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Abstract

This is a continuation of the previous paper [6]. The authors prove Holder and LP regularity
of operators constructed from the oblique derivative problem in [6] by establishing estimates of
pseudodifferential operators with parameters.
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§1. Some Special Operators

In the previous paper [6] in this journal, we considered the oblique derivative problem on
nonsmooth domains, and reduced the question of regularity of the solutions to the bound-
edness properties of certain pseudodifferential operators with limited smoothness. In this
paper we will apply the technique of symbol splitting to these operators, and ultimately
reduce their boundedness on Sobolev spaces to weighted norm inequalities for the Hardy
operator. For example, one of the basic operators we consider in the third subsection below
is of the form

t
Ku(z, 1) = (%)*%/t /|5|>1 TR (1,1, ) (&, t')dEd.

One obvious feature of this operator is that it is a pseudodifferential operator in the z-
variables, parameterized by ¢ and t’. So we will also consider extending the rough do
calculus to pseudodifferential operators with parameters in the second subsection below.
But first, we collect the necessary material on rough symbols.

1.1. Rough Pseudodifferential Operators

In this subsection we will define the symbol classes C dSI{’fé, recall the mapping properties of
their associated operators in the Holder, LP Sobolev and Besov scale of spaces, and describe
the symbol splitting which permits a calculus for the composition of two such operators. In
particular, this calculus is crucial for the estimates in the remainder of this section and in
section 2.
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Definition 1.1. A symbol o : R™ x R™ — R belongs to the symbol class CMS;’,% (where
m is real, 0 < p,§d <1, and M is a nonnegative integer) if for all multi-indices o and
with || < M, there are constants Cy g such that

0200 (2,8)| < Cayp(1+ [¢[?) 20 Holel=eloD, (L.1)

If 0 < pu < 1, then o belongs to CMﬂ‘Sg?a if in addition to (1.1), we have

o~ (0 V,)"

0fo(x+h,€) — i

0w, &)| < Cas [RMHH (14 |e)Hm o H0=0I3D. (1.9)
=0

These symbol classes are treated for example in M. Taylor’s book [13]. Here C? denotes
the usual Lipschitz space of continuous functions whose derivatives of order |d| are bounded
(when d is an integer), or satisfy a Hélder condition of order d—[d] (when d is not an integer).
Let A® be the usual Holder space, denoted by C? in [13]. Of course A®* = C?® for s not an
integer, and consists of those f with D*f in the Zygmund class for || = s — 1, when s is a
positive integer.

Definition 1.2. A symbol 0 : R™ x R — R belongs to O} if its associated oper-
ator o(f)(x) = [, €0 (x,€) f(€)dE admits a bounded extension from Hetm, to HS oo
(respectively NS to Aj,.) for all s in the interval I (respectively I N (0,00)) and all
1 < p < oo. The symbol o belongs to 677 if in addition, its associated operator is bounded
from ALT™ 1o Al

comp loc Where t is the right endpoint of the interval I.

The symbol classes arising naturally in the oblique derivative problem are CdSm (see
subsection 1.2 of the introduction) and so we restrict attention to the classes CdS for the
remainder of this section. In [2], R. Coifman and Y. Meyer showed that C%S7%, C O {oy f
d > 0 (a special case of Proposition 9, p. 38), and G. Bourdaud [1, Bou] then extended thls
to the following result (see e.g. section 2.1 of [13]).

Theorem 1.1. CdS{’?(; - 52”_(1_5)(1@) for all m real, alld >0 and 0 < 4§ < 1.

We now recall the technique of symbol splitting (see (1.3.21) and (1.3.15) of [13]).

Pr0p0s1t10n 1.1. Given 7 € CdS1 s, and 6 < r < 1, we can write T = T + 7% with

e ST, and e Cdef,?_d ¢=), Moreover, there are the following improved estimates:

m+|£4|d
ot {Slj for0< |0 <d,

(1.3)
S’T;H(m_d)wd for €] >d,

This symbol splitting permits the use of 7¥ in the classical asymptotic formula for the
composition of two smooth pseudodifferential operators, namely
-1 ¢ d qma+ma+(M+1)(5-1)
coT — Z Q'V o-V,T €CS); for all M > 0, (1.4)
£=0
where o € CdS{'?(; and 7 € ST; with 0 < § < 1 and d > 0. Note that the standard proofs in
the smooth case apply even when o is rough and 7 is smooth (see e.g. section 3 of Chapter
VI of [12]). As a consequence of (1.4) and Proposition 1.1 we obtain

Proposition 1.2. Let o € CdS{’fg and T € CM“iSI”g, where 0 < 6 < 1,d > 0 and
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(d—1)(1-46)

my < M +d. Suppose d > 1. Then with y=1— e we have
M
—mi+maH(M+1)(6—1)
ooT — Z ez'v g - V T €O 1 1 Q,Y) m1n{dM+d ml})' (]_5)

£=0
Suppose 0 < d < 1. Then with y =1 — ﬁ for any € > 0, we have

M
1 4 1+mo+(M+1)(6—1)+(1—d)( 6)+e
gor—> wv T VaT € O it d M demiy) (1.6)
£=0

1.2. Pseudodifferential Operators with Parameters

Define to = —1 if 7 satisfies case (I), and to = 0 if ¢ satisfies case (IT) (see [6]). We now
define our symbol classes for operators with parameters. We will be working exclusively
with the cases p=1and 0 <4 < 1.

Definition 1.3. Let g be a nonnegative function on (0,1). We say that the symbol
oz, t,t',€) € CMS{%,Q (where M > 0 is an integer) if for all multi-indices a, S and non-
negative integers s, s', with |a| + s+ s < M, there are constants Cy g~ such that

0707 0200 (2, 1,4',€)| < Capissr g (It =F]) (L4 [y IIE 1)

for |é] > 1, x € R™ and t,t' € (—1,1). If 0 < p < 1, then o belongs to CMJF”S{%,g if in

addition to (1.7), we have for 0 < s+ < M,
M—s—s'

0 0fo(x +ht ' &) —

£=0
< Ca s, 9 ([t = ]) BN 5758 (14 g7 20m oM =100,

Definition 1.4. We say that the symbol o(z,t,t',§) € Or', if its associated operator,

oot t) = / o (@t 1, E) (€, 1) dE

(h-Va)*
o

0705 0L o (w, 1,1, €)

satisfies

o F bt gy < C 9 (1= ) 1FCE A ggom o
forall f(-,t,t') € HyF™(I"), s€ I and t,t' € (—1,1).

Lemma 1.1. If o € CMT1STs | then o € OF, where I = (—(1 = 6)(M + p), M + p).

Proof. Apply Theorem 1.1.

Although we assume o is compactly supported in the x variables, g is not necessarily
continuous. Various choices of g will be used later.

Proposition 1.3. Let o € OF, , m >0, 0¢€ 1. If g is integrable on (0,1), then the
operator o f(z,t) = fti) Jpn €780 (@,8,1,€) F(&,t))dedt is bounded from HMR" x (=1,1))
to Lp(R" x (=1,1)). In particular, this holds for o € C*S[" . > 0.

Proof. We have

/_11/n|af(x,t)|1’dxdt=/_ll/n

g/ll/n{ tt|g(t—t’)|;’ |o—(x,t,t’,Dx)f(.’t/)(x)‘pdt/}dx

i &
X (/ |g(|t—t’)|dt’> dt
-1

t
/ o(x,t,t',Dy) f (-, 1) (x)dt’ " dwdt

t
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by Holder’s inequality. Since the operators o (z,t,t',£) are in or’ , by Lemma 1.1 the above
is bounded by

1 t .
<o [ [ ot =005 1 ) gy
" Jto P z
<C/ / (1t = DI 1) W gyt

< Clgl, / 1 ) 21y @ < Ol 1y
Where + 5 =1and |- ||z (ry) denotes the norm in Hy"(R").
Corollary 1.1. If v is a zero order do in R™ 1 with support in {£n+1 <A |§i|2} for
i=1

some A > 0, and if o is a symbol in CM"’“STM with g integrable on (0,1) and u > 0, then
ooy is bounded from H3+*™ (R™ x (—1,1)) to Hy (R" x (—1,1)) forall s € [— (1 — &) M, M].
Proof. This follows from the identities

Uo(p:ZAflag:joao@wjogp—l—ZA*lanoajogp,

ao<p:28%. oaoaxjAflogo—i-ZajoaxjA*logo
J J

where o; € CMJ”L*IST(;S;. By Proposition 1.3 and the first identity, we now see that g o is
bounded from H" (R™ x (—1,1)) to H} (R™ x (—1,1)) and so by interpolation from H}"*+°
to Hg. From the second indentity we see that o o ¢ is bounded from H;”’”‘S (R™ x (—1,1))
to H, 49 (R™ x (—1,1)). A simple induction procedure and an interpolation argument
imply that o o ¢ is bounded from Hj™™ (R" x (=1,1)) toHj (R™ x (—=1,1)) for all 5 €
[—(1—=6)M,M].

For all of the special operators we consider, we will obtain the above conclusion for the
extended range s < M + u. See Proposition 1.5 and Lemma 1.7 below.

1.3. Symbol Estimates for K, T' and R

Now we turn to estimating some of the special operators appearing in the solution to the
oblique derivative problem. We consider the following operators that arise in the section 2
of [6]:

Ku(z,t) = (21)~ //5>1 ETEK (@, 6,1, ) ur (&,t) dedt,

_ -z ix-§ / /
Tu(z,t) = (27) /t /|5>1 K (o4t €) a (a,)
Q (z, ' € a(x, ) ur (€,t) dédt,

Ku(z,t) = —(2m) "2 AL e (s to)e AT e 4T (g, ) de, (1.9)
1€1>1

along with the commutator
R=KoaQ — KaQ, (1.10)
where Q (z,t, &, s) is smooth and satisfies

g < ReQ < C¢,
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9% a9~ 9 om o
aﬁ%%ﬂ&WQS%@mu+mW”W”', (111)
and

t
Aumﬂaz/amemaawamw,
t/

¢
A(m,t,t’):/ a(z,0)do,
t/

K(z,t,t,€) = pla,t)eA@tt' ), (1.12)
We use here @ as an abbreviation for a (z,¢') and a for a (z,t). We have
ae€CM?  a(x,£1)#0, and either a > 0 or ta > 0. (1.13)
Also,

ut = pru, u* (€,1) :/ eyt (x,t)de,

03 (0) =" (20w (e), (€)= [ e o,

and to = —1 if a satisfies case (I), while to = 0 if a satisfies case (II) of [6]. The function
p* € C(R™ x R) is identically 1 in a neighbourhood of the set where a vanishes. The
choice of o is crucial. With the above choice, a(z,0) keeps the same sign in (¢/,¢) for
t' € (to,t), and Re (Z(x,t,t’,g)) >0 and A(z,t,t') >0 for t' € (to,t).

One of the features in our estimates is evident when we consider the operator T in (1.9)—
namely that the presence of a with e~ in the symbol results in greater gain than is first
apparent. A simple but effective means for realizing this is the following lemma.

Lemma 1.2. For a satisfying (1.13), we have

V.a (z, 1) < Cla(x,1)],
VoA (2, t, ) < Clt =t | Az, t,t'), to<t <t
la (z,t)]> < CA (z,t, ). (1.14)

Proof. The first two inequalities are proved in ([5], Lemmas 4.3 and 4.4). The last
inequality follows from the facts that A (z,¢,t9) > 0 for all (x,t) and a (z,t) = %A (x,t,t0).

The following lemma is crucial for obtaining the gain of 2 — derivatives from f in

1
p(A+3)
Theorem 4 of §1 (see Lemma 5.13 of [5] when k is an integer and see also [7], p. 203 for
related results).

Lemma 1.3. For each real number k > 1, there is a constant C > 0, such that

1

max | f(t)] < Ck{m Jnax [f(tr) = f(t2)] + max [f(t1) — Flt2)|'* Hfllcim} (1.15)

for all intervals I and functions f € C*(I).

Proof. Suppose first that & is a positive integer. Fix z € I, let P(t) = f'(2)(t — z) +
cee %(t —2)k=1 and let r(t) = f(t) — f(2) — P(t). Let J be an interval such that
z € JCI,and |J| = min{|I|, §}, where

max [F(t) = f(t2)] *

(5:

1.16
Flercr (10
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Since P is a polynomial of degree k — 1, there is C > 0, independent of J and P such that
maxge s | P ()] < Ckﬁ maxe s |P(t)|. Then using Taylor’s formula to estimate 7(t), we have

1
! — / < / < .
|F(@)] = 1P (z)] < max [ P'(8)] < Ch 7 max | P()

< gy |max 10— 1)+ o )

te

|J| [t1.ta€d

1
< Cupgy max, 1£(02) = F(e)l+ (1 lewry) 8

< Gty | max 1760) = e+ () V]

s€l
which yields (1.15) using |J| = min {|I],d}.
If k is not an integer, then the above argument goes through using P(t) = f'(2)(t —
Z)+ -+ f([[];]])!(t) (t — 2)H and r(t) = f(t) — f(z) — P(t), together with the inequality
maxie, [r(t)] < C (Ifllexr) ) 191"

Remark. The inequality max Ir(t) < C (Hf“ck(l)) | J|¥ used above fails with A¥ in place
€

oo i k
of C*¥ when k is an integer. For example, f (t) = > % € A2, but
k=o

1
[Re (£(8) = J(0) = ' (0)1)] = ¢(log27 ).
Lemma 1.4. Suppose a € C*~ and t' € (to,t). Then

{ Az, t,t)

max _|a(z,0)| < Cy ¢

n1—+ . i
max + At ) () s o

In particular, there is C}, such that

Az, t,t)

1—1
T ) * forall0 € (t,t). (1.17)

ja(a0)| < i

Proof. Since a(z, ) keeps the same sign in (¢',¢) if t' € (fo,t), the lemma follows from
Lemma 1.3 directly.

The next lemma is the basis for Proposition 1.4 which in turn yields boundedness prop-
erties for K and T and their associated operators. We emphasize that in this section, we
obtain boundedness results valid for Hy for all 1 < p < co. Sharp boundedness results for
K and T are obtained in section 2.

Lemma 1.5. Let Q and A be as in (1.11) and ( 1.12). For t' € (to,t), |¢| > 1,
s1+se+|al <A+2, and pu € Zy, we have with § = max{%, %—&-1}’

|07 07020, A=, t,t',€)]

< Copsmap(L+ g8 o (0101 (4 ) 4 1)), (1.18)

107107205 0 (a(, ) Q" (2,1, &, a (,1')))]

DI S ~
< Cuppspape £ = /|77 (L gy oI oot (1w (2,1, /,€) + 12 :
1.19)
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10710520208 Ay (w, 1,1, €))|

e e (D ENAINOL) Brsiteatlal <Aty
1.20

0710570207 (alw,)Qa, ) A (2.1,0,6))
< C’Sl’sz7 8 ‘t—t |_% (1+ |§D (Ja|4+1)+s1+52— \5\+>\+3 (1+g($,t,tl,f)1_%+3+%)
for s1 4+ s2 + |af < A+ 1. (1.21)

Proof. If s; + s > 0 or |a| > 2, (1.18) is trivial since @ satisfies (1.11). Thus we need
only check the case s; = so = 0, |a] = 1 of (1.18) and this follows from Lemma 1.2 if we
note that A2 < A%/2 4 1. The proofs for (1.19), (1.20) and (1.21) are similar and follow
from Lemma 1.2 and Lemma 1.4.

Proposition 1.4. Let b(z,t,t',€) be C* in the variables x,t,t for some k > 0, be C* in
the variable £ and satisfy for some N > 0,

o OPF 951 92
Dz OB dtsr ot's2
< Capnsn { (1 D42 4 Ay 7, g)lobtortas N (1 gy W

|| + 51+ 52 < k. (1.22)

For t' € (to,t), || > 1, s1+s2+ || <min{\+2,k}, andueZJr,Wlthd—max{% %},

we have

0710320207 (b, t, ¢, K (2,4,¢,€)) | < Cy sz (L4 €))7 20017101 (1.23)

0510520007 (alx,t)b(z, t,1',€)Q" (x,1', ) K (1,1, g))(
< Clyopapop [t = 1] 7TF (14 gy trortoatlal =8t sts (1.24)

and for |a| + 51 + s2 < min{k, (A + 1)}, we have

01052000, (b(as,t,t’,f)aa(m‘,t (z,t,t,¢ )

al'j
1

< Coy sy |t — 1] 73N (14 [g)mrteatolal=Iol-3 38 (1.25)

07057020 (a1 #.€) g0 (0.0 K.t 0.6) )

1242

_ 1
< Cyy mpap |t — 1] TI0FT (14 |g]ysrtse+olal=Ifl-3 555 (1.26)

a;w;mga?( (@, 1,1, &) Ay, (2, 1,8, ) K (x,t,t',f))’
< Coyoz,mp (1 [g]) 71 T2 ol D18 (1.27)

0700207 (ale,t) Q.. bla, ., O A, (24,8, OK (2,1,¢,9))|
< Copisnnp t = ¥ 7HH (14 [glytoatoliobin ik, (1.28)

Proof. Inequalities (1.23), (1.24), (1.25) and (1.28) are consequences of Lemma 1.5. To
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see this for (1.23), note that the Liebniz formula gives

n
05000l At ) =S g (H O 029 070 0 A, 1.t 5)) oAb,

j=1

where the summation is taken over all
of = (alla T ’O‘;Jv B/ = (617 o 36;)7 8/1 = (31,15 T ’51771)’ 5/2 = (82,1a T 3827TL)

with [o/| = [al, |8'] = [B], |s1] = s1, [s5] = s2. By (1.18)

n
[T o o 0000 Ale

<c]] (gﬂanﬂ i 1) (14 |€])81es|= 185145154525 =4
=1

J
<C(1+ |§|)5Ia|—|ﬁ|+51+52 (Aéla\+\/3l+s1+S2 + 1) oA <C(1+ ‘§|)6|a\—|ﬁ\+sl+sz_

as required. The proofs for (1.24), (1.27) and (1.28) are similar.
As for (1.25)7 we use (1.14) and (1.17) for k < A + 3 to obtain

(a:t)|% C(A(x,t,t’))%*m: (A(a:tt’))% +§’
t— ] t—¢]
while for (1.18), we use (1.15) with f = a to obtain
_ /
(BBl Dy O
|t —#| - |t —#|
Az, t,t)\ 2 (=553 _1
< C(M) (=) it— 7% by (L17),
14+~ lM
<Clt-t|" o 4 (z,t,t')2 33 (1.29)

and the result now follows easily.
We must also deal with commutators of the above operators with D, and this introduces

factors of A, into the symbol. Thus we set for m > 0 an integer and § = max{%, %—H}’
Gt (2, 1) / / I bt €) (Al t,,0)) " Ko, €0 (€, ¢')deat!
l]>1

Ho (2,1) = //>1 ¢ Sa(r, 1)Q..€) e bt €) (Aot 0,6))
< K (6,0, )i (¢,¢)dedt,
Tt (1) //01 &6 ¢ 7™ b(z, 1t )(Am(z,t,t',g))mpa(x,t’)

x K(z, t,t, &)u (€,t)dedt, (1.30)

and in Case II, we define corresponding “Poisson” operators for G,, and H,,,

Gunlrt) = [ 00w, (Al t,0.6)) Ko 1,0.000 (6,0
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Hmu (,1)

QT 7rL6
— [ e aln QeI b ) (Au(,,0,9) " Kol 10,00 (6,1,
EER (1.31)
Here we assume that b(z,t,t', &) is C* in the variables x,¢,t' for some k > 0, and is C* and
homogeneous of degree zero in the variable £. Moreover, in order to obtain boundedness up
to the cap A + 2, we assume that b(z, ¢, ¢, ) satisfies

For any first order constant coef ficient dif ferential

operator D, there is an integer M such that
Db(xz,t, ', €) = Zb’mtt (1,1, €), (1.32)

where b'. e C* 1 and where b; satisfies the same conditions as b.

Remark. If o0 € Cksl b.g for k > 0, Corollary 1.1 only yields o € O (1—_s)x],[x])- As we
will see below, property (1.32) permits us to easily obtain the improved range O(_(1_s)[x],k)-

Lemma 1.6. Let b(x,t,t',€) be C in the variables x,t,t' for some k > 1, be C> in the
variable & and satisfy both (1.22) and (1.32). Let Z,, denote either of the operators G, Hp,
or Jp, in (1.30). Then there is an integer M such that

01
DoZ,, _Zo|D |+ / i (@,t,0) Z; (z,t,t',Dy) | Dy |1 6dtd9+Z0(xtD),(133)
to j=1 to
where Z, Z]i- have the same form as Z,, and Z,,4+1 respectively, with the same smoothness
in x,t,t', where b; =0 if m =0 or Z,, = Gy, or Hy,, and b;- e cmin{NE=1Y otherwise, and

where

Zou = Z / LI T bt 0 (6 ) (1.34)
>1

where by (z,t,€) is Cmm{AH’k} in the variables x,t, and is C™ in the variable £ and satisfies

(1.22). The corresponding conclusions hold if Z is one of the operators G, or H,, with the

corresponding formula as follows:

DoZ = Zo|D|+Z/bZ (z,t,0) Z; (x,t,D,) | D" db. (1.35)

Proof. We need only note that @ |¢ |_ satisfies property (1.32) and then compute. The
operator Zp in (1.33) arises from the action of 9; on Z in the case when at least one of the
. ~ m
D; involves 0;, while b; arises from the action of Oz, on b (Ax>

The next definition extends the mapping properties of Definition 1.4 to the parameter
variable.

Definition 1.5. An operator W belongs to OF*, where I is an interval, if W admits a

. s+m
bounded extension from Hyoh  to Hp . and from A, to Aj,.

and all 1 < p < co. The operator W belongs to (’)I if in addition, it is bounded from A®
to Al

loc

for all s in the interval I

comp

where t is the right endpoint of the interval 1.
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Proposition 1.5. Let ¢ be a zero order vdo with constant coefficients and support in
the cone {|7| < C'|£|}. Let b(z,t,t',€) be C* in the variables x,t,t' for some k > 1, and be
C™ in the variable & and satisfy both (1.22) and (1.32). Then

1 1 _1
Goop,Goop € 0Y, Hyop € O} Hy€ O}, Jyop e O; *
with I = (=1, min {\ + 2, k}) and

1A+2

Gm OS@,ngOI,?H O‘PEOHB Hom GOIM JOO@GOIIZAH'
with I' = (=1, min{A + 1, k}) for m > 1. In particular,

Koga,ICGO( 1A+2),Tog0€OA1A+2 OoK,DyoK—KoD, 6(9( LA+1)
1242

KoDaogoGO ZATS

KoaongOA RN

1 A+2)
In fact, we have much stronger statements for T and K o a, namely

Toype Oﬁz)v Koaogpe Om;).
Proof. Since min{A +2,k} > 1, we have by Lemma 1.6 formulas (1.33) and (1.35).
All of the assertions, apart from the last three concerning K o Da, T and K o a, follow
from Proposition 1.3, Corollary 1.1, Proposition 1.4 (with u =1 for H,,), and the fact that

ce CH][/,3 for 0 < 8 < a. To handle K o Da o ¢ we note that
KoDaoyp=K (Da)op+ (KoDa— K (Da))o
:K(Da)o<p—|—(KoDaﬁ—K(Daﬂ))oap+(’)(_()})\+1)

_K(Da)°90+OOA+1

1242

by applying (1.3) to Da¥. Since K (Da)o ¢ € (9( 21*;;1) sois K o Da o .

Flnally, we use Theorem 2.2 from the next section to obtain the improvement 7 o ¢ €

(’)(P “1*;‘;2) Alternatively, we could note that T : A* — A® by Corollary 1.2 below, and that

T: Biig“’ = B jje for all € > 0 by what we just proved. Interpolation then yields
L -1
P(AF3)

Togpec (’)(“?;;2) Similar arguments apply to show that K oaop € O},
We now dispose of the operator R in (1.10).

Lemma 1.7. Let p, :min{l -6 — m,%} where § = max{%, A+1} Let o be

supported in the nonelliptic cone as in Proposition 1.5. Then Rop € (’)[0 Ni2)"
Proof. We begin by decomposing R o ¢ as

Royp= (Koﬁ@—KZin)o
:(KOE—Kﬁ)o@ogo—i—(KEO@—KE@)O
=I+1I.

Write @ = a? + @ where @° € C>‘+2Sl_§)‘+2)5. Now let 1 be homogeneous of degree zero and
satisfy ¢ = 1 on the support of ¢. Then there exists ¢ of the same type such that

Qop=Qopiop=¢10Qop— (V@m)-(Vﬁ@) o0+ 050"
1<|0<N

_~ 1 (1—-86)N
=@o O[o,,\+2 + 0 [0,A+2) *
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Then we have

(A+2)8
I:(Koa Ka)o<po(9[0>\+2)+(9[0/\+2)).

Now we have

(Koaﬁ—KAd)ogo VeK - Vao<p+00/\+2)

by (1.3). Also,

VeK V@ 0@ =VeK Va0 — VK -V,d 0p = VeK - Va0<p—|—(9[0)\+1),

VeK -V, e Clg p 3

1A+2
by (1.25). Thus V¢K -V a*op € O oifl; ! , and to obtain the improvement in the cap up

1242

to A+2,ie VeK-Vyafop e (’)[02)\1;) ! , we compose with D :

Dy oVeK -V, = VeK - V,af o Dy + (Vo VeK) @ + VK - V2,
D; o VeK -V, = KaQV¢Ad* — KaVQa®.

" bRt 35
Thus Ve¢K - Vza ongO[OM_2 andwegetIGOOAH).

For term 11, we write Q = Qﬁ +Qb where Qti =Q (:c,t ,f,aﬁ) and @b = @7@1 = Eb@’ €

C’\”Sl1 ;(’\H)& upon applying Taylor’s formula to the final variable in @ Then

I = (Ka'o@ﬂ—m@ﬁ) o p—+ (Kzioéjb—Ka@b) 0

- ~ 1+l +1+2(6-1) (A+2)5
= {Vs (Ka) - V,QF + (’)[O,/\+zv2<)%+3> } (9[3+;+2)
o~ L 2(-1)
= V¢ (Ka) - VzQﬁ op+ O 0<é\f2))
N ~ —14+ L —14(146 o—
Finally, Ve (Ka) - V,Q* o ¢ € Opata) R O[f)(;fz);r and so Rop € Oy,

as required.
Remark. If € satisfies AT, on T, etc. as in part (A) of Theorem 1.3 of [6], then
Rope O 0(; +g since Theorem 2.2 in section 2 below (or more precisely its proof) applies

to show that V¢ (Ka) -V Qiope0 o(i+g) “.

1.4. Boundedness of Operators on A*

e

Here we discuss the behaviour of the operators K, K and T on the Holder spaces A?,
s > 0. We begin by considering the the following types of operator with § = max {%, A%rl}

Gt (1) = //£>1 e bt €) (At t,6))
X K(Cﬂﬂf,t ,f)u* (&t )d{dt,
Hoou (2,1) = / t /£>1 S, )Q ', €) |67 bla, 1, €)
x (A (z,t,¢ g)) K(x,t,t, €)ur (€,¢)dedt,
G ot (1,1) = / T b ) (Ao, ©) " Kt 0 (€)de,
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where 0 € R, m € Z+ and b € C*S) 5. Let
Gmo(z, 2’ t, '), Hpyo(z,2' t,t') and G, ou(x,2',t)

be the distribution kernels of G,, o, Hpm, and G, , respectively. It is then easy to show
(see also [4]) the following

Lemma 1.8 If c¢(x,t,t', &) satisfies
- N
08¢ (1,0, 6)] < Co (14 A, t,,9)) (14 1)1
for some N >0 and 0 < |a| < [o] +n+ 1, if Z is an operator of the form
Zu (x,t,1') = / e Ee(x, t, VK (x,t, ¢, u* (€)de,
|§1>1

and if Z (z, o', t, ') is the distribution kernel of Z, then for |x — x'| + A (z,t,t') > 0,
1
(|z — 2’| + Az, t,t)" 7

2 )| <O max  [oge(@.11.9)))
lel=1

(1.36)

Proof. We consider two cases: (i) A (z,t,t') > |z — 2’| and (ii) A (x,t,t') < |z —2'|. In
case (i), we use K = e~ where A |¢| < Re (ﬁ) < cA €] to obtain

]/ o) e (2,1, 4/6) e~ Al20€) df’ / €[ e Melag < cAe
|€1>1 |€|>1

In case (ii), choose p € C2° (R4) so that p =0 on (0,3) and p =1 on [1,00). Now

Z@atnt)= [ e 0 p () e D

b [ et et (1 p - o/l €D} e g
1€1>1
=TI +11,

and we have

(1] < /|§|>1 €17 {1 = p(Jz — 2] [€])} d€ S/ €17 dg < o —a/| 77"

lz—a/| 71 >|¢|>1

As for I, we may assume (z — ') = (| — 2'|,0,---,0), and we then have

I= /|5|21 (#)k {37€Iei(w—w')'5} c(z,t,t'E) p(lx — 2| €]) e—ﬁ(z,m’g)dé

ilx—a|

Now perform integration by parts to get

1 .
= zzm E r—x 7-8167]
[« Z 5000 e =€)
x {e(a,t,1e) e—AW 9} a
+/ ei(x_x/)'gcikkpﬂx — 2| €]) 8?1 {c(x,t,t’g) e_g<$,t7t'f)}d§.
€21 |z — |

Since ‘82 p |:z:fx’|\§|)’ < Cj |z — 2 for W < g < Wlﬂc/l’ and 0 otherwise, we



No.1 Guan, P. F. & E. Sawyer REGULARITY ESTIMATES FOR OBLIQUE DERIVATIVE 13

conclude that

k
1 &3 o—k+j
H<C 7k_]( max ngrv,t,t/,f)l)lél e
A<lél<— ST |z — 2| 1<]al<k
e jel=1
o
+0/ E 7( max |0gc(z,t,t',€) ) |§|‘7_k d¢.
e Sl =1 o —a'|" 1Tg|alfk| ‘ |

If we choose k = [0] +n + 1, then the integral in the second term on the right is convergent,
and we obtain the desired estimate for term I.

Lemma 1.9. There is a constant C independent of o,xz,x’,t and t' such that for x # x’,
|[As(z, 8, )™

)

Guno(w, @ ) < C( max |ogb(a.t.t,¢)|)

o<l (Jo — /| + A(w, t,0)" 277
Ay(z, t, )™ v
|Hm,g(x,m',t,t’)|§0< max \agb(x,t,t’,f)l) [ (2,1, ) |a(x+1)+|ﬂ_ ;
el (o — ']+ A, 1,0))FFE?
Az, t,t0)|™
Gz a, )] < C( - max —[02b(a,1,€)]) At
lof<lefn k1 (le — a'| + Az, 1,10)"*

Proof. This is a direct consequence of Lemma 1.8 and the inequality
max ‘8§Az(z,t,t/,§)‘ < CulAy (z,8,8)] .
We now have
Lemma 1.10. If b satisfies (1.22) with k = 1 and 0 < o < 1, then there is a positive
constant Cy such that for every e € R, € # 0 and |t| < 1, the following estimates hold where

Zy 15 either Gy o o7 Hpy o2

t
/ / \Z, (2,2 4, 4)] da'dt < C |e|” | (1.37)
0 Jlz—z'|<|e]
t
/ / \Zo(z 4 hoa! s t,8) — Zo(w, 2!t 8| da'dt! < Co B (1.38)
0 B
and if in addition a(z,t)a(z,t+€) > 0, then
t+e
/ / \Zo (2,2, 4, 8)| daldt < C. |e]” (1.39)
t B
t
/ / \Zo(z, 2t 4 e,8) — Zo(z,a!,t,8)| da/dt < C |e]° . (1.40)
0 B

If Z; is G o, we have
/ | Zy(z, 2’ )| dx’ < Cy le|”,
|z—’[<|€]
/ |Zy(x + h, 2’ t) — Zy (2,2, )| da’ < C, |h|7,
B

and

‘/%@%Hﬂ—%m%mMS@Mf
B
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Proof. We prove only the estimates for Hy ., the cases for Gy, and Gy, being easier,
and the cases for G, oy Him,o and G, , being similar, but using |A,| < CvA. We have

t t t'
/ / |Ho.o(z, 2’ t,¢")| do’dt’ < C/ / laz, ¢l g dadt’
0 Jlz—a!|<|e| |z z'\<\| (|z —a'[ + A, 1, 1))
le] ’
< c/ / a(@.t) _drdt/
r—|—A ¢, x))?

[ d
cof|[ At
o (r+ Az, t,t))

since a(z,t') keeps the same sign in (0,¢), and thus we have

// |Ho o (z, 2, t, 1) da’ dt’
lo—z’|<|e|

g
< c/ {0+ A t,0)7 4 0+ A, 1,007 bar < G |7,
0

dr

which proves (1.37).
To obtain (1.38) we write

¢
/ / |Ho.o(z + h,a' t,t") — Ho o (2,2, t,t")| dx'dt
0o JB

t
:/ {/ +/ }|H07U($+h,$/,t,t/)—H07U($,$/,t,t/)|daj/dt/
0 “Jiz—a/|<4|h| J{z'€B:|z—a'|>4|h|}

=I1+1I
From (1.37) we have I < C, |h|”. To estimate II, fix h and set
F(z,2' t,t',s) = Hyo(x + sh,a’, t,t").
Then by Lemma 1.9 we have

t 1 d
II:/ / / —F(z,2',t,t',s)ds
0 J{a'eB:|lz—=z'|>4|n|} |J0 ds

</t/ /1Ch{ la(z + sh,t')]|
“ Jo JiweBija—a|>41n} Jo (| — a'| + A(x + sh,t, /)" 277
1

dsdx’dt’

dz'dt’

+
(o — ' + A+ sh, t,4))" 7 }
=IIT+1V.

Now we have

[T = Ch / / ’ / i A + sh 1, ) dt'|dsdz’
jo—a' |24/ (| — o' + Az + sh,t,))" 77
1
= Ch/ / ey dsda’ < Co|h[ [T = Co|R)7,
{z'€B:|lz—a'|>4[n|} Jo |z — 2|
and similarly,

1
1A% < Ch/ / / stdl‘/dt/ S Co-|h‘o-.
{e'€Bie—a'|>4ln]} Jo |7 — ]

The proofs for (1.39) and (1.40) are similar. We need only notice that a(z,t) keeps the
same sign in the interval [¢,t + €] (or [t + €,]) if a(x,t)a(z,t +€) > 0.
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Combining the estimates in Lemma 1.10 with a standard argument as in [4], we obtain
the following proposition.

Proposition 1.6. Let 0 < o < X\. Ifb € C*>T*, then Gmo o, Hyoow and G, , are
bounded from A, to AT provided 0 < s +o0 < A+ 1.

Corollary 1.2. If A > 0, then K, Koy, Top, Ka|D,| o and KaQ o ¢ are bounded
on A® for0 <s< A+2.

Proof. By Proposition 1.6 K, K o p, T o ¢, Ka|D.| o ¢ and KaQ o ¢ are bounded on
As for 0 < s < A+ 1. Then if Z is one of K, K, or T, we have ;0 Z = Z’O|Dx|+ZWhere
Z =b(z,t,D,)Q (w,t, D,) with b € CM28Y ) and 9, 0 Z = Z 0, + Z', where Z' has the
form Go,9, Ho,o or Go,0, and where 7' has the form Go,1, Ho1 or Go,1. The Corollary now
follows from Proposition 1.6.

We can also now improve the conclusions of Proposition 1.5 to include boundedness on
A up to the cap.

Proposition 1.7. For 1 < p < oo, we have

IC,KOQOE@((),L)\H); Top: A=A, 0<s<A+2;
Toap:B;+m—>B;, 1<s<A+2; Koaop:A° = AT 0<s<A+1;
Koaogp:B;-‘_m%B;"‘l, —1<s<A+1;

KoDaong@(_%lM_l); Rong@(_ﬂfM_m,

whereup:min{ -6+ )\+3),2(A+3}f0r1<p<ooand0<uw<mln{l—6,%},
0 = max %,)\%_1

Proof. For K, K and T, the assertions follow from Proposition 1.5 and Corollary 1.2. As
1
for K o a, we write a = af + a® with o’ € C’\+2S1 . Then using the improved estimates
’ k+1
(1.3) on a*, we have

Koa=Koa + Kod = Ka' + Z Caa K8a~ —|—O( IA/\I;)
1<]al<N
~ ~b ——1 ~  —=—1
=Ka—Ka’+ 0 yp0) = Ka+ Oy x40
~ -1 ——1
= (Ka|Da|) o[Da| " + Oy x19):
Now Ka |D,| has the same mapping properties as T', and so the assertions regarding K oaop
follow.
Now we turn our attention to K o Da o ¢. We have

KODa:KODaﬁ—i—KODab:K( )-I—O C1A41)
. PO |
= K (Da) - K( ) +0. i) Ay =K (Da) + Oy hp1)-

So by Proposition 1.5, K o Da € O, © >\+1) . Since A® C H T2 foralll < p < 00, we have
KoDa:A* — A*Tifor0<s< A+ 3 %, and it remains only to show that K o Da : AME S
AM1. For this it suffices to show d; 0 K o Da : A>3 — A*, 9, 0 K o Da : A*% — A*. Now
0y 0o Ko Da=—KaQ o Da+ Da and by Corollary 1.2,
Koaogp: AN =A%) 0<s<A+1,
Da: AT 5 A%, 0<s<A+1,
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which shows that 9; o K o Da : AME 5 AN As for Oz 0 K o Da, we have

8zOK0Da:KoazODa+KgIODa
— (K 0 Da) 08, + K 08, (Da) + KA, o Da.
We have 0, (Da) : A* — A*,0 < s < Xand KAy, 00 : A2 — A*.0 < s < A+ 1 and so
___1
dy0KoDaogp: AT — AN ie, KoDaogpe Ot
For R, we have by (1.19) that Ro ¢ € @(_(fﬁz), since as before, A® C H;_g for all
1 < p < oo and we can take p very large. Thus Rop: A¥ — ASThx 0 <5 < A+ 2 — fio.
To show that Rop : AM27Hee 5 AM2 it suffices to show 0y o R, 0, 0 R : AMT27Hee 5 AMTL
For this we compute
0o R=Ka@ 05@ — KaQEi@
= (KaQ)odoQ — KaQaQ
= (KaQo@) 0 Q — KaQaQ + 07, '

(0,A+2)
~ ~ 11
= Y caf (KaQ) 9 (#) 0 Q — KaQ#Q + O35 3
la| <N
~ ~ 1
= (K(IQ oau) 0@ — KaQ"dﬁQ + O(>(\)+;+2)'

Now Q = Q (z,t,€,a). Letting @Q* = Q (z,t, ¢, @), we obtain

0;0R = (KaQEﬁ) o Q' — KaQa* Q" + O(AoﬁJﬂ)'

— (KaQd) 0 Q* — KaQaQ! + O3,y = O3 s,
by the sharp estimates (1.3) for a*. Also, using Proposition 1.6,
Oy o R=0,0KoaQ — 0, o KaQ
- Ko@xoﬁé—K6@08x+KZx5@—K(’&@)T — KA, 0aQ
—KoaQod, — KiQod, + K o (a@)w K (a@)gﬂ + KA,3Q, — KA, 0aQ
—Rod, + Ko (a@)x K (E@)Z+K/~1m5@—Kﬁro'd”@fK/~lmoab )
—Rod, + Ko (ax@) ~Ki,Q +KodoQ,
— KaQ, + KA,aQ - KA,d 0 Q+0F 1)
~Rod,+ Ko (@,Q) - Ki,Q+KoioQ,
— KiQ, + KA,3Q — KA,d0Q+0p 1)
Now
—5(A+2) ——5(A+2)

KOZiz =Ko (’C‘iﬁ)r +KO <?ib> = .KV,C‘iﬁaC +6(0’)\+1) = Kaz + O(O’AJ’,l) 3

x

and Ka, € Oyh, ) and KA,G: A° — A3,0 < s <A+ 1 and KA,aQ : A* — A*73,0 <
s< A+ % by Proposition 1.6. Also Ka, K oa: A1 = A%, 0 < s < A+ 2 by the first part
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of the proof. Also
~ 9] -
Qe =5 Qt Ealet) = a4 Q: + 25y,
and so we conclude that 9, o Ro ¢ : AM27#e — AM1 and this completes the proof that
Rope O 0.
1.5. Reduction of the Operators K, IC, and T
In the second subsection above, we discussed the behaviour of the operators K, K, and

T in the nonelliptic cone {|7| < C|{|}. Now in general, T" is not bounded on H, or B;?

1
A+3

have any gain. In order to establish sharp mapping properties for these operators in the

and so Proposition 1.5 need not hold with replaced by 0, and neither K nor K need
next section, we will show here that the boundedness of T', K, or K into H, (or B,*) for
some p, s satisfying 1 < p < co and —1 < s < A+ 2, is equivalent to the boundedness of the
corresponding operators @ o T o ¢, ¢ 0 K o ¢, or ¢ o K into L? ( or Bg’p). We continue to
denote by ¢ and 1) zero order 1do’s with support in the nonelliptic cone {|7| < C'|¢|} and
the elliptic cone {|¢] < C'|7|} respectively.

Define K, = K o |D,|" and K, = K o [Dy|" for 0 < v < 1.

Lemma 1.11. We have

ToVzop=Vzo0Top+Br, K,oV,op=V,0oK,op+ B,,
K,oV,=V,oK,+B,, KoaoV,op=V,oKoaoyp+ B,

(1.41)
L5 1 _(1—6
where By € (’)(A_Jrf'7j\_+1), B* ¢ (’)(A_Jrf)\j_l) ) and B,,B, € (’)E’ff,/\+1).
1
Proof. This follows from T' € C*2S}7° K, € CM28Y 5, K, € CM287 5, and K oa €

1
=1
A2 o313
C 5176 .

Lemma 1.12. We have poTop,poKoaop, oK, op,pok, € 6?—17>\+2)' If Z denotes
stv—=L v—1
either Top, K, 0p or IC,, then Z is bounded from Hp+ " — H, or from B;+ ER N B
for some v >0, -1 <s<A+2and 1 < p < oo if and only if p o Z o ¢ is bounded from
HY) — L? or from B)? — Bg’p.
Proof. We have
o r 14y,
wOKVOQDZB;lOwOatOKVOSD:a;lOwoﬂDm‘y_KGQO‘D:E|V} € O(jj)iig;r ,
14l
Yok, =0 oo oK, 0p=—0  ovyoKaQo Dl 0o € O\ 25
Since %M+V< 1 4+v <1, wehave )oK, opand ok, 56?71,>\+2)~ Now
YpoKoaop=0'opodoKoaop=0;"0tpo{a— Kaoa}oyp
= 8;1 oo {a — Kaa@} op+ OzO(_O})\),
¢0T090=3{1ozﬁo@toTow:a{lwo{aQ_KaQaé}°s07
and K aQ’dé is bounded from H; to LP. Indeed, the last assertion follows from the argument
at the top of page 62 in [5] as follows. It suffices to show that Kaa@) is bounded on LP,

but this is a consequence of the argument used to prove Theorem 2.1 in the next section
below, since after the change of variables s = A, (t) = ftto a(z,0)df as in (2.24), matters
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A-1
reduce to the validity of the Hardy inequality (2.25) with weights w = % and
v = m But w < s7? and v > 1, and so (2.25) holds trivially by (2 27) Thus

PpoTop: H; — H;. The first two identities in Lemma 1.1 together with Proposition 1.7
show that 1) o T is bounded on Hy for —1 < s <A+ 1 and 1 < p < co. By interpolation,
tpoT o is bounded on By? for —1 < s <A and 1 < p < co. Finally, the rest of the lemma
follows from Proposition 1.7 and Lemma 1.11. This completes the proof of Lemma 1.12.

§2. Boundedness Properties of K, K and T.

In the previous paper [6], we reduced matters regarding the gain from f in the oblique
derivative problem to the boundedness of the operator

t
Ti) = [ [ )@t e o009 (g, vyaag
0
from a Sobolev space into LP (or Bo’p) Earlier, in the previous section, we observed that

aK € CAS| *“, and it follows that T is in CASl”ld, and so of order 11z on LP Sobolev
spaces (of the appropriate index). This is best p0551b1e for all 1 < p < oo, but if we fix
attention on a particular p, then we can do better, namely T € Om. To see this, we
apply some techniques from harmonic analysis to characterize the boundedness on LP of the

operators T, = TQ™%:

t
Tof(z,t) = / ) P /0 a(z, ) (Q(z, 1, &) ™ e Jir al@OQ0.0d0 g~ (e thyap'de. (2.1)

In [5], we showed that for the case & = 0, Top = T is bounded on L?(R" x (0,1)) if and
only if a satisfies the A, condition,

foralla:lnR”andO<o<ﬁ<'y<1suchthatfﬁ (x,t)dt = fﬂ a(z,t)dt. This was

accomplished by using the change of variables s = fo x,0)do (for each fixed z)
and the Calderén reproducing formula to reduce the boundedness of T on LP(R™ x (0,1))
to the family of vector-valued weighted norm inequalities,

/A m(ZIM T (s ) w(s)ds < C/Az(l) <i|hk(s)|q)p/qwz(s)d8, (2.3)
0 k=0

for all sequences {hj}7, of nonnegative functions on (0, A;(1)), where M~ denotes the
one-sided Hardy-Littlewood maximal operator,
M~ f(s) = sup / (t)] dt,
0<d<s 5
=4
and wm( ) A ( ) (A7 ()’
equivalent to the family of A conditions,

Using [10], these inequalities were in turn shown to be

1 b+8 1 b ’ p—1
[7/ wx(s)ds} [7/ wy(s)' 7P ds] <C, 0<d<b< AL(1) -4,
o Jy 0 Jo—s

which become (2.2) upon reversing the change of variable s = A,(¢).
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However, a simpler approach is to exploit the fact that for functions f which have been
microlocalized to have support f C {|€] > ||}, the Besov space norm || f|| por is comparable
to the mixed norm

gy = { [ 156080 8} (24
From this, it is not hard to reduce matters to the boundedness of T;, on the mixed Lebesgue-
Besov space L? (B)) normed by (2.4).
In the next subsection, we characterize the boundedness of T, on L? (Bg’p) in terms of
a simple modification of the the A condition (2.2). The proofs are modelled after the
arguments in section 6 of [5].
2.1 Boundedness of T,
Our main theorem here is

Theorem 2.1. Suppose 1 < p < oo and a(z,t) is a bounded nonnegative function on
R™ x (0,1). Then T, is bounded on Lp (Bo’p (R")), i

/HTaf(',t)nggpdt <of / 1£C DIy ),

if and only if a satisfies the A, , condition:

forallxinR"and0<a<ﬁ<’y<1withff (x,t)dt = fﬁ a(zx,t)dt > 0.
Proof. To show the necessity of the A, condition, we first prove the apparently weaker

{fﬁitdt /ﬂ a(;v,t)f’/dt}pil < cﬁ [/6 a(gc,t)dtrim, (2.6)

forall zin R" and 0 < 0 < f < v <6 < 1suchthatfﬁ (z,t)dt = [ a(z,t)dt =
J2a(x,t)dt > 0. For this, fix w in R" and let r = [7a(w,0)d) = [] a(w,0)d0 =
fj a(w,0)dd > 0. As in [5], let ¢ € C°°(R™) have support contained in {¢ : 1<l <4}
and satisfy ¢(§) = 1 for 1 < [£] < 2. Set ¢.(x) = r~"@(%) so that ¢,.(§) = ¢(r§). Letting
¢ denote the operation of convolution in the a-variable (in R™ x (0,1) = {(z,¢) : € R™,

0 < ¢ < 1}), then just as in [5], the real part of the kernel of T, ¢, satisfies the following
estimate for |z — w|, |2’ —w| <cr, t' € (0,8) and t € (v,9):

condition

Re(Tué,) (2, t, 2’ t") > ca(x, t')r*—"" 1 (2.7)
As in [5], define f by
F@ 1) = XBwer ()X (0,5 )a(w, )P 7L, (2.8)
Combining (2.7) and (2.8) we obtain for |z —w| < cr, t € (v,9),
B !
Re(Toorf)(z,t) > cr®™ 1/ a(z, t)a(w,t' )P ~Lat. (2.9)

where the last integral in (2.9) satisfies
B

B ’ ’
/ a(w, )P do < 2/ a(z,0)a(w,0)? ~1do (2.10)

o
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for |z — w| < cr.
Now choose € C°(R™) such that 1 > 0, support n C B(0, ) and [, n(z)dz = 1. With
nr(x) = 7"y (£), it follows easily from (2.9) and (2.10) that

B
Re(ny * Tody f)(z,t) > crafl/ a(w, t')? dt’ (2.11)

o
for |z —w| < cr, t € (v,9), with a perhaps smaller constant c—mnote that r < (6 —)/3 if,
as we may assume, a(z,t) < 1/3. We will also need the following inequality, valid for any
g€ BYP(R"), 1< p < oo

o0 o0
I ol =[x ouen o], <3 ol o sl
=0 =0

e’} 1 o0 1
7 7 P
< (X lewwmelt) ™ (3 lew+ ol )
k=0 k=0

< ne . Nl < C liglson - (2.12)

o 19l = Il

0.p
Bl

Combining (2.11) and (2.12) with the boundedness of Ty, on L? (B)?), we obtain
B ’ p
(cr“‘l/ a(w,t" )P dt’) er™(§ —7)
5o 1
< / /B e Tt S o ) < / 1% T F 1 gy
1ot w,cr

1
<C [ WTutr gyt < C / 160 F W g

1 o0
- <Z|¢k*¢rf||§p(dx)> dt < C / LI g

—C’/ / (2 t")Pdz'dt’ = cr / a(w, t')? dt'. (2.13)

If we rewrite (2.13)
B , p—1 11—«
(rafl/ a(w,t')? dt') < ol ,
o 6 — 0
and use r = ff a(w,t')dt' = fj a(w,t')dt’, we obtain (2.6). It remains to show that (2.6)
implies the A, condition (2.5), and this follows using the argument beginning on page 43 of
[5]. This completes the proof that A, , is necessary for the boundedness of Ti, on L? (824’).
Conversely, to show that the Aj , condition (2.5) implies the boundedness of T, on

Lp (Bg*p), we begin by using the Calderén reproducing formula to reduce matters to a
Littlewood-Paley decomposition of T,. Choose ngSO and gZA>1 nonnegative and infinitely dif-
ferentiable on R™ with supports in {¢ : [¢| < 1} and {¢ : & < || < 2} respectively so

that Z qu(g)Q =1, forall ¢ € R", where (;Bk(f) = q31(2_k§) for £ > 2. Also choose
0y > O C°° with support in {£ : 7 < |£]| < 4} such that ¥1 = 1 on the support of ¢1. Set

UR(€) = ¥1(27€). Letting ¢y and 1, denote the operation of convolution in the x-variable
(in R™ x (0,1) = {(z,t) : 2 € R",0 < t < 1}) with (¢%)¥ and (¢)Y, the inverse Fourier
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transforms of q[A)k and @k respectively, we have for any f, g e C°(R™ x (0, 1)),

/Ol/n Tof(z,t)g(x, t)dedt = ki:o/ol/n Tod? (z,t)g(x, t)dadt
= /01/H(Ta@%)f(x,t)g(m,t)d:cdt

! kz::l/o /n [(1 = V) Tadr) (P f)(z,t)g(x, t)dudt

i 1; /o /n (Tatr) (P f) (@, t)(Prg) (x, t)dudt

— [+ IT+III. (2.14)
Term I in (2.14) is estimated as in [5]. Note first that by the argument on page 45 of [5],
the kernel of T,¢3 satisfies
| Tadd (@, t,2',t)] < C(1+ |z — ')~ F2)
uniformly in ¢ and ¢. Thus T,¢3 is bounded on L? (B)?) and
11 < NTad5 Nl o (5o Il e (52 < Ollfll o sy 9l L (52 (2.15)

for f, g € C(R™ x (0,1)).

To estimate term IT in (2.14), we apply Propositions 1.1 and 1.2 to the composition
(I —r) o Tar, with M = 1, to obtain that (I — 1) Ta¢r maps B, P (dx) into BY?(dx)
with norm independent of k,¢ and #'. Thus

(11| < ZII = V) Tadk(@r Mo (mp2) 9 v (50,7

< Z Cllowfll Loy mwm) 9l e (5%

<3 €2l gy ol (07

k=1
= Ol iy ) (2.16)
for f, g e C°(R™ x (0,1)).
To estimate the main term I71] in (2.14), we need the following inequality, uniformly in

k:
/ / |Todrh(x, t)|Pdadt < C/ / (x,t)|Pdxdt, k> 1, (2.17)

for all h € S(R™ x (0,1)), the subspace of S(R"!) whose elements are supported in R™ x
(0,1). Assuming (2.17), we have for f, g e C°(R"™ x (0,1)),

1
'Y

= [ [ (3 mestonnoop) (S ote, o) o
/ / Z|Ta¢k onf)(x,1)] dxdt / / \zbkg )P )dxdt}

1
o7
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gc// qﬁkfa:t|p dxdt // ihpkgxﬂp)dxdt}
:1

by (2.17) apphed with h = ¢ f € S(R™ x )s

gc(/o 17Dl de)” ( / lo HBo,ﬂdt)’

= Cllfll o semy 9l () (2.18)

.
'Y

Combining (2.14), (2.15), (2.16) and (2.18) shows that T, is bounded on L? (B)*), and thus
it remains only to establish (2.17).
To estimate the kernel T, ¢ (x,t, 2", t') of T, ¢y, we write, using (2.1),

[Toor(,t, 2, 1)

= X (®)] / o= Eaa, 1) (Qa, ¥, €))7 o™ Ji = DQA00G, ()|

92— 2k AE N . ,
i(x—ax')-&
= X(o,)(t ‘/ 9% 1 |z — /|2> ele=e) )

X aa, ') (Qa,1',€)) e Ji (wNREIONG (g)d
< X(0.0) (t/) (2—2k + |$ _ xl|2)—N2nk2—2k:Na(x’t/)2k(1—a)e—2k7m ftt, a(x,0)d6

(2.19)
since | (—A¢) dr(€)] < Cp272k 21-m¢] < Q(x,0,€) < 2mL|¢| for some fixed m, and ¢y
is supported in {¢ : 2F71 < |¢| < 2F+1}. Denote by M the Hardy-Littlewood maximal
operator in the z-variable, Mh(z,t) =sup r—" f\z—m/|<r |h(z’,t)|dx’. Then ([11], p. 63)

r>0 -
/ 2k (1 4 (28 |z — 2')2)] 7N |h(a’, t)| da’ < Cn Mh(z,t) (2.20)
for N> 3 . Fork € Z; and a(t) >0 for 0 <t <1, define T, by
t
Teyq(t) = / a(t)2k(=@e=2" [l a®)d0 g ihyqy' 0 < t < 1 (2.21)
0
for any g integrable on (0,1). Using (2.19), (2.20) and (2.21) we then have

| Tadrh(z,t)]

t
< C a x,t/ 2k,(1—a)6_2k7m fft/ (l(.’L‘,e)dO/
> N/O ( ) Rn [1 + (2k|.’£ _ 1,/|)2]

an

~ |h(a’ 1) da"dt’

_ok—m

t
<Cy / alz, t)2F0=Ye v a@Odb Nrp (o ¢)dt!
0
S CNTgI,kfm(Mh)(Qj?tL (222)
where a;(t) = a(z,t).
We now claim that

/| <t |pdt<0/ lg(8)[Pdt (2.23)

for all sequences of functlons {fx}. To see this, let A.( fo x,0)df and make the
change of variable s = fo x,0)df and s’ = A, (¢ ) (2.23) and (2.21). Then with
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g(s) = g(A;*(s)) and (T ,9)~(s) = T7: ,.9(A;(s)), we have

a az,

AT (s)
(T, 19)~ (s) = a(i, ) 281 =2 (Ae (=42 () g 41 gy
0
= [ ey,
0
and so with w,(s) = %Agl(S) = m so that dt = w,(s)ds, (2.22) is equivalent to

P

A (1)
wy(s)ds < C’/O lg(s)|Pwy(s)ds (2.24)

Ay (1)
/

for all nonnegative functions g on (0, A;(1)). We now claim that (2.24) follows from the A,

/8 2]{2(170&) 672k(sfs')g(sl)d5/

0

condition (2.5) and the weighted norm inequality for the Hardy operator (see [8]), namely

for all h > 0 if and only if

022£A</17Aw(8)ds) (/ObU(s)l_p/ds)p_1 < 00. (2.26)

To see that (2.24) follows, replace g(s’) by e’zkslg(s’) in (2.24) to obtain (2.25) with A =
Ay (1), w(s) = 2°(1=)e=p2"sy (g} and v = e P2 5w, (s). Thus we must show that (2.26)
holds for these weights, i.e.,

AJ—(l) k b 1ok ’ p—1
sup (/ oph(1=a) o —p2 Swz(s)ds> (/ eP'? S, (s)1 P ds) < 00. (2.27)
)b 0

0<b<AL(1

ds < c/ 8)|Pu(s)ds, (2.25)

We now rewrite the A, condition (2.5) using the change of variable s = A,(t) = fot a(z,d)do
to get

P E /b " wx(s)ds] [% /b béww(s)l—l”dsrl <C (2.28)

for 0 < 6 <b< Ay (1) —6. Set » =27% If 1 < p < 2, then we estimate the product in
(2.27) by

) b+(i+1)r b—jr , , p—1
ypla—1) (Z/ e P/ ds Z/ eP S/wa(s)l_p ds)
b

i=0 b+ir (]+1)T
b+(i+1)r 0 b—jr , , p—1
< ppla—1) Z(/ e pS/rww(s)dS) Z(/ eP s/rww(s)lfp ds)
b+ir =0 b—(j+1)r
b+(i4+1)r b—jr

< Opplal) 3 mpli) (/b+ w, (s)ds) (/b—(j""l)T' wx(s)l_p/ds)p_l

4,7>0
< Orre=) N om0 [ 4 ) P07 by (2.28) with § = (i + ) 7
,7>0
<C Z 67p(i+j) (Z +j)p(1—0‘) <C.
i,j>0

On the other hand, if 2 < p < oo, then we raise the product in (2.27) to the power p’ — 1
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and estimate
, o] b+(i4+1)r p—1 o] b—jr , ,
pp'(@—1) (Z/ efps/rwm(s)ds) (Z/ &P s/rwm(s)lfp ds)
i=0 7 btir j=07/b=0G+Dr
by a constant C' as above. This establishes (2.23) with C' independent of k.
We thus have

1 1
/ / Tadh(z, t)Pdzdt < C / / T e (MB)(z,8)Pdtdz by (2.23),
0 n 0 n

1
<c / / \Mh(z, t)|Pdtdz by (2.23)
O n

1
ZC/ / |Mh(x,t)|Pdxdt
< C’/ / (z,t)|Pdxdt

since M is bounded on LP. This establishes (2.17) and completes the proof of Theorem 2.1.
We now turn to the local estimates for T,, on By?(R"*!) that we need in [6]. In this
setting, both I and ? have been straightened out and the flow for ? = t through (z,0)
in I is given by 7 ((x,0),t) = (z,t). Thus the AJ, condition becomes
Definition 2.1. The function a satisfies the AT , condition at the fibre F\(, o), (y,0) € T,
if there are constants r > 0, R~ < 0 < RT, such that a (z,R™) # 0 and a (x,R*) # 0 for
x € R™, |z —y| < r and both of the following conditions hold:

{fﬁ 1: £)dt /B (@0 dt]p_l = 0715[/7 (1) dt]l_m (2.29)

forallz €T, |[z—y|<randall0<o<f<vy<R" wzthff (x,t)dt = fB a(x,t)dt >0,
and also

% Na@oral <c L B\a(x,t)|dt T (230)
S5 la(z,t)|dt Jg g—oll,

forallz €T, |z —y| <r and all R~ <U<ﬁ<7<0wzthf6|a (x,t)|dt = fB la (x,t)|dt >
0.

We shall need to know that for functions f (x,t) with frequencies in the cone {|¢| > |7},
the mixed norm ||-||Lp(53,p) is equivalent to the Besov norm ||'||83=f’-

Lemma 2.1. Suppose supp f (&,7) C {(€,7) € R* x R: |¢| > |7|}. Then

||f||BS’P = HfHLp(Bg»P) .

Proof. Let {®;};-, (respectively {¢x},-,) satisfy the usual conditions for the Calderon
reproducing formula in R"*! (respectively R™). Then by the condition on the support of f ,
we have @ f = ¢ f, and so

oo

Hf”zl;gp = Z ||q)kf||1£p(R"+l) = Z H(bkfnip(RnJrl)
k=0

k=0

=3 [0 Mt = [ an Dy = 1112, 0,
k=0
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Now we can state our characterization of the local boundedness of T,, on Bf,’p in Case II.

Theorem 2.1. Let a(z,t) be a C*?2 function with a(x,t) > 0 when t > 0 and a(z,t) <
0 when t < 0, let y € R™ and suppose that a € Aj;:a at the fibre F(y o). Let U =
{(z,y): |z —y|<r, R~ <t <R} where r, R~ and RT are as in (2.29) and (2.30). Let
p, P be C= functions supported in U, and suppose that P denotes a multiplier with symbol
supported in the cone {|¢| > |7|}. Then if My, M,y are the operators of multiplication by
@ and 1 respectively, the operator PM,To, My P is bounded on By? for —% <s < A+ 2.
Conversely, if o =1 =1 on U, and MyT, My is bounded on By for some s € (—%, A+ 2),
then a € .A;r,a at the fibre F(, 0y. In particular, PMcpr(;H) My P is bounded on Bp? for
—1<s<A+2

Proof. Choose p € C2°(R™) with supp p C {z : |x —y| < r} and p(z) = 1 on the support
of ¢. Then p(z)a(z,t) satisfies Aj,a since for any fixed x, the inequality in A;;" o, 1s unaffected

by multiplying a(z,t) by a positive constant. Thus the operator T}, obtained from T, by
replacing a with pa, is bounded on LP (Bg’p) by Theorem 2.1 together with the same result
scaled to R™ x (—R,0). Now if supp ¢, supp ¢ C U, then PM T MyP = PM, T MyP is
bounded on Lp(l'j’g’p), and so also on Bg’p by Lemma 2.1. By Lemma 1.12, we now conclude
that PM,T,MyP is bounded on B? for —& < s < A+ 2.

Conversely, if ¢ =1 =1on U and M,T, My is bounded on B,? for some s € (—%, A+ 2),
then by Lemma 1.12, it is bounded on Bg”’ . So suppose Ta = M,T,My is bounded on
624’ . The proof of necessity in Theorem 2.1 carries over here with just a few changes, as
follows. With notation as in the proof of Theorem 2.1, we have from (2.9) and (2.10) that

B
Re(Tus, f)(@,t) = Re(M,Tath f)(2,1) > cr®? / a(w, ') dt’ (2.31)

for [z —w| < cr, t € (v,6). Now choose € C°(R™1) such that n > 0, support n C B(0, 3)
and [p,.1 n(z)dz = 1 (note the use of R in place of R™ here). With n,(z) = r~"n (%),
it follows easily from (2.31) that

ﬁ ’
Re(y * Tudy f) (1) > er®! / alw, )P dt’ (2.32)

for [x —w| < cr,t € (v,9), with a perhaps smaller constant c—note that r < (6 —~)/3 if, as
we may assume, a(z,t) < 1/3. If we use the inequality |7, * g[|,;, < C ”9”82"’7 valid for any
g € BYP(R"1), 1 < p < oo, (this is (2.12) with R"*! in place of R"), the Aj’a condition in
the open set 7 Ug) can be derived as in the proof of Theorem 2.1.

Finally, a € CM?2 implies a € .A+ . by the following elementary computation using
P o F3)

Lemma 1.4:

1 A ;1
{7/ a(z,t)? dt} < sup a(z,t)

ff a(z,t)dt o<t<y
L -
gc( / a(:z:,t)dt) T py (1.11)

y—o

Cﬁ [/PY (x,t)dt] o

for 0 < o < B < since [ a( xt)dt—2fﬁ a(z,t)dt

,m—paand’y—ﬁgy—agl,
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Similarly for A7, and Af,’a. Simple examples show this is sharp. This of course shows that
PMyT_.1 _MyP is bounded on B;? for —1 < s < A+2 as required.

p(A+3)

2.2. Boundedness of K,

In [6] we reduced matters regarding the gain from g in the oblique derivative problem to
the boundedness of the operator

t
Kf(l’,t) _ / eza:ﬁ/ e~ f:, a(w,@)Q(m,@,&)d9f~(£7t/)dt/dg
n 0

from a Besov space into LP. It is known that if a is C> and has type k, then K gains 17
derivatives, i.e. K € O#+1. In this subsection, we extend this result to rough a by replacing
the type condition on a with the condition

B v
(T.) B—aﬁC’(/ |a(x,t)|dt> for a < B, and x € R"™.
We begin by proving the analogue of Theorem 2.1 for the operators K, = KQ" given by
t
K, f(w,t) = / o / Qla, 1/, &) e Jir el 00 £ (¢ ¢')d d. (2.34)
n 0

Theorem 2.3. Suppose 1 < p < oo and a(z,t) is a bounded nonnegative function on

R"™ x (0,1). Then K, is bounded on Lz(jovl) (BYP (R™)) if and only if a satisfies the (T,)

condition.

Proof. As in the proof of Theorem 2.1, fix w in R"™ and let r = ff a(w, 0)df. Then with
¢r as before, the real part of the kernel of K, ¢, satisfies the following estimate for |z — w|,
|#' —w| < er,and ¢, t' € (o, B):

Re(K,¢,)(x,t,2't")
= [ conlle )9 Qe . €)) ¢ a0

S / erVe~ L a@)Crld0 ge 5 v (2.35)
7= <[E1<%

Now define f by

f(xlv tl) = XB(w,cr)(m/)X(oz,B) (tl)' (236)

Combining (2.35) and (2.36) we obtain for |z —w| < cr, t € (o, 8),

Re(K, o, f)(z,t) > c/ r VTN B —a) > V(8 - a). (2.37)
B(w,cr)
As in the previous subsection, choose 1 € C2°(R™) such that 1 > 0, supportn C B(0, %) and
Jpn n(x)dz = 1. With n,.(x) =7~y (%) , it follows immediately from (2.37) that
Re(n, x K, ¢ f)(z,t) > cr (8 — a). (2.38)

or lx —w| <er,t € (a,B), with a perhaps smaller constant c—note that r < (8 — «)/3 if,
as we may assume, a(z,t) < 1/3. From (2.36), (2.38), (2.12) and the boundedness of K, ¢,
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on LP (Bg’p), we now obtain

(er™(B—a))’ er™(B — a)
B 1
< foo [ e Koo ot < e Koy

1
p
<C [ K0 Myt < C / 0012y 0 g
o [( >l i) it <0 [ 15100

_ 1 AINIP ! J4 — (3
c/o /”|f(x,t)| de'dt’ = Cr™(B — a),

which yields the 7, condition since r = ff a(w,t")dt’.

To show that the 7, condition implies the boundedness of K, on LP (Bg’p), we proceed
as before by using the Calderén reproducing formula on a Littlewood- Paley decomposition
of K. Let ¢, and 15, be as in subsection 2.1. We have for any f, g € C*(R" x (0,1)),

/1 K, f(x,t)g(z,t)dxdt = i/l/ K, 2 (x,t)g(x, t)dxdt
0 R v I ) P 0 . v¥k ] 9 )

1
=[] ()t o

o 1
+ ;/0 /n[(l — i) Ky op) (Or ) (z, 1) g(x, t)dadt

oo
#3 [ esonte. 0ot
:inJlrIIwLIII. (2.39)
Term I in (2.39) is handled just as in the previous subsection, obtaining
1< Cl Ao sy 19l e (0 (2.40)

for f, g € C(R™ x (0,1)).

To estimate term IT in (2.39), we apply Propositions 1.1 and 1.2 to the composition
(I — ) o K¢y, with M = 1, to obtain that (I — ) K, ¢y maps B, P (dz) into By (dx)
with norm independent of k, t and ¢'. Thus

11} < Z I ) Kok (D) o2y 191l (82)

< ZC”¢/€f||LP(B “p)HgHLp (BOT’ )

k=1

< 202 k”||f||Lp(50p)||g||Lp (5%

k=1
= Cll Sl o sy l91 (827 (2.41)

for f, g e C°(R™ x (0,1)).
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To estimate the main term IIT in (2.39), we need the following inequality, uniformly in
k:

/ / | K, pph(x,t)|Pdedt < C’/ / (x,t)|Pdxdt, k>1, (2.42)

for all h € S(R™ x (0,1)), the subspace of S(R"*!) whose elements are supported in R™ x
(0,1). Assuming (2.42), we have for f, g e C°(R" x (0,1)),

1
'Y

e / 1 / n (fj |Ky¢k<¢kf><x,t>|”)%(i wkg(x,tnp) dndt

1
7/

/ / 2::|¢kf x,t) |P dxdt / / (Z ) \”)dazdt}
1)

),

L
Iy

by (2.42) applied with h = ¢i f € S(R"

sc(/o 1FC DI dt)” / o, ||det)

= Ol sy 19 (57 (2.43)

Combining (2.39), (2.40), (2.41) and (2.43) shows that K, is bounded on LP (Bg’p), and
thus it remains only to establish (2.42).
To estimate the kernel K, ¢ (x,t, 2", t") of K, ¢, we write, using (2.34),

(o, 1,2 1)] = X0 (1) / e (Qla, ¥, ) e I A= NAEOONG, (e) e

9-2k _ A N o ) ,
*X(Ot) ’/ ((2 2k+x_i/|2> el M) (Q(x,t',€))

% o= Jira(@0)Q(x,0 L d{‘

k—m [t
< X(0.) (t/) (27219 + ‘x o | ) Nonko—2kN kv ,—2 S a(x,0)do
(2.44)
since |(—A£)£ Or(€)] < Cp272K 2= ¢| < Q(x,0,€) < 21| for some fixed m, and ¢y
is supported in {¢ : 2¥71 < |¢| < 2Kt} Denote by M the Hardy-Littlewood maximal

operator in the x-variable, so that

/ 2871+ (2% — 2/)?)) 7N |W(2’, )| da’ < O Mh(z,t'), (2.45)
for N > 4 . Since a satisfies the 7, condition (2.33), we have
2]61/6—2]‘:7"" a(x 9)d9 < 2]61/ —Qk "o~ I/V‘t t |1/V (246)

Now the right side of (2.46) is an even integrable function of ¢t — ¢’ satisfying
1 —m—1/v |1/v
/ S Ll B (or dt') < Cru
0
uniformly in %, and so we conclude that

1
/ o =2 [ a0 N (3 )t < Co N (M) (2, 8), (2.47)
0
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where M denotes the Hardy-Littlewood maximal operator in the t-variable. Combining
(2.44), (2.45) and (2.47) yields

t
K, dih(z,t)] < CN/ okv =27 [ a(x,@)d&/
0

2k:n
n [+ (282 — 2'])?]

hz', t|dx'dt’
v [h(2'

t
S CN/ 2kue—2k*m fttl a(z,G)dGMh(x’t/)dt/
0

< OnM(MB)(z, t). (2.48)
We thus have

1 1
/ / | Ky, prh(z,t)Pdedt < C/ / |M(Mh)(z,t)Pdtdz, by (2.48)
O n O n

1
<c / / \Mh(z, t)|Pdtdz
0 n

1
<c [ [ inwords
O mn

since both M and M are bounded on LP. This establishes (2.42) and completes the proof
of Theorem 2.3
In order to state a local version of this result, we recast the definition of the 7,, condition

in terms of open sets. Let
Ur = {(z,t)eR™ x R : |z|,|t| < R},
and note that 7 ((x,s),t) = (z,s +t) is the flow for T = % through (z, s).
Definition 2.2. The function a satisfies the T, condition in the open set Ug if

B v
B—aSC(/ |a(x,t)|dt> forall —R<a<p <R, and |z| <R.
67

Now we can state our characterization of the local boundedness of K, on B;’p.

Theorem 2.4. Let a(x,t) be a CM?2 function, and suppose that a € T, in the open set
Ug. Let @, ¥ be C* functions supported in Ug, and suppose that P denotes a multiplier with
symbol supported in the cone {|¢| > |7|}. Then if M, My are the operators of multiplication
by ¢ and v respectively, the operator PM,K, My P is bounded on By? for —% <s<A+2
Conversely, if p =1 =1 onUg, and M, K, My, is bounded on By for some s € (—%, A+ 2),
then a € T, in the open set Ur: for some R’ > 0.

Proof. The operator K, is bounded on Lp(82>p) by Theorem 2.3 together with the same
result scaled to R™ x (—R,0). Now if supp ¢, supp ¢ C Ug, then PM,K, M, P is bounded
on LP(BS*”), and so also on Bg’p by Lemma 2.1. By Lemma 1.12, we now conclude that
PM,K,MyP is bounded on B3P for —1 < s <A +2.

Conversely, if ¢ = ¢ = 1 on U; and M,K, M, is bounded on Bf,*p for some s €
(—%,)\—1—2), then by Lemma 1.12; it is bounded on Bg’p . So suppose I?l, = M K, My
is bounded on Bg’p . The proof of necessity in Theorem 2.3 carries over here with just a few
changes, as follows. With notation as in the proof of Theorem 2.3, we have from (2.37) that

Re(K, ¢, f)(w,t) = Re(My K, ¢, f)(x,t) > er ™" (8 — ) (2.49)
for |z —w| < er, t € (o, B). Now choose € C°(R™1) such that n > 0, support n C B(0, %)
and [p,.1 n(x)dz = 1 (note the use of R in place of R™ here). With n,(z) = r~"n (£),

T
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it follows easily from (2.49) that

~ B ,
Re(n, « K, ¢ f)(z,t) > crf”/ a(w, t"P dt’

o
for |x —w| < cr,t € («,B), with a perhaps smaller constant c—note that r < (8 — a)/3 if,
as we may assume, a(z,t) < 1/3. If we use the inequality ||, * g||,, < C ||g||82,zo7 valid for
any g € BYP(R™*1), 1 < p < oo (this is (2.12) with R"*! in place of R™), the 7, condition
in the open set Ugrs can be derived as in the proof of Theorem 2.3.

2.3. Boundedness of I

In [6], we reduced matters regarding the gain from h in the oblique derivative problem to
the boundedness of the operator

f(at) = [ etmen a0 f ¢) g

from a Besov space into Bg’p. In this subsection, we show that if a has type k, then K gains
m derivatives from h in the LP scale of smoothness spaces (note that since a vanishes
at the origin, k > 1; for £ = 0, this would agree with the classical result for the Poisson
integral in the half space). More generally, we extend this result to fractional v replacing

the type condition on a with a type conditon at the origin,
B ¥
(P.) 18] < c)/ (e, Nt forall e B, v R (2.50)
0

We begin by proving the analogue of Theorems 2.1 and 2.3 for the operators I, = KQ"
given by
Ko f(x,t) = / eTEQ(a, ! &) Tem Jo o NREOOU f (6) de. (2.51)

Theorem 2.5. Suppose 1 < p < oo and a(x,t) is a bounded nonnegative function on
R"™ % (0,1). Then K, is bounded from BY? to L€0,1) (Bg’p (R™)) if and only if a satisfies the
Ppy condition.

Proof. As in the proof of Theorem 2.3, fix w in R™ and let r = ff a(w,#)d. Then with
¢r as before, the real part of the kernel of I, ¢, satisfies the following estimate for |z — w],
|#" — w| < er, and ¢ € (0, B):

Re(Ky¢r)(w,1,2') = / cos((@ — ') - €) (Q(a, 1',€))" e~ fo N0 ) e

n

> / er~ve o “(I"g)crfldedﬁ >cr 7T, (2.52)
3 <lg<t
Now define f by
f(SC/) = XB(w,ecr) (IZZI) (253)
Combining (2.51) and (2.52) we obtain for |z —w| < cr, t € (0, 8),
Re(Kyor f)(z,t) > c/ 7T >er™ 7. (2.54)
B(w,cr)

As in the previous subsection, choose € C2°(R"™) such that n > 0, support n C B(0, %) and
Jpn n(x)dz = 1. With 5, (x) = r~"n (£), it follows immediately from (2.54) that

Re(ny * Kyor f)(x,t) > er™? (2.55)
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for |x —w| <cr,t € (0,8), with a perhaps smaller constant c—note that r < 3/3 if, as we
may assume, a(z,t) < 1/3. From (2.53), (2.55), (2.12) and the boundedness of K,¢, from
Bg’p to LP (Bo’p) we now obtain

(Y erp < / | / K 60 f (2, 1) Pt < / 5 1 e Ty
<c / 0 F 1 gy < C 0010

= CZ ”Sﬁk * ¢erLp(d»,;) <C Hf”Lp(dr
k=0

=C lf (&', ) |Pda’ = Cr™,
R7Z

which yields the P, condition since r = foﬁ a(w,t")dt'.

To show that the P, condition implies the boundedness of K, from 824’ to LP (BS*’),
we proceed as before by using the Calderén reproducing formula on a Littlewood- Paley
decomposition of K. Let ¢ and ¢ be as in subsection 5.1. We have for any f € C°(R")
and g € C(R" x (0,1)),

/ Ko f(x,t)g(z, t)dxdt = Z / K2 f(x,t)g(z, t)dadt,
Rn R™

- / [ 066 .o t)dade

< 1
+,;/o / (= 0K 0k (D) (2, g (w, ) dadt

i ,; /0 / (K5 0n) (01 (@, ) (rg) (, ) davdt

=T+ IT+III. (2.56)

To estimate term I in (2.56), we proceed as in the previous section to obtain
I < Clifllgorligl . (5% (2.57)

for f € CX(R") and g € CZ(R™ x (0,1)).

To estimate term I in (2.56), we apply Propositions 1.1 and 1.2 to the composition
(I — ) o Ky¢p, with M = 1, to obtain that (I — ) Ky¢r maps B, *P(dx) into B (dx)
with norm independent of k and ¢. Thus

11| < Z 1 = r) Ky br(@n ) 1o (537 191 v (5%

< Z CH(bkf”B;WP ||9||Lp/ (Bo;p’)

< 202 " fllgorllgl (527")

k=1
= Cllfllgellgll (5%") (2.58)
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for f € CP(R™) and g € C°(R™ x (0,1)).
To estimate the main term 7] in (2.56), we need the following inequality, uniformly in
k:

1
/ / K dh(a, ) Pdadt < C [ |h(@)Pdz, k> 1, (2.59)
0 n R™

for all h € S(R™). Assuming (2.59), we have for f € C3°(R") and g € C°(R"™ x (0,1)),

e /01 /R" (i Pordul s}z, t)|p) % (i [Vrg(z, t)|p,> ﬁdxdt
k=1 2
< {/01 /n (i |’C’Y¢k(¢kf)<x’t)|p)d$dt}%
k=1

o0

X {/01 /n(; lwkg(x’t”p/)dxdt}ﬁ
7 C{/R" <§|¢kf( |p dx / / ZWkg (z,t)P )dxdt}

by (2.59) applied with h = ¢ f € S(R”)7

.
I

<C|f||3w</ o0y dt) " = Cl el - (2.60)

Combining (2.56), (2.57), (2.58) and (2.60) shows that K, is bounded from B to L? (B)?),
and thus it remains only to establish (2.59).
To estimate the kernel K¢ (z,t,2') of K, ¢r, we write, using (2.51),

‘K:V(bk(x, t $/)|
- ’/ e (Qa,1,€))7 €7 i QNG (6) e

k
=1/ (G 28 ) i) Qo 1,)T e a0 000G, (6)d¢

2— 2k+|l‘—$/|2

2—2k+ |z — | )~ Nonko—2kN gk~ —2k=m [T a(z,0)do (2.61)

since |(7A§) Gr(€)] < Cp272K 21=mig| < Q(x,t,€) < 2™ L|¢] for some fixed m, and ¢y
is supported in {¢ : 2F1 < |¢] < 21}, As in subsection 5.1, denote by M the Hardy-
Littlewood maximal operator in the xz-variable, so that

/ 287 (1 4+ 2%z — 2/)?)) 7N |W(2!)| da’ < CnyMh(z), (2.62)
for N > % . Since a satisfies the P, condition (see (2.50) with v replaced by pvy), we have
Zk’y —gk-—m fO a(z,0)do 2k’7672k_m’ctﬁ . (263)

Combining (2.61), (2.62) and (2.63) yields

L 2kn
< OOk =2 et /
[Kyorh(z,t)| < Cn27e g L+ (2% — 27))2]

w h(a)lda’

m L
< Cn27e 2P N (a). (2.64)
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We thus have

1 1 1
|| manapdsa <o [ oo a) [ s
0 n 0 Rn

<c | Mr@)Pdz<C / ()P,
Rn Rr

since

1 1 2"
k—m _, 5~ |P _o—m... S \ PY
/ ‘2k76—2 ct Py dt = 2k:p7/ e 2 cs g (27> < Cvp”77
0 0

and M is bounded on LP. This establishes (2.59) and completes the proof of Theorem 2.5.
Now, as at the end of the previous subsection, we recast the definition of the PP, condition

in terms of open sets. Recall that
Ug ={(z,t) e R" X R : |x|,|t| < R},

and that 7 ((z,s),t) = (z,s +t) is the flow for T = % through (z, s).
Definition 2.3. The function a satisfies the P, condition in the open set Ugr if

B
18] SC’/O a(ﬂr;,t)dt‘7 forall — R< 8 < R, and |z| < R.

Now we can state our characterization of the local boundedness of K, on ByP.

Theorem 2.6. Let a(x,t) be a CM?2 function, and suppose that a € Ppy in the open set
Ug. Let p , Y be C*™ functions supported in Ug, and suppose that P denotes a multiplier with
symbol supported in the cone {|¢| > |7|}. Then if M, My are the operators of multiplication
by ¢ and ¢ respectively, the operator PM,K. M,y is bounded By on for —% <s<A+2.
Conversely, if p =1 =1 onUg, and M K. M, is bounded on By? for some s € (—%, A+ 2),
then a € Ppy in the open set Ugs for some R’ > 0.

Proof. The operator K, is bounded on Lp(Bg’p ) by Theorem 2.5 together with the same
result scaled to R” x (—R,0). Now if supp ¢, supp ¢ C Ug, then PM,K., M, is bounded
on Lp(Bg’p), and so also on Bg’p by Lemma 2.1. By Lemma 1.12, we now conclude that
PM,K. My is bounded on By¥ for f% <s< A+2.

Conversely, if ¢ = ¢ = 1 on Ur and M,K,M, is bounded on B;? for some s €
(=3,A+2), then by Lemma 1.12, it is bounded on BJ?. So suppose K, = M KM,
is bounded on Bg”’ . The proof of necessity in Theorem 2.5 carries over here with just a few
changes, as follows. With notation as in the proof of Theorem 2.5, we have from (2.54) that

Re(KL ¢ f)(x,t) = Re(MyKy ¢ f)(x,t) > er™ 7 (2.65)

for [z—w| < cr, t € (0,5). Now choose n € C2°(R™*1) such that n > 0, support n C B(0, 1)
and .., n(x)dz =1 (note the use of R"™ in place of R™ here). With n,(z) = r~"n (%),
it follows easily from (2.65) that

B ’
Re(n, KL f)(2,t) > cr_v/ a(w, t")P dt’

a
for |z —w| < er, t € (0,0), with a perhaps smaller constant ¢c— note that r» < /3 if, as
we may assume, a(z,t) < 1/3. If we use the inequality ||, * gl ., < C'||gllz0.», valid for any
g € BYP(R™1), 1 < p < oo, (this is (2.12) with R"*! in place of R"), the Py, condition in
the open set Ugr: can be derived as in the proof of Theorem 2.5.
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2.4. Boundedness of K in Hélder Spaces
We study K when a satisfies the 7, condition:

v

t
t— | < c‘/ oz, 6)d8 (2.66)
t/

for all z € R™ and all t,#' € R with ¢t > 0. Denote the unit ball in R™ by B. Using the
argument in [4] we have the following lemma.

Lemma 2.2. Suppose v > 0 and a satisfies the T, condition (2.66). Then there is a
constant C,, such that for every e > 0,

¢
/ / |K (2,2’ t, )| da'dt’ < Cp e, (2.67)
0 J|z—z'|<e
¢
/ / K(z+ h,a'st,0) — K(z, 2,4, 8)| da'dt’ < Cy|h|" | (2.68)
0o JB
and if in addition a(z,t)a(z,t +n) > 0, then
t+n
/ / K (2,2, 4,¢')] da’dt’ < C, nIn|n] ", (2.69)
¢ B
¢
/ / |K (z, 2/ t+,t") — K(z, 2/, t,t')| da’dt’ < C,, |n|In|n|". (2.70)
0o /B

If we apply the argument used in the proof of Corollary 1.2, we now obtain
Theorem 2.7. If A > 0, and in addition a satisfies the T, condition (2.66), then K maps
A% to ASTY for all s >0 with s +v < A+ 2.
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