(t+ τ2)(xt − pt)| < ϵ/2d.

Let T = 2T1. Hence, when t ≥ t0 + T , we have

||xt − pt|| ≤ e−aT1(b||xt0 − pt0 ||+ c · sup
t0≤u≤t

|D(u+ τ2)(xu − pu)|)

+ d · sup
t0+T1≤u≤t

|D(u+ τ2)(xu − pu)| < ϵ, ∀t ≥ t0 + T.

It implies that

|x(t)− p(t)| < ϵ, t ≥ t0 + T,
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i.e., p(t) is quasi-uniformly asymptotically stable.

(4) From the third step proof, it follows that for any almost periodic solution p̄(t) of

Equation (1), t ∈ R, we have

|p(t)− p̄(t)| → 0, as t→ ∞.

Using the almost periodicity, we obtain

p(t) ≡ p̄(t), ∀t ∈ R.

This means that the almost periodic solution of Equation (1) is unique. Now, we want to

show

mod(p) ⊂ mod(D, f).

Suppose {γk} is any sequence and satisfies the condition that, for any compact W in

CH∗ , f(t+γk, ϕ) converges to f(t, ϕ) uniformly on R×W as k → ∞ and D(t+γk) converges

to D(t) uniformly on R as k → ∞. Since p(t) is an almost periodic solution, there exists

{γkj} ⊂ {γk} such that p(t+ γkj ) is uniformly convergent on R as j → ∞. Put

Q(t) = lim
j→∞

p(t+ γkj ).

Then, Q(t) is an almost periodic function (see [2, 5]). It is easy to show that Q(t) is

a solution of Equation (1) . We obtain Q(t) = p(t) by the uniqueness. It implies that

mod(p) ⊂ mod(D, f) (see [2, 5]).

Clearly, when D(t + ω) = D(t) and f(t + ω, ϕ) = f(t, ϕ) for (t, ϕ) ∈ R × CH∗ , we can

show that Equation (1) has an ω-periodic solution.

Theorem 3. Suppose that D(t) is uniformly stable with respect to C((−∞,∞);Rn), and

there is V : R+ × CH∗ × CH∗ → R+ such that it satisfies the conditions (i) and (iii) of

Theorem 2 and

(ii)’ |V (t, ϕ1, ψ1) − V (t, ϕ2, ψ2)| ≤ L|[D(t)ϕ1 − D(t)ϕ2] − [D(t)ψ1 − D(t)ψ2]|, for some

constant L > 0 on R+ × CH∗ × CH∗ .

Assume that there is a solution ξ(t) of Equation (1) such that ||ξt|| ≤ H < H∗ for all

t ≥ t0 ≥ 0. If u−1(LK/c0)(c+ d) +H ≤ H1 < H∗ (where |h(t)| ≤ K, t ∈ R, and c, d are the

numbers in Lemma 2 ), then Equation (2) has a unique almost periodic solution p(t) which is

uniformly asymptotically stable and mod(p) ⊂ mod(D, f, h). Furthermore, if D(t), f(t, ϕ),

and h(t) are ω-periodic in t, then Equation (2) has an ω-periodic solution.

Proof. Let a, b, c, d be the numbers in Lemma 2. Suppose that (x
(1)
t (t0, ϕ), y

(1)
t (t0, ψ)) is

a solution of Equation (1∗) through (t0, (ϕ, ψ)) and (x
(2)
t (t0, ϕ), y

(2)
t (t0, ψ)) is a solution of

Equation (2∗) through (t0, (ϕ, ψ)). By the condition (ii)’, we have

V ′
(2∗)(t, ϕ, ψ)

= lim sup
h→0+

1

h
[V (t+ h, x

(2)
t+h(t, ϕ), y

(2)
t+h(t, ψ))− V (t, ϕ, ψ)]

≤ lim sup
h→0+

1

h
[V (t+ h, x

(1)
t+h(t, ϕ), y

(1)
t+h(t, ψ))− V (t, ϕ, ψ)]

+ lim sup
h→0+

1

h
[V (t+ h, x

(2)
t+h(t, ϕ), y

(2)
t+h(t, ψ))− V (t+ h, x

(1)
t+h(t, ϕ), y

(1)
t+h(t, ψ))]

≤ −c0V (t, ϕ, ψ), ∀(t, ϕ, ψ) ∈ R+ × CH∗ × CH∗ .

(11)
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It suffices to show that Equation (2) has a solution η(t), |ηt| ≤ H < H∗, on [t0,∞) by

Theorem 2. Let ϕ = ξt0 , ηt = x
(2)
t (t0, ϕ) be the solution of Equation (2) through (t0, ϕ) and

[t0, β) be its maximal existence interval to the right.

V ′(t, ξt, ηt) = lim sup
h→0+

1

h
[V (t+ h, ξt+h, ηt+h)− V (t, ξt, ηt)]

≤ lim sup
h→0+

1

h
[V (t+ h, ξt+h, x

(1)
t+h(t, ηt))− V (t, ξt, ηt)]

+ lim sup
h→0+

1

h
[V (t+ h, ξt+h, ηt+h)− V (t+ h, ξt+h, x

(1)
t+h(t, ηt))]

≤ −c0V (t, ξt, ηt) + LK, ∀t ∈ [t0, β).

By this differential inequality, we obtain

V (t, ξt, ηt) ≤ e−c0(t−t0)
[
V (t0, ξt0 , ηt0)−

LK

c0

]
+
LK

c0
≤ LK

c0
, ∀t ∈ [t0, β).

Thus, we have

u(|D(t)ξt −D(t)ηt|) ≤
LK

c0
, ∀t ∈ [t0, β).

It follows that

||ξt − ηt|| ≤ e−a(t−t0)[b||ξt0 − ηt0 ||+ c · sup
t0≤u≤t

|D(u)(ξu − ηu)|]

+ d · sup
t0≤u≤t

|D(u)(ξu − ηu)|

≤ (c+ d) sup
t0≤u≤t

|D(u)(ξu − ηu)|

≤ u−1(
LK

c0
)(c+ d), ∀t ∈ [t0, β).

It implies

||ηt|| ≤ u−1
(LK
c0

)
(c+ d) +H ≤ H1 < H∗, ∀t ∈ [t0, β).

Clearly, β = +∞.

Theorem 4. Suppose that D(t) is uniformly stable with respect to C((−∞,∞), Rn), and

there is V : R+ × CH∗ × CH∗ → R+ such that it satisfies the condition (ii)’ of Theorem 3,

the condition (iii) of Theorem 2, and

(i)’ M0|D(t)ϕ−D(t)ψ| ≤ V (t, ϕ, ψ) ≤ v(||ϕ− ψ||), v ∈ CIP, v(0) = 0, for some constant

M0 > 0.

If Equation (1) has a solution ξ(t), ||ξt|| ≤ H < H∗, t ≥ t0, then for any β : H < β < H∗

and N > (n(H) + L)M (here M stands for the number in definition), there exists η0 > 0

such that when 0 ≤ η < η0, Equation (3) has a unique solution in Bβ,N . Furthermore, if

D(t), f(t, ϕ), and g(t, ϕ) are ω-periodic in t, then when 0 ≤ η < η0 Equation (3) has an

ω-periodic solution.

Proof. For β > H and N > M [n(H) + L], we first show that there is an η2 > 0 such

that when 0 ≤ η < η2, for any ϕ ∈ Bβ,N , the system

d

dt
D(t)xt = f(t, xt) + ηg(t, ϕt) (12)

has a unique solution in Bβ,N .
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Put C1 = sup{|g(t, ϕt)|; t ∈ R,ϕ ∈ Bβ,N}. It follows from Lemma 4 that C1 < +∞.

Suppose that x(t) is a solution of Equation (12) which satisfies xt0 = ξt0 , and its maximal

existence interval to the right is [t0, α). We have

V ′(t, xt, ξt) = lim sup
h→0+

1

h
[V (t+ h, xt+h, ξt+h)− V (t, xt, ξt)]

≤ −c0V (t, xt, ξt) + lim sup
h→0+

1

h
L
∣∣D(t+ h)xt+h −D(t+ h)x

(1)
t+h(t, xt)

∣∣
≤ −c0V (t, xt, ξt) + LηC1 ∀t ∈ [t0, α).

(13)

By this differential inequality, we have

V (t, xt, ξt) ≤ e−c0(t−t0)
[
V (t0, xt0 , ξt0)−

LηC1

c0

]
+
LηC1

c0
≤ LηC1

c0
, ∀t ∈ [t0, α).

It follows from the condition (i)’ that

|D(t)xt −D(t)ξt| ≤
LηC1

c0M0
, ∀t ∈ [t0, α).

By Lemma 2, we obtain

||xt − ξt|| ≤ e−a(t−t0)[b||xt0 − ξt0 ||+ c · sup
t0≤u≤t

|D(u)(xu − ξu)|]

+ d · sup
t0≤u≤t

|D(u)(xu − ξu)|

≤ (c+ d) sup
t0≤u≤t

|D(u)(xu − ξu)| ≤ (c+ d)
LηC1

c0M0
, ∀t ∈ [t0, α).

It implies that

||xt|| ≤ (c+ d)
LηC1

c0M0
+H.

By the assumptions, we know that there is an η1 > 0 such that when 0 ≤ η < η1,

(c+ d)
ηLC1

c0M0
+H < β < H∗.

Thus, x(t) is infinite continuation to the right, i.e., α = +∞. Assume that (12∗) denotes

the product system of Equation (12). Similar to (11), we have

V ′
(12∗)(t, ϕ, ψ) ≤ −c0V (t, ϕ, ψ).

It follows from Theorem 2 that Equation (12) has a unique almost periodic solution p(t)

that is uniformly asymptotically stable, mod(p) ⊂mod(D, f, g), and

||pt|| ≤ (c+ d)
ηLC1

c0M0
+H. (14)

For any t1, t2 ∈ R,

|D(t2)pt2 −D(t1)pt1 | =
∣∣∣∫ t2

t1

[f(s, ps) + ηg(s, ps)]ds
∣∣∣

≤
[
n
(ηLC1

c0M0
(c+ d) +H

)
+ ηC1

]
|t2 − t1|.

It follows that

|D(t2)(pt2 − pt1)| ≤ |D(t2)pt2 −D(t1)pt1 |+ |[D(t2)−D(t1)]pt1 |

≤
[
n
(ηLC1

c0M0
(c+ d) +H

)
+ ηC1 + L

]
|t2 − t1|.
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Thus, we obtain

||pt2 − pt1 || ≤M
[
n
(ηLC1

c0M0
(c+ d) +H

)
+ ηC1 + L

]
|t2 − t1|. (15)

Since β > H,N > M [n(H) + L], we can take an η2 such that, when 0 ≤ η < η2, Equation

(12) has a unique solution in Bβ,N .

For any ϕ ∈ Bβ,N , let Tϕ stand for a unique solution of Equation (12) in Bβ,N . Thus, T

is a mapping from Bβ,N into Bβ,N . For any ϕ, ψ ∈ Bβ,N , we have

V ′(t, (Tϕ)t, (Tψ)t)

= lim sup
h→0+

1

h
[V (t+ h, (Tϕ)t+h, (Tψ)t+h)− V (t, (Tϕ)t, (Tψ)t)]

≤ −c0V (t, (Tϕ)t, (Tψ)t) + LηK||ϕ− ψ||∞.
By this differential inequality, we obtain

V (t, (Tϕ)t, (Tψ)t)

≤ e−c0t
[
V (0, (Tϕ)0, (Tψ)0)−

LηK

c0
||ϕ− ψ||∞

]
+
LηK

c0
||ϕ− ψ||∞.

It follows from the condition (i)’ that

|D(t)(Tϕ)t −D(t)(Tψ)t|

≤ e−c0tv(||(Tϕ)0 − (Tψ)0||)
M0

+
LηK

c0M0
||ϕ− ψ||∞.

(16)

Since Tϕ, Tψ ∈ Bβ,N and D(t) is almost periodic, there is a sequence {αn}, αn → ∞ as

n→ ∞, such that

Tϕ(t+ αn)− Tψ(t+ αn) → Tϕ(t)− Tψ(t)

uniformly on R as n → ∞ and D(t + αn) → D(t) uniformly on R as n → ∞. Replacing t

by t+ αn in (16), we obtain

|D(t)(Tϕ)t −D(t)(Tψ)t| ≤
LηK

c0M0
||ϕ− ψ||∞.

It follows from Lemma 2 that

||(Tϕ)t − (Tψ)t||
≤ e−at[b||(Tϕ)0 − (Tψ)0||+ c sup

0≤u≤t
|D(u)(Tϕ)u −D(u)(Tψ)u|

+ d · sup
0≤u≤t

|D(u)(Tϕ)u −D(u)(Tψ)u|

≤ e−at
[
b||(Tϕ)0 − (Tψ)0||+ c

LηK

c0M0
||ϕ− ψ||∞

]
+ d

LηK

c0M0
||ϕ− ψ||∞.

If we replace t by t+ αn on the above, and n→ ∞, we can obtain

||(Tϕ)t − (Tψ)t|| ≤ d
LηK

c0M0
||ϕ− ψ||∞, t ∈ R.

Let η0 = min {η1, η2, C0M0/dLK}. Then, when 0 ≤ η < η0, T is a contraction mapping

from Bβ,N into Bβ,N . Hence, T has a unique fixed point in Bβ,N .

Clearly, if D, f and g are ω-periodic in t, there is an η0 such that when 0 ≤ η < η0,

Equation (3) has an ω-periodic solution.
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Remark 2. Clearly, the theorems in [11] are special cases of the above theorems when

D(t) = D and the theorems in [4,10] are special cases of the above theorems when D(t)ϕ =

ϕ(0) for ϕ ∈ C.
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