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This is a continuation of the previous paper [6]. The authors prove Hölder and Lp regularity
of operators constructed from the oblique derivative problem in [6] by establishing estimates of
pseudodifferential operators with parameters.
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§1. Some Special Operators

In the previous paper [6] in this journal, we considered the oblique derivative problem on

nonsmooth domains, and reduced the question of regularity of the solutions to the bound-

edness properties of certain pseudodifferential operators with limited smoothness. In this

paper we will apply the technique of symbol splitting to these operators, and ultimately

reduce their boundedness on Sobolev spaces to weighted norm inequalities for the Hardy

operator. For example, one of the basic operators we consider in the third subsection below

is of the form

Ku(x, t) = (2π)−
n
2

∫ t

t0

∫
|ξ|≥1

eix·ξK(x, t, t′, ξ)ũ∗ (ξ, t′)dξdt′.

One obvious feature of this operator is that it is a pseudodifferential operator in the x-

variables, parameterized by t and t′. So we will also consider extending the rough ψdo

calculus to pseudodifferential operators with parameters in the second subsection below.

But first, we collect the necessary material on rough symbols.

1.1. Rough Pseudodifferential Operators

In this subsection we will define the symbol classes CdSmγ,δ, recall the mapping properties of

their associated operators in the Hölder, Lp Sobolev and Besov scale of spaces, and describe

the symbol splitting which permits a calculus for the composition of two such operators. In

particular, this calculus is crucial for the estimates in the remainder of this section and in

section 2.
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Definition 1.1. A symbol σ : Rn × Rn → R belongs to the symbol class CMSmρ,δ (where

m is real, 0 ≤ ρ, δ ≤ 1 , and M is a nonnegative integer) if for all multi-indices α and β

with |α| ≤M , there are constants Cα,β such that∣∣∣∂αx ∂βξ σ(x, ξ)∣∣∣ ≤ Cα,β(1 + |ξ|2) 1
2 (m+δ|α|−ρ|β|). (1.1)

If 0 < µ < 1, then σ belongs to CM+µSmρ,δ if in addition to (1.1), we have∣∣∣∂βξ σ(x+ h, ξ)−
M∑
ℓ=0

(h · ∇x)
ℓ

ℓ!
∂βξ σ(x, ξ)

∣∣∣ ≤ CM,β |h|M+µ (1 + |ξ|2) 1
2 (m+δ(M+µ)−ρ|β|). (1.2)

These symbol classes are treated for example in M. Taylor’s book [13]. Here Cd denotes

the usual Lipschitz space of continuous functions whose derivatives of order ⌊d⌋ are bounded
(when d is an integer), or satisfy a Hölder condition of order d−[d] (when d is not an integer).

Let Λs be the usual Hölder space, denoted by Cs∗ in [13]. Of course Λs = Cs for s not an

integer, and consists of those f with Dαf in the Zygmund class for |α| = s− 1, when s is a

positive integer.

Definition 1.2. A symbol σ : Rn × Rn → R belongs to OmI if its associated oper-

ator σ(f)(x) =
∫
Rn e

ix·ξσ(x, ξ)f̂(ξ)dξ admits a bounded extension from Hs+m
p,comp to Hs

p,loc

(respectively Λs+mcomp to Λsloc) for all s in the interval I (respectively I ∩ (0,∞)) and all

1 < p < ∞. The symbol σ belongs to O
m

I if in addition, its associated operator is bounded

from Λt+mcomp to Λtloc where t is the right endpoint of the interval I.

The symbol classes arising naturally in the oblique derivative problem are CdSm1,δ (see

subsection 1.2 of the introduction) and so we restrict attention to the classes CdSm1,δ for the

remainder of this section. In [2], R. Coifman and Y. Meyer showed that CdSm1,0 ⊂ Om{0} for

d > 0 (a special case of Proposition 9, p. 38), and G. Bourdaud [1, Bou] then extended this

to the following result (see e.g. section 2.1 of [13]).

Theorem 1.1. CdSm1,δ ⊂ O
m

(−(1−δ)d,d) for all m real, all d > 0 and 0 ≤ δ < 1.

We now recall the technique of symbol splitting (see (1.3.21) and (1.3.15) of [13]).

Proposition 1.1. Given τ ∈ CdSm1,δ, and δ < r < 1, we can write τ = τ ♯ + τ ♭ with

τ ♯ ∈ Sm1,γ and τ ♭ ∈ CdSm+d(δ−γ)
1,γ . Moreover, there are the following improved estimates:

∇ℓ
xτ
♯ ∈

{
S
m+|ℓ|δ
1,γ for 0 ≤ |ℓ| ≤ d,

S
m+γ(|ℓ|−d)+δd
1,γ for |ℓ| > d,

(1.3)

This symbol splitting permits the use of τ ♯ in the classical asymptotic formula for the

composition of two smooth pseudodifferential operators, namely

σ ◦ τ −
M∑
ℓ=0

1

iℓℓ!
∇ℓ
ξσ · ∇ℓ

xτ ∈ CdSm1+m2+(M+1)(δ−1)
1,δ for allM ≥ 0, (1.4)

where σ ∈ CdSm1

1,δ and τ ∈ Sm2

1,δ with 0 ≤ δ < 1 and d > 0. Note that the standard proofs in

the smooth case apply even when σ is rough and τ is smooth (see e.g. section 3 of Chapter

VI of [12]). As a consequence of (1.4) and Proposition 1.1 we obtain

Proposition 1.2. Let σ ∈ CdSm1

1,δ and τ ∈ CM+dSm2

1,δ , where 0 ≤ δ < 1, d > 0 and
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m1 < M + d. Suppose d > 1. Then with γ = 1− (d−1)(1−δ)
M+d , we have

σ ◦ τ −
M∑
ℓ=0

1

iℓℓ!
∇ℓ
ξσ · ∇ℓ

xτ ∈ Om1+m2+(M+1)(δ−1)

(−d(1−γ),min{d,M+d−m1}). (1.5)

Suppose 0 < d ≤ 1. Then with γ = 1− ϵ
M+1 for any ϵ > 0, we have

σ ◦ τ −
M∑
ℓ=0

1

iℓℓ!
∇ℓ
ξσ · ∇ℓ

xτ ∈ Om1+m2+(M+1)(δ−1)+(1−d)(γ−δ)+ϵ
(−d(1−γ),min{d,M+d−m1}) . (1.6)

1.2. Pseudodifferential Operators with Parameters

Define t0 = −1 if
→
ℓ satisfies case (I), and t0 = 0 if

→
ℓ satisfies case (II) (see [6]). We now

define our symbol classes for operators with parameters. We will be working exclusively

with the cases ρ = 1 and 0 ≤ δ < 1.

Definition 1.3. Let g be a nonnegative function on (0, 1). We say that the symbol

σ(x, t, t′, ξ) ∈ CMSm1,δ,g (where M ≥ 0 is an integer) if for all multi-indices α, β and non-

negative integers s, s′, with |α|+ s+ s′ ≤M , there are constants Cα,β,γ such that∣∣∣∂st ∂s′t′ ∂αx ∂βξ σ(x, t, t′, ξ)∣∣∣ ≤ Cα,β,s,s′ g (|t− t′|) (1 + |ξ|)m+δ|α|−|β|+s+s′
(1.7)

for |ξ| ≥ 1, x ∈ Rn and t, t′ ∈ (−1, 1). If 0 < µ < 1, then σ belongs to CM+µSm1,δ,g if in

addition to (1.7), we have for 0 ≤ s+ s′ ≤M ,∣∣∣∂st ∂s′t′ ∂βξ σ(x+ h, t, t′, ξ)−
M−s−s′∑
ℓ=0

(h · ∇x)
ℓ

ℓ!
∂st ∂

s′

t′ ∂
β
ξ σ(x, t, t

′, ξ)
∣∣∣

≤ CM,β,s,s′ g (|t− t′|) |h|M−s−s′+µ (1 + |ξ|2) 1
2 (m+δ(M+µ)−|β|).

Definition 1.4. We say that the symbol σ(x, t, t′, ξ) ∈ Om
I,g if its associated operator,

σf(x, t, t′) =

∫
Rn

eix·ξσ(x, t, t′, ξ)f̃(ξ, t′)dξ

satisfies

∥σf(·, t, t′)∥Hs
p(I

n) ≤ C g (|t− t′|) ∥f(·, t, t′)∥Hs+m
p (In)

for all f (·, t, t′) ∈ Hs+m
p (In), s ∈ I and t, t′ ∈ (−1, 1).

Lemma 1.1. If σ ∈ CM+µSm1,δ,g, then σ ∈ Om
I,g where I = (−(1− δ)(M + µ),M + µ).

Proof. Apply Theorem 1.1.

Although we assume σ is compactly supported in the x variables, g is not necessarily

continuous. Various choices of g will be used later.

Proposition 1.3. Let σ ∈ Om
I,g , m ≥ 0, 0 ∈ I. If g is integrable on (0, 1), then the

operator σf(x, t) =
∫ t
t0

∫
Rn e

ix·ξσ (x, t, t′, ξ) f̃(ξ, t′)dξdt′ is bounded from Hm
p (Rn × (−1, 1))

to Lp(R
n × (−1, 1)). In particular, this holds for σ ∈ CµSm1,δ,g, µ > 0.

Proof. We have∫ 1

−1

∫
Rn

|σf(x, t)|p dxdt =
∫ 1

−1

∫
Rn

∣∣∣∫ t

t0

σ (x, t, t′, Dx) f (·, t′) (x)dt′
∣∣∣pdxdt

≤
∫ 1

−1

∫
Rn

{∫ t

t0

|g (|t− t′|)|−
p
p′ |σ (x, t, t′, Dx) f (·, t′) (x)|

p
dt′
}
dx

×
(∫ 1

−1

|g (|t− t′|)| dt′
) p

p′

dt
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by Hölder’s inequality. Since the operators σ (x, t, t′, ξ) are in Om
I,g by Lemma 1.1 the above

is bounded by

≤ C

∫ 1

−1

∫
Rn

∫ t

t0

|g (|t− t′|)|−
p
p′ +p ∥f (x, t′) ∥pHm

p (Rn
x )
dt′dt

≤ C

∫ 1

−1

∫ 1

−1

|g (|t− t′|)| ∥f (x, t′) ∥pHm
p (Rn

x )
dt′dt

≤ C ∥g∥1
∫ 1

−1

∥f (x, t′) ∥pHm
p (Rn

x )
dt′ ≤ C∥u∥pHm

p (Rn
x×(−1,1)),

where 1
p′ +

1
p = 1 and ∥ · ∥Hm

p (Rn
x )

denotes the norm in Hm
p (Rn).

Corollary 1.1. If φ is a zero order ψdo in Rn+1 with support in

{
ξn+1 < λ

n∑
i=1

|ξi|2
}

for

some λ > 0, and if σ is a symbol in CM+µSm1,δ,g with g integrable on (0, 1) and µ > 0, then

σ◦φ is bounded from Hs+m
p (Rn × (−1, 1)) to Hs

p (R
n × (−1, 1)) for all s ∈ [− (1− δ)M,M ].

Proof. This follows from the identities

σ ◦ φ =
∑
j

△−1∂xj ◦ σ ◦ ∂xj ◦ φ+
∑
j

△−1∂xj ◦ σj ◦ φ,

σ ◦ φ =
∑
j

∂xj ◦ σ ◦ ∂xj△−1 ◦ φ+
∑
j

σj ◦ ∂xj△−1 ◦ φ,

where σj ∈ CM+µ−1Sm+δ
1,δ,g . By Proposition 1.3 and the first identity, we now see that σ ◦φ is

bounded fromHm+1
p (Rn × (−1, 1)) toH1

p (R
n × (−1, 1)) and so by interpolation fromHm+δ

p

to Hδ
p . From the second indentity we see that σ ◦φ is bounded from Hm−1+δ

p (Rn × (−1, 1))

to H−1+δ
p (Rn × (−1, 1)). A simple induction procedure and an interpolation argument

imply that σ ◦ φ is bounded from Hs+m
p (Rn × (−1, 1)) toHs

p (R
n × (−1, 1)) for all s ∈

[− (1− δ)M,M ].

For all of the special operators we consider, we will obtain the above conclusion for the

extended range s < M + µ. See Proposition 1.5 and Lemma 1.7 below.

1.3. Symbol Estimates for K, T and R

Now we turn to estimating some of the special operators appearing in the solution to the

oblique derivative problem. We consider the following operators that arise in the section 2

of [6]:

Ku(x, t) = (2π)−
n
2

∫ t

t0

∫
|ξ|≥1

eix·ξK (x, t, t′, ξ) ũ∗ (ξ, t′) dξdt′,

Tu(x, t) = (2π)−
n
2

∫ t

t0

∫
|ξ|≥1

eix·ξK (x, t, t′, ξ) a (x, t′)

·Q (x, t′, ξ, a (x, t′)) ũ∗ (ξ, t′) dξdt′,

Ku(x, t) = −(2π)−
n
2 △−1

x

∫
|ξ|≥1

eix·ξρ̃(x, t0)e
−Ã(x,t,t0,ξ) |ξ|2 ũ∗ (ξ, t′) dξ, (1.9)

along with the commutator

R = K ◦ ãQ−KãQ, (1.10)

where Q (x, t, ξ, s) is smooth and satisfies

C−1 |ξ| ≤ ReQ ≤ C |ξ| ,
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∂ξα
∂ℓ

∂tℓ
∂m

∂sm
Q

∣∣∣∣ ≤ Cβ,α,ℓ,m (1 + |ξ|)1+(|β|+ℓ)δ−|α|
, (1.11)

and

Ã(x, t, t′, ξ) =

∫ t

t′
a(x, θ)Q (x, θ, ξ, a (x, θ)) dθ,

A(x, t, t′) =

∫ t

t′
a(x, θ)dθ,

K(x, t, t′, ξ) = ρ̃(x, t)e−Ã(x,t,t′,ξ). (1.12)

We use here ã as an abbreviation for a (x, t′) and a for a (x, t). We have

a ∈ Cλ+2, a (x,±1) ̸= 0, and either a ≥ 0 or ta ≥ 0. (1.13)

Also,

u∗ = ρ∗u, ũ∗ (ξ, t′) =

∫
Rn

e−ix·ξu∗(x, t′)dx,

u∗0 (x) = ρ∗ (x, 0)u0 (x) , ũ∗0 (ξ) =

∫
Rn

e−ix·ξu∗0(x)dx,

and t0 = −1 if a satisfies case (I), while t0 = 0 if a satisfies case (II) of [6]. The function

ρ∗ ∈ C∞
c (Rn ×R) is identically 1 in a neighbourhood of the set where a vanishes. The

choice of t0 is crucial. With the above choice, a(x, θ) keeps the same sign in (t′, t) for

t′ ∈ (t0, t), and Re
(
Ã(x, t, t′, ξ)

)
≥ 0 and A(x, t, t′) ≥ 0 for t′ ∈ (t0, t).

One of the features in our estimates is evident when we consider the operator T in (1.9)—

namely that the presence of a with e−A in the symbol results in greater gain than is first

apparent. A simple but effective means for realizing this is the following lemma.

Lemma 1.2. For a satisfying (1.13), we have

|∇xa (x, t)|2 ≤ C |a (x, t)| ,

|∇xA (x, t, t′)|2 ≤ C |t− t′|A (x, t, t′) , t0 < t′ < t,

|a (x, t)|2 ≤ CA (x, t, t0) . (1.14)

Proof. The first two inequalities are proved in ([5], Lemmas 4.3 and 4.4). The last

inequality follows from the facts that A (x, t, t0) ≥ 0 for all (x, t) and a (x, t) = ∂
∂tA (x, t, t0).

The following lemma is crucial for obtaining the gain of 2− 1
p(λ+3) derivatives from f in

Theorem 4 of §1 (see Lemma 5.13 of [5] when k is an integer and see also [7], p. 203 for

related results).

Lemma 1.3. For each real number k ≥ 1, there is a constant Ck > 0, such that

max
t∈I

|f ′(t)| ≤ Ck

{ 1

|I|
max
t1,t2∈I

|f(t1)− f(t2)|+ max
t1,t2∈I

|f(t1)− f(t2)|1−
1
k ∥f∥

1
k

Ck(I)

}
(1.15)

for all intervals I and functions f ∈ Ck(I).
Proof. Suppose first that k is a positive integer. Fix z ∈ I, let P (t) = f ′(z)(t − z) +

· · · + f(k−1)(t)
(k−1)! (t − z)k−1, and let r(t) = f(t) − f(z) − P (t). Let J be an interval such that

z ∈ J ⊂ I, and |J | = min{|I|, δ}, where

δ =

 max
t1,t2∈I

|f(t1)− f(t2)|

∥f∥Ck(I)

 1
k

. (1.16)
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Since P is a polynomial of degree k − 1, there is Ck > 0, independent of J and P such that

maxt∈J |P ′(t)| ≤ Ck
1
|J| maxt∈J |P (t)|. Then using Taylor’s formula to estimate r(t), we have

|f ′(z)| = |P ′(z)| ≤ max
t∈J

|P ′(t)| ≤ Ck
1

|J |
max
t∈J

|P (t)|

≤ Ck
1

|J |

[
max
t∈J

|f(t)− f(z)|+max
t∈J

|r(t)|
]

≤ Ck
1

|J |

[
max
t1,t2∈J

|f(t1)− f(t2)|+
(
∥f∥Ck(I)

)
|J |k

]
≤ Ck

1

|J |
max
t1,t2∈I

|f(t1)− f(t2)|+
(
∥f∥Ck(I)

)
δk−1,

which yields (1.15) using |J | = min {|I| , δ}.
If k is not an integer, then the above argument goes through using P (t) = f ′(z)(t −

z) + · · · + f([k])(t)
[k]! (t − z)[k] and r(t) = f(t) − f(z) − P (t), together with the inequality

maxt∈J |r(t)| ≤ C
(
∥f∥Ck(I)

)
|J |k.

Remark. The inequality max
t∈J

|r(t)| ≤ C
(
∥f∥Ck(I)

)
|J |k used above fails with Λk in place

of Ck when k is an integer. For example, f (t) =
∞∑
k=o

ei2
kt

22k
∈ Λ2, but

|Re (f(t)− f(0)− f ′(0)t)| ≥ c
(
log 2

1

t

)
t2.

Lemma 1.4. Suppose a ∈ Ck−1 and t′ ∈ (t0, t). Then

max
θ∈(t′,t)

|a(x, θ)| ≤ Ck

{A(x, t, t′)
|t− t′|

+A(x, t, t′)1−
1
k ∥a(x, ·)∥

1
k

Ck−1((t′,t))

}
.

In particular, there is C ′
k such that

|a(x, θ)| ≤ C ′
k

(A(x, t, t′)
|t− t′|

)1− 1
k

for all θ ∈ (t′, t). (1.17)

Proof. Since a(x, θ) keeps the same sign in (t′, t) if t′ ∈ (t0, t), the lemma follows from

Lemma 1.3 directly.

The next lemma is the basis for Proposition 1.4 which in turn yields boundedness prop-

erties for K and T and their associated operators. We emphasize that in this section, we

obtain boundedness results valid for Hs
p for all 1 < p < ∞. Sharp boundedness results for

K and T are obtained in section 2.

Lemma 1.5. Let Q and Ã be as in (1.11) and ( 1.12). For t′ ∈ (t0, t), |ξ| ≥ 1,

s1 + s2 + |α| ≤ λ+ 2, and µ ∈ Z+, we have with δ = max
{

1
2 ,

1
λ+1

}
,

|∂s1t ∂
s2
t′ ∂

α
x ∂

β
ξ Ã(x, t, t

′, ξ)|

≤ Cs1,s2,α,β(1 + |ξ|)δ|α|−|β|+s1+s2
(
Ãδ|α|+1(x, t, t′, ξ) + 1

)
, (1.18)

|∂s1t ∂
s2
t′ ∂

α
x ∂

β
ξ (a(x, t

′)Qµ(x, t′, ξ, a (x, t′)))|

≤ Cs1,s2,α,β,k |t− t′|−1+ 1
λ+3 (1 + |ξ|)µ−1+δ|α|−|β|+s1+s2+ 1

λ+3

(
Ã1− 1

λ+3 (x, t, t′, ξ) + 1
)
,

(1.19)
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|∂s1t ∂
s2
t′ ∂

α
x ∂

β
ξ Ãxj (x, t, t

′, ξ))|

≤ Cs1,s2,α,β,q(1 + |ξ|)δ(|α|+1)+s1+s2−|β|
(
1 + Ã(x, t, t′, ξ)δ

)
for s1 + s2 + |α| ≤ λ+ 1,

(1.20)∣∣∣∂s1t ∂s2t′ ∂αx ∂βξ (a(x, t′)Q(x, t′, ξ)Ãxj (x, t, t
′, ξ)

)∣∣∣
≤ Cs1,s2,α,β |t− t′|−

1
2+

1
λ+3 (1 + |ξ|)δ(|α|+1)+s1+s2−|β|+ 1

λ+3

(
1 + Ã(x, t, t′, ξ)1−

1
λ+3+

1
2

)
for s1 + s2 + |α| ≤ λ+ 1. (1.21)

Proof. If s1 + s2 > 0 or |α| ≥ 2, (1.18) is trivial since Q satisfies (1.11). Thus we need

only check the case s1 = s2 = 0, |α| = 1 of (1.18) and this follows from Lemma 1.2 if we

note that Ã1/2 ≤ Ã3/2 + 1. The proofs for (1.19), (1.20) and (1.21) are similar and follow

from Lemma 1.2 and Lemma 1.4.

Proposition 1.4. Let b(x, t, t′, ξ) be Ck in the variables x, t, t′ for some k > 0, be C∞ in

the variable ξ and satisfy for some N > 0,∣∣∣∣ ∂α∂xα ∂β

∂ξβ
∂s1

∂ts1
∂s2

∂t′s2
b

∣∣∣∣
≤ Cα,β,s1,s2

{
(1 + |ξ|)δ(|α|+s1+s2) + Ã(x, t, t′, ξ)|α|+s1+s2+N

}
(1 + |ξ|)−|β|

,

|α|+ s1 + s2 ≤ k. (1.22)

For t′ ∈ (t0, t), |ξ| ≥ 1, s1+ s2+ |α| ≤ min {λ+ 2, k}, and µ ∈ Z+, with δ = max
{

1
2 ,

1
λ+1

}
,

we have

|∂s1t ∂
s2
t′ ∂

α
x ∂

β
ξ (b(x, t, t′, ξ)K(x, t, t′, ξ)) | ≤ Cs1,s2α,β(1 + |ξ|)s1+s2+δ|α|−|β|, (1.23)∣∣∣∂s1t ∂s2t′ ∂αx ∂βξ (a(x, t′)b(x, t, t′, ξ)Qµ(x, t′, ξ)K(x, t, t′, ξ))

∣∣∣
≤ Cs1,s2,α,β,k |t− t′|−1+ 1

λ+3 (1 + |ξ|)µ−1+s1+s2+δ|α|−|β|+ 1
λ+3 , (1.24)

and for |α|+ s1 + s2 ≤ min {k, (λ+ 1)}, we have∣∣∣∂s1t ∂s2t′ ∂αx ∂βξ (b(x, t, t′, ξ) ∂

∂xj
a (x, t′)K(x, t, t′, ξ)

)∣∣∣
≤ Cs1,s2α,β |t− t′|−

1
2

λ+2
λ+3 (1 + |ξ|)s1+s2+δ|α|−|β|− 1

2
λ+2
λ+3 , (1.25)∣∣∣∂s1t ∂s2t′ ∂αx ∂βξ (b(x, t, t′, ξ) ∂∂ta (x, t′)K(x, t, t′, ξ)

)∣∣∣
≤ Cs1,s2α,β |t− t′|−1+ 1

2(λ+3) (1 + |ξ|)s1+s2+δ|α|−|β|− 1
2

λ+2
λ+3 (1.26)∣∣∣∂s1t ∂s2t′ ∂αx ∂βξ (b(x, t, t′, ξ)Ãxj (x, t, t

′, ξ)K(x, t, t′, ξ)
)∣∣∣

≤ Cs1,s2,α,β(1 + |ξ|)s1+s2+δ(|α|+1)−|β|, (1.27)∣∣∣∂s1t ∂s2t′ ∂αx ∂βξ (a(x, t′)Q(x, t′, ξ)b(x, t, t′, ξ)Ãxj (x, t, t
′, ξ)K(x, t, t′, ξ)

)∣∣∣
≤ Cs1,s2,α,β |t− t′|−

1
2+

1
λ+3 (1 + |ξ|)s1+s2+δ(|α|+1)−|β|+ 1

λ+3 . (1.28)

Proof. Inequalities (1.23), (1.24), (1.25) and (1.28) are consequences of Lemma 1.5. To
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see this for (1.23), note that the Liebniz formula gives

∂s1t ∂
s2
t′ ∂

α
x ∂

β
ξ e

−Ã(x,t,t′,ξ) =
∑

Cα′,β′,s′1,s
′
2

( n∏
j=1

∂
s1,j
t ∂

s2,j
t′ ∂

α′
j

x ∂
β′
j

ξ Ã(x, t, t
′, ξ)

)
e−Ã(x,t,t′,ξ),

where the summation is taken over all

α′ = (α′
1, · · · , α′

n), β′ = (β′
1, · · · , β′

n), s′1 = (s1,1, · · · , s1,n), s′2 = (s2,1, · · · , s2,n)

with |α′| = |α|, |β′| = |β|, |s′1| = s1, |s′2| = s2. By (1.18)∣∣∣ n∏
j=1

∂
s1,j
t ∂

s2,j
t′ ∂αj

x ∂
βj

ξ Ã
∣∣∣e−Ã

≤ C
n∏
j=1

(
Ãδ|αj |+1 + 1

)
(1 + |ξ|)δ|αj |−|βj |+s1,j+s2,je−Ã

≤ C(1 + |ξ|)δ|α|−|β|+s1+s2
(
Aδ|α|+|β|+s1+s2 + 1

)
e−Ã ≤ C(1 + |ξ|)δ|α|−|β|+s1+s2 .

as required. The proofs for (1.24), (1.27) and (1.28) are similar.

As for (1.25), we use (1.14) and (1.17) for k ≤ λ+ 3 to obtain∣∣∣ ∂
∂xj

a (x, t′)
∣∣∣ ≤ C |a (x, t′)|

1
2 ≤ C

(A (x, t, t′)

|t− t′|

) 1
2−

1
2(λ+3)

= C
(A (x, t, t′)

|t− t′|

) 1
2

λ+2
λ+3

,

while for (1.18), we use (1.15) with f = a to obtain∣∣∣ ∂
∂t
a (x, t′)

∣∣∣ ≤ C
( max
t′≤θ′≤θ≤t

|a (x, θ)− a (x, θ′)|

|t− t′|

)1− 1
λ+2 ≤ C

( max
t′≤θ≤t

|a (x, θ)|

|t− t′|

) 1
2

≤ C
(A (x, t, t′)

|t− t′|

) 1
2 (1−

1
λ+3 ) |t− t′|−

1
2 by (1.17),

≤ C |t− t′|−1+ 1
2(λ+3) A (x, t, t′)

1
2

λ+2
λ+3 (1.29)

and the result now follows easily.

We must also deal with commutators of the above operators with Dx and this introduces

factors of Ãx into the symbol. Thus we set for m ≥ 0 an integer and δ = max
{

1
2 ,

1
λ+1

}
,

Gmu (x, t) =

∫ t

t0

∫
|ξ|≥1

eix·ξ |ξ|−mδ b(x, t, t′, ξ)
(
Ãx(x, t, t

′, ξ)
)m

K(x, t, t′, ξ)ũ∗ (ξ, t′)dξdt′,

Hmu (x, t) =

∫ t

t0

∫
|ξ|≥1

eix·ξa(x, t′)Q(x, t′, ξ) |ξ|−mδ b(x, t, t′, ξ)
(
Ãx(x, t, t

′, ξ)
)m

×K(x, t, t′, ξ)ũ∗ (ξ, t′)dξdt′,

Jmu (x, t) =

∫ t

t0

∫
|ξ|≥1

eix·ξ |ξ|−mδ b(x, t, t′, ξ)
(
Ãx(x, t, t

′, ξ)
)m

Da (x, t′)

×K(x, t, t′, ξ)ũ∗ (ξ, t′)dξdt′, (1.30)

and in Case II, we define corresponding “Poisson” operators for Gm and Hm,

Gmu (x, t) =
∫
|ξ|≥1

eix·ξ |ξ|−mδ b(x, t, ξ)
(
Ãx(x, t, 0, ξ)

)m
K(x, t, 0, ξ)ũ∗ (ξ, t)dξ,
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Hmu (x, t)

=

∫
|ξ|≥1

eix·ξa(x, t)Q(x, t, ξ) |ξ|−mδ b(x, t, ξ)
(
Ãx(x, t, 0, ξ)

)m
K(x, t, 0, ξ)ũ∗ (ξ, t)dξ.

(1.31)

Here we assume that b(x, t, t′, ξ) is Ck in the variables x, t, t′ for some k > 0, and is C∞ and

homogeneous of degree zero in the variable ξ. Moreover, in order to obtain boundedness up

to the cap λ+ 2, we assume that b(x, t, t′, ξ) satisfies

For any first order constant coefficient differential

operator D, there is an integer M such that

Db(x, t, t′, ξ) =

M∑
j=1

b′j (x, t, t
′) bj(x, t, t

′, ξ), (1.32)

where b′j ∈ Ck−1 and where bj satisfies the same conditions as b.

Remark. If σ ∈ CkS0
1,δ,g for k > 0, Corollary 1.1 only yields σ ∈ O(−(1−δ)[k],[k]). As we

will see below, property (1.32) permits us to easily obtain the improved range O(−(1−δ)[k],k).

Lemma 1.6. Let b(x, t, t′, ξ) be Ck in the variables x, t, t′ for some k ≥ 1, be C∞ in the

variable ξ and satisfy both (1.22) and (1.32). Let Zm denote either of the operators Gm, Hm

or Jm in (1.30). Then there is an integer M such that

D◦Zm = Z̃◦|Dx|+
∫ t

t0

M∑
j=1

∫ θ1

t0

bj (x, t, θ)Zj (x, t, t
′, Dx) |Dx|1−δ dt′dθ+Z0 (x, t,Dx) , (1.33)

where Z̃, Zij have the same form as Zm and Zm+1 respectively, with the same smoothness

in x, t, t′, where bj = 0 if m = 0 or Zm = Gm or Hm, and bij ∈ Cmin{λ,k−1} otherwise, and

where

Z0u =
k′∑
i=1

∫
|ξ|≥1

eix·ξ |ξ|k
′−i

bi0(x, t, ξ)ũ
∗ (ξ, t)dξ, (1.34)

where bi0(x, t, ξ) is Cmin{λ+2,k} in the variables x, t, and is C∞ in the variable ξ and satisfies

(1.22). The corresponding conclusions hold if Z is one of the operators Gm or Hm with the

corresponding formula as follows:

D ◦ Z = Z̃ ◦ |Dx|+
M∑
j=1

∫ t

0

bij (x, t, θ)Zj (x, t,Dx) |Dx|1−δ dθ. (1.35)

Proof. We need only note that Q |ξ|−1
satisfies property (1.32) and then compute. The

operator Z0 in (1.33) arises from the action of ∂t on Z in the case when at least one of the

Di involves ∂t, while b
i
j arises from the action of ∂xi on b

(
Ãx

)m
.

The next definition extends the mapping properties of Definition 1.4 to the parameter

variable.

Definition 1.5. An operator W belongs to Om
I , where I is an interval, if W admits a

bounded extension from Hs+m
p,comp to Hs

p,loc and from Λscomp to Λsloc for all s in the interval I

and all 1 < p <∞. The operator W belongs to Om

I if in addition, it is bounded from Λtcomp
to Λtloc where t is the right endpoint of the interval I.
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Proposition 1.5. Let φ be a zero order ψdo with constant coefficients and support in

the cone {|τ | < C |ξ|}. Let b(x, t, t′, ξ) be Ck in the variables x, t, t′ for some k ≥ 1, and be

C∞ in the variable ξ and satisfy both (1.22) and (1.32). Then

G0 ◦ φ,G0 ◦ φ ∈ O0
I , H0 ◦ φ ∈ O

1
λ+3

I , H0 ∈ O
1
2

I , J0 ◦ φ ∈ O− 1
4

I

with I = (−1,min {λ+ 2, k}) and

Gm ◦ φ,Gm ∈ O0
I′ , Hm ◦ φ ∈ O

1
λ+3

I′ , Hm ∈ O
1
2

I′ , J0 ◦ φ ∈ O− 1
2

λ+2
λ+3

I′

with I ′ = (−1,min {λ+ 1, k}) for m ≥ 1. In particular,

K ◦ φ,K ∈ O0
(−1,λ+2), T ◦ φ ∈ O

1
λ+3

(−1,λ+2), ∂t ◦ K, Dx ◦ K − K ◦Dx ∈ O
1
2

(−1,λ+1),

K ◦ a ◦ φ ∈ O
1

λ+3−1

(−1,λ+2), K ◦Da ◦ φ ∈ O− 1
2

λ+2
λ+3

(−1,λ+1).

In fact, we have much stronger statements for T and K ◦ a, namely

T ◦ φ ∈ O
1

p(λ+3)

(−1,λ+2), K ◦ a ◦ φ ∈ O
1

p(λ+3)
−1

(−1,λ+2) .

Proof. Since min {λ+ 2, k} ≥ 1, we have by Lemma 1.6 formulas (1.33) and (1.35).

All of the assertions, apart from the last three concerning K ◦ Da, T and K ◦ a, follow
from Proposition 1.3, Corollary 1.1, Proposition 1.4 (with µ = 1 for Hm), and the fact that

Cα ⊂ Hβ
p for 0 ≤ β < α. To handle K ◦Da ◦ φ we note that

K ◦Da ◦ φ = K (Da) ◦ φ+ (K ◦Da−K (Da)) ◦ φ
= K (Da) ◦ φ+

(
K ◦Da♯ −K

(
Da♯

))
◦ φ+O−1

(0,λ+1)

= K (Da) ◦ φ+O−1
(0,λ+1),

by applying (1.3) to Da♯. Since K (Da) ◦ φ ∈ O− 1
2

λ+2
λ+3

(−1,λ+1), so is K ◦Da ◦ φ.
Finally, we use Theorem 2.2 from the next section to obtain the improvement T ◦ φ ∈

O
1

p(λ+3)

(−1,λ+2). Alternatively, we could note that T : Λs → Λs by Corollary 1.2 below, and that

T : Bs+
1

λ+3 ,1+ϵ

1+ϵ → Bs,1+ϵ1+ϵ for all ϵ > 0 by what we just proved. Interpolation then yields

T ◦ φ ∈ O
1

p(λ+3)
+ϵ′

(−1,λ+2) . Similar arguments apply to show that K ◦ a ◦ φ ∈ O
1

p(λ+3)
−1

(−1,λ+2) .

We now dispose of the operator R in (1.10).

Lemma 1.7. Let µp = min
{
1− δ − 1

p(λ+3) ,
λ+2

2(λ+3)

}
where δ = max

{
1
2 ,

1
λ+1

}
. Let φ be

supported in the nonelliptic cone as in Proposition 1.5. Then R ◦ φ ∈ O−µp

[0,λ+2).

Proof. We begin by decomposing R ◦ φ as

R ◦ φ =
(
K ◦ ãQ̃−KãQ̃

)
◦ φ

= (K ◦ ã−Kã) ◦ Q̃ ◦ φ+
(
Kã ◦ Q̃−KãQ̃

)
◦ φ

= I + II.

Write ã = ã♯+ ã♭ where ã♭ ∈ Cλ+2S
−(λ+2)δ
1,δ . Now let φ1 be homogeneous of degree zero and

satisfy φ1 = 1 on the support of φ. Then there exists φ̃ of the same type such that

Q̃ ◦ φ = Q̃ ◦ φ1 ◦ φ = φ1 ◦ Q̃ ◦ φ−

 ∑
1≤|ℓ|≤N

(
∇ℓ
ξφ1

)
·
(
∇ℓ
xQ̃
) ◦ φ+O−(1−δ)N

[0,λ+2)

= φ̃ ◦ O1
[0,λ+2) +O−(1−δ)N

[0,λ+2) .
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Then we have

I =
(
K ◦ ã♯ −Kã♯

)
◦ φ̃ ◦ O1

[0,λ+2) +O1−(λ+2)δ
[0,λ+2) .

Now we have (
K ◦ ã♯ −Kã♯

)
◦ φ̃ = ∇ξK · ∇xã

♯ ◦ φ̃+O−2
[0,λ+2)

by (1.3). Also,

∇ξK · ∇xã
♯ ◦ φ̃ = ∇ξK · ∇xã ◦ φ̃−∇ξK · ∇xã

♭ ◦ φ̃ = ∇ξK · ∇xã ◦ φ̃+O−2− 1
λ+1

[0,λ+1) ,

∇ξK · ∇xã ∈ Cλ+1S
− 1

2
λ+2
λ+3−1

1,δ ,

by (1.25). Thus ∇ξK · ∇xã
♯ ◦ φ̃ ∈ O− 1

2
λ+2
λ+3−1

[0,λ+1) , and to obtain the improvement in the cap up

to λ+ 2, i.e. ∇ξK · ∇xã
♯ ◦ φ̃ ∈ O− 1

2
λ+2
λ+3−1

[0,λ+2) , we compose with D :

Dx ◦ ∇ξK · ∇xã
♯ = ∇ξK · ∇xã

♯ ◦Dx + (∇x∇ξK) ã♯ +∇ξK · ∇2
xã
♯,

Dt ◦ ∇ξK · ∇xã
♯ = KaQ∇ξÃã

♯ −Ka∇ξQã
♯.

Thus ∇ξK · ∇xã
♯ ◦ φ̃ ∈ O− 1

2
λ+2
λ+3−1

[0,λ+2) and we get I ∈ O− 1
2

λ+2
λ+3

[0,λ+2) .

For term II, we write Q̃ = Q̃♯+ Q̃♭ where Q̃♯ = Q
(
x, t′, ξ, ã♯

)
and Q̃♭ = Q̃− Q̃♯ = ã♭Q̃′ ∈

Cλ+2S
1−(λ+2)δ
1,δ upon applying Taylor’s formula to the final variable in Q̃. Then

II =
(
Kã ◦ Q̃♯ −KãQ̃♯

)
◦ φ+

(
Kã ◦ Q̃♭ −KãQ̃♭

)
◦ φ

=

{
∇ξ (Kã) · ∇xQ̃

♯ +O
−1+ 1

p(λ+3)
+1+2(δ−1)

[0,λ+2)

}
◦ φ+O

1
λ+3−(λ+2)δ

[0,λ+2)

= ∇ξ (Kã) · ∇xQ̃
♯ ◦ φ+O

1
p(λ+3)

+2(δ−1)

[0,λ+2) .

Finally, ∇ξ (Kã) · ∇xQ̃
♯ ◦ φ ∈ O

−1+ 1
p(λ+3)

−1+(1+δ)

[0,λ+2) = O
1

p(λ+3)
+δ−1

[0,λ+2) and so R ◦ φ ∈ O−µp

[0,λ+2)

as required.

Remark. If
−→
ℓ satisfies A∓

p,α on Γ, etc. as in part (A) of Theorem 1.3 of [6], then

R◦φ ∈ O−(1−δ−α)
[0,λ+2) since Theorem 2.2 in section 2 below (or more precisely its proof) applies

to show that ∇ξ (Kã) · ∇xQ̃
♯ ◦ φ ∈ O−(1−δ−α)

[0,λ+2) .

1.4. Boundedness of Operators on Λs

Here we discuss the behaviour of the operators K, K and T on the Hölder spaces Λs,

s > 0. We begin by considering the the following types of operator with δ = max
{

1
2 ,

1
λ+1

}
:

Gm,σu (x, t) =

∫ t

t0

∫
|ξ|≥1

eix·ξ |ξ|−σ−mδ b(x, t, t′, ξ)
(
Ãx(x, t, t

′, ξ)
)m

×K(x, t, t′, ξ)ũ∗ (ξ, t′)dξdt′,

Hm,σu (x, t) =

∫ t

t0

∫
|ξ|≥1

eix·ξa(x, t′)Q(x, t′, ξ) |ξ|−σ−mδ b(x, t, t′, ξ)

×
(
Ãx(x, t, t

′, ξ)
)m

K(x, t, t′, ξ)ũ∗ (ξ, t′)dξdt′,

Gm,σu (x, t) =
∫
|ξ|≥1

eix·ξ |ξ|−σ−mδ b(x, t, ξ)
(
Ãx(x, t, t0, ξ)

)m
K(x, t, t0, ξ)ũ∗ (ξ)dξ,
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where σ ∈ R, m ∈ Z+ and b ∈ CℓS0
1,δ. Let

Gm,σ(x, x
′, t, t′), Hm,σ(x, x

′, t, t′) and Gm,σu (x, x′, t)

be the distribution kernels of Gm,σ, Hm,σ and Gm,σ respectively. It is then easy to show

(see also [4]) the following

Lemma 1.8 If c (x, t, t′, ξ) satisfies∣∣∂αξ c (x, t, t′, ξ)∣∣ ≤ Cα

(
1 + Ã (x, t, t′, ξ)

)N
(1 + |ξ|)−|α|+σ

for some N ≥ 0 and 0 ≤ |α| ≤ [σ] + n+ 1, if Z is an operator of the form

Zu (x, t, t′) =

∫
|ξ|≥1

eix·ξc(x, t, t′ξ)K(x, t, t′, ξ)ũ∗ (ξ)dξ,

and if Z (x, x′, t, t′) is the distribution kernel of Z, then for |x− x′|+A (x, t, t′) > 0,

|Z (x, x′, t, t′)| ≤ C
(

max
|α|≤[γ]+n+1

|ξ|=1

∣∣∂αξ c(x, t, t′, ξ)∣∣) 1

(|x− x′|+A(x, t, t′))
n+σ . (1.36)

Proof. We consider two cases: (i) A (x, t, t′) ≥ |x− x′| and (ii) A (x, t, t′) ≤ |x− x′|. In

case (i), we use K = e−Ã where 1
cA |ξ| ≤ Re

(
Ã
)
≤ cA |ξ| to obtain∣∣∣∫

|ξ|≥1

ei(x−x
′)·ξc (x, t, t′ξ) e−Ã(x,t,t

′ξ)dξ
∣∣∣ ≤ ∫

|ξ|≥1

|ξ|γ e−A|ξ|dξ ≤ CA−n−σ.

In case (ii), choose ρ ∈ C∞
c (R+) so that ρ = 0 on

(
0, 12

)
and ρ = 1 on [1,∞). Now

Z (x, x′, t, t′) =

∫
|ξ|≥1

ei(x−x
′)·ξc (x, t, t′ξ) ρ (|x− x′| |ξ|) e−Ã(x,t,t

′ξ)dξ

+

∫
|ξ|≥1

ei(x−x
′)·ξc (x, t, t′ξ) {1− ρ (|x− x′| |ξ|)} e−Ã(x,t,t

′ξ)dξ

= I + II,

and we have

|II| ≤
∫
|ξ|≥1

|ξ|σ {1− ρ (|x− x′| |ξ|)} dξ ≤
∫
|x−x′|−1≥|ξ|≥1

|ξ|σ dξ ≤ |x− x′|−σ−n .

As for I, we may assume (x− x′) = (|x− x′| , 0, · · · , 0), and we then have

I =

∫
|ξ|≥1

( 1

i |x− x′|

)k {
∂kξ1e

i(x−x′)·ξ
}
c (x, t, t′ξ) ρ (|x− x′| |ξ|) e−Ã(x,t,t

′ξ)dξ.

Now perform integration by parts to get

I =

∫
|ξ|≥1

ei(x−x
′)·ξ

k∑
j=1

cj,k

|x− x′|j
∂jξ1ρ (|x− x′| |ξ|) 1

|x− x′|k−j
∂k−jξ1

×
{
c (x, t, t′ξ) e−Ã(x,t,t

′ξ)
}
dξ

+

∫
|ξ|≥1

ei(x−x
′)·ξ ck

|x− x′|k
ρ (|x− x′| |ξ|) ∂kξ1

{
c (x, t, t′ξ) e−Ã(x,t,t

′ξ)
}
dξ.

Since
∣∣∣∂jξ1ρ (|x− x′| |ξ|)

∣∣∣ ≤ Cj |x− x′|j for 1
2|x−x′| ≤ |ξ| ≤ 1

|x−x′| , and 0 otherwise, we
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conclude that

|I| ≤ C

∫
1

2|x−x′|≤|ξ|≤ 1

|x−x′|

k∑
j=1

1

|x− x′|k−j
(

max
1≤|α|≤k
|ξ|=1

∣∣∂αξ c(x, t, t′, ξ)∣∣) |ξ|σ−k+j dξ
+ C

∫
1

2|x−x′|≤|ξ|

k∑
j=1

1

|x− x′|k
(

max
1≤|α|≤k
|ξ|=1

∣∣∂αξ c(x, t, t′, ξ)∣∣) |ξ|σ−k dξ.
If we choose k = [σ] +n+1, then the integral in the second term on the right is convergent,

and we obtain the desired estimate for term I.

Lemma 1.9. There is a constant C independent of σ, x, x′, t and t′ such that for x ̸= x′,

|Gm,σ(x, x′, t, t′)| ≤ C
(

max
|α|≤[σ]+n+1

|ξ|=1

∣∣∂αξ b(x, t, t′, ξ)∣∣) |Ax(x, t, t′)|m

(|x− x′|+A(x, t, t′))
n+m

2 −σ ,

|Hm,σ(x, x
′, t, t′)| ≤ C

(
max

|α|≤[σ]+n+1
|ξ|=1

∣∣∂αξ b(x, t, t′, ξ)∣∣) |Ax(x, t, t′)|m |a(x, t′)|
(|x− x′|+A(x, t, t′))

n+1+m
2 −σ ,

|Gm,σ(x, x′, t)| ≤ C
(

max
|α|≤[σ]+n+1

|ξ|=1

∣∣∂αξ b(x, t, ξ)∣∣) |Ax(x, t, t0)|m

(|x− x′|+A(x, t, t0))
n+m

2 −σ ,

Proof. This is a direct consequence of Lemma 1.8 and the inequality

max
|ξ|=1

∣∣∣∂αξ Ãx(x, t, t′, ξ)∣∣∣ ≤ Cα |Ax (x, t, t′)| .

We now have

Lemma 1.10. If b satisfies (1.22) with k = 1 and 0 < σ < 1, then there is a positive

constant Cσ such that for every ϵ ∈ R, ϵ ̸= 0 and |t| < 1, the following estimates hold where

Zσ is either Gm,σ or Hm,σ:∫ t

0

∫
|x−x′|<|ϵ|

|Zσ(x, x′, t, t′)| dx′dt′ ≤ Cσ |ϵ|σ , (1.37)

∫ t

0

∫
B

|Zσ(x+ h, x′, t, t′)− Zσ(x, x
′, t, t′)| dx′dt′ ≤ Cσ |h|σ , (1.38)

and if in addition a(x, t)a(x, t+ ϵ) ≥ 0, then∫ t+ϵ

t

∫
B

|Zσ(x, x′, t, t′)| dx′dt′ ≤ Cσ |ϵ|σ , (1.39)

∫ t

0

∫
B

|Zσ(x, x′, t+ ϵ, t′)− Zσ(x, x
′, t, t′)| dx′dt′ ≤ Cσ |ϵ|σ . (1.40)

If Zσ is Gm,σ, we have∫
|x−x′|<|ξ|

|Zσ(x, x′, t)| dx′ ≤ Cσ |ϵ|σ ,∫
B

|Zσ(x+ h, x′, t)− Zσ(x, x
′, t)| dx′ ≤ Cσ |h|σ ,

and ∫
B

|Zσ(x, x′, t+ ϵ)− Zσ(x, x
′, t)| dx′ ≤ Cσ |ϵ|σ .
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Proof. We prove only the estimates for H0,σ, the cases for G0,σ and G0,σ being easier,

and the cases for Gm,σ, Hm,σ and Gm,σ being similar, but using |Ax| ≤ C
√
A. We have∫ t

0

∫
|x−x′|<|ϵ|

|H0,σ(x, x
′, t, t′)| dx′dt′ ≤ C

∫ t

0

∫
|x−x′|<|ϵ|

|a(x, t′)|
(|x− x′|+A(x, t, t′))

n+1−σ dx
′dt′

≤ C

∫ t

0

∫ |ϵ|

0

|a(x, t′)|
(r +A(t, t′, x))

2−σ drdt
′

≤ C

∫ |ϵ|

0

∣∣∣∣∣
∫ t

0

d
dt′A(x, t, t

′)

(r +A(x, t, t′))
2−σ dt

′

∣∣∣∣∣ dr
since a(x, t′) keeps the same sign in (0, t), and thus we have∫ t

0

∫
|x−x′|<|ϵ|

|H0,σ(x, x
′, t, t′)| dx′dt′

≤ C

∫ |ϵ|

0

{
(r +A(x, t, t))

−1+σ
+ (r +A(x, t, 0))

−1+σ
}
dr ≤ Cσ |ϵ|σ ,

which proves (1.37).

To obtain (1.38) we write∫ t

0

∫
B

|H0,σ(x+ h, x′, t, t′)−H0,σ(x, x
′, t, t′)| dx′dt′

=

∫ t

0

{∫
|x−x′|≤4|h|

+

∫
{x′∈B:|x−x′|≥4|h|}

}
|H0,σ(x+ h, x′, t, t′)−H0,σ(x, x

′, t, t′)| dx′dt′

= I + II.

From (1.37) we have I ≤ Cσ |h|σ. To estimate II, fix h and set

F (x, x′, t, t′, s) = H0,σ(x+ sh, x′, t, t′).

Then by Lemma 1.9 we have

II =

∫ t

0

∫
{x′∈B:|x−x′|≥4|h|}

∣∣∣∣∫ 1

0

d

ds
F (x, x′, t, t′, s)ds

∣∣∣∣ dx′dt′
≤
∫ t

0

∫
{x′∈B:|x−x′|≥4|h|}

∫ 1

0

Ch
{ |a(x+ sh, t′)|
(|x− x′|+A(x+ sh, t, t′))

n+2−σ

+
1

(|x− x′|+A(x+ sh, t, t′))
n+1−σ

}
dsdx′dt′

= III + IV.

Now we have

III = Ch

∫
|x−x′|≥4|h|

∫ 1

0

∣∣∣∫ t

0

d
dt′A(x+ sh, t, t′)

(|x− x′|+A(x+ sh, t, t′))
n+2−σ dt

′
∣∣∣dsdx′

≤ Ch

∫
{x′∈B:|x−x′|≥4|h|}

∫ 1

0

1

|x− x′|n+1−σ dsdx
′ ≤ Cσ|h| |h|−1+σ = Cσ|h|σ,

and similarly,

IV ≤ Ch

∫ t

0

∫
{x′∈B:|x−x′|≥4|h|}

∫ 1

0

1

|x− x′|n+1−σ dsdx
′dt′ ≤ Cσ|h|σ.

The proofs for (1.39) and (1.40) are similar. We need only notice that a(x, t) keeps the

same sign in the interval [t, t+ ϵ] (or [t+ ϵ, t]) if a(x, t)a(x, t+ ϵ) ≥ 0.
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Combining the estimates in Lemma 1.10 with a standard argument as in [4], we obtain

the following proposition.

Proposition 1.6. Let 0 < σ ≤ λ. If b ∈ C2+λ, then Gm,σ ◦ φ, Hm,σ ◦ φ and Gm,σ are

bounded from Λscomp to Λs+σloc provided 0 < s+ σ ≤ λ+ 1.

Corollary 1.2. If λ > 0, then K, K ◦ φ, T ◦ φ, Kã |Dx| ◦ φ and KaQ ◦ φ are bounded

on Λs for 0 ≤ s ≤ λ+ 2.

Proof. By Proposition 1.6 K, K ◦ φ, T ◦ φ, Kã |Dx| ◦ φ and KaQ ◦ φ are bounded on

Λs for 0 ≤ s ≤ λ+ 1. Then if Z is one of K, K, or T , we have ∂t ◦Z = Z ′ ◦ |Dx|+ Z̃ where

Z̃ = b (x, t,Dx)Q (x, t,Dx) with b ∈ Cλ+2S0
1,0 and ∂x ◦ Z = Z ◦ ∂x + Z̃ ′, where Z ′ has the

form G0,0, H0,0 or G0,0, and where Z̃ ′ has the form G0,1, H0,1 or G0,1. The Corollary now

follows from Proposition 1.6.

We can also now improve the conclusions of Proposition 1.5 to include boundedness on

Λs up to the cap.

Proposition 1.7. For 1 < p ≤ ∞, we have

K,K ◦ φ ∈ O0

(−1,λ+2); T ◦ φ : Λs → Λs, 0 < s ≤ λ+ 2;

T ◦ φ : B
s+ 1

p(λ+3)
p → Bsp, 1 < s ≤ λ+ 2; K ◦ a ◦ φ : Λs → Λs+1, 0 < s ≤ λ+ 1;

K ◦ a ◦ φ : B
s+ 1

p(λ+3)
p → Bs+1

p , −1 < s ≤ λ+ 1;

K ◦Da ◦ φ ∈ O− 1
4

(−1,λ+1); R ◦ φ ∈ O−µp

(−1,λ+2),

where µp = min
{
1− δ + 1

p(λ+3) ,
λ+2

2(λ+3)

}
for 1 < p <∞ and 0 < µ∞ < min

{
1− δ, λ+2

2(λ+3)

}
,

δ = max
{

1
2 ,

1
λ+1

}
.

Proof. For K, K and T , the assertions follow from Proposition 1.5 and Corollary 1.2. As

for K ◦ a, we write a = a♯+ a♭ with a♭ ∈ Cλ+2S
−1− 1

λ+1

1, 1
λ+1

. Then using the improved estimates

(1.3) on a♯, we have

K ◦ a = K ◦ a♯ +K ◦ a♭ = Kã♯ +
∑

1≤|α|≤N

cα∂
α
ξ K∂

α
x ã

♯ +O−1− 1
λ+1

(−1,λ+2)

= Kã−Kã♭ +O−1

(−1,λ+2) = Kã+O−1

(−1,λ+2)

= (Kã |Dx|) ◦ |Dx|−1
+O−1

(−1,λ+2).

Now Kã |Dx| has the same mapping properties as T , and so the assertions regarding K◦a◦φ
follow.

Now we turn our attention to K ◦Da ◦ φ. We have

K ◦Da = K ◦Da♯ +K ◦Da♭ = K
(
Dã♯

)
+O−1

(−1,λ+1)

= K (Dã)−K
(
Dã♭

)
+O−1

(−1,λ+1) = K (Dã) +O−1

(−1,λ+1).

So by Proposition 1.5, K ◦Da ∈ O− 1
4−ϵ(λ)

(0,λ+1) . Since Λs ⊂ H
s− ϵ

2
p for all 1 < p < ∞, we have

K ◦Da : Λs → Λs+
1
4 for 0 < s < λ+ 3

4 , and it remains only to show that K ◦Da : Λλ+
3
4 →

Λλ+1. For this it suffices to show ∂t ◦K ◦Da : Λλ+
3
4 → Λλ, ∂x ◦K ◦Da : Λλ+

3
4 → Λλ. Now

∂t ◦K ◦Da = −KaQ ◦Da+Da and by Corollary 1.2,

K ◦ a ◦ φ : Λs → Λs, 0 < s ≤ λ+ 1,

Da : Λs+1 → Λs, 0 < s ≤ λ+ 1,
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which shows that ∂t ◦K ◦Da : Λλ+
3
4 → Λλ. As for ∂x ◦K ◦Da, we have

∂x ◦K ◦Da = K ◦ ∂x ◦Da+KÃx ◦Da

= (K ◦Da) ◦ ∂x +K ◦ ∂x (Da) +KÃx ◦Da.

We have ∂x (Da) : Λ
s → Λs, 0 < s ≤ λ and KÃx ◦ φ : Λs+

1
2 → Λs, 0 < s ≤ λ + 1 and so

∂x ◦K ◦Da ◦ φ : Λλ+
3
4 → Λλ, i.e., K ◦Da ◦ φ ∈ O− 1

4

(0,λ+2).

For R, we have by (1.19) that R ◦ φ ∈ O−µ∞
(0,λ+2), since as before, Λs ⊂ H

s− ϵ
2

p for all

1 < p <∞ and we can take p very large. Thus R ◦ φ : Λs → Λs+µ∞ , 0 < s < λ+ 2− µ∞.

To show that R◦φ : Λλ+2−µ∞ → Λλ+2, it suffices to show ∂t ◦R, ∂x ◦R : Λλ+2−µ∞ → Λλ+1.

For this we compute

∂t ◦R = KaQ ◦ ãQ̃−KaQãQ̃

= (KaQ) ◦ ã ◦ Q̃−KaQãQ̃

=
(
KaQ ◦ ã♯

)
◦ Q̃−KaQã♯Q̃+O

1
λ+3−1− 1

λ+1+1

(0,λ+2)

=
∑

|α|≤N

cα∂
α
ξ (KaQ) ∂αx

(
ã♯
)
◦ Q̃−KaQã♯Q̃+O

1
λ+3−

1
λ+1

(0,λ+2)

=
(
KaQ ◦ ã♯

)
◦ Q̃−KaQã♯Q̃+O

1
λ+3

(0,λ+2).

Now Q̃ = Q (x, t′, ξ, ã). Letting Q♯ = Q
(
x, t′, ξ, ã♯

)
, we obtain

∂t ◦R =
(
KaQã♯

)
◦Q♯ −KaQã♯Q♯ +O

1
λ+3

(0,λ+2).

= (KaQã) ◦Q♯ −KaQãQ♯ +O
1

λ+3

(0,λ+2) = O
1

λ+3

(0,λ+2),

by the sharp estimates (1.3) for ã♯. Also, using Proposition 1.6,

∂x ◦R = ∂x ◦K ◦ ãQ̃− ∂x ◦KãQ̃

= K ◦ ∂x ◦ ãQ̃−KãQ̃ ◦ ∂x +KÃxãQ̃−K
(
ãQ̃
)
x
−KÃx ◦ ãQ̃

= K ◦ ãQ̃ ◦ ∂x −KãQ̃ ◦ ∂x +K ◦
(
ãQ̃
)
x
−K

(
ãQ̃
)
x
+KÃxãQ̃x −KÃx ◦ ãQ̃

= R ◦ ∂x +K ◦
(
ãQ̃
)
x
−K

(
ãQ̃
)
x
+KÃxãQ̃−KÃx ◦ ã♯Q̃−KÃx ◦ ã♭ ◦ Q̃

= R ◦ ∂x +K ◦
(
ãxQ̃

)
−KãxQ̃+K ◦ ã ◦ Q̃x

−KãQ̃x +KÃxãQ̃−KÃxã
♯ ◦ Q̃+O

1
2

(0,λ+1)

= R ◦ ∂x +K ◦
(
ãxQ̃

)
−KãxQ̃+K ◦ ã ◦ Q̃x

−KãQ̃x +KÃxãQ̃−KÃxã ◦ Q̃+O
1
2

(0,λ+1).

Now

K ◦ ãx = K ◦
(
ã♯
)
x
+K ◦

(
ã♭
)
x
= Kã♯x +O−δ(λ+2)

(0,λ+1) = Kãx +O−δ(λ+2)

(0,λ+1) ,

and Kãx ∈ O− 1
4

(0,λ+1) and KÃxã : Λs → Λs+
1
2 , 0 < s ≤ λ+ 1

2 and KÃxãQ̃ : Λs → Λs−
1
2 , 0 <

s ≤ λ + 3
2 by Proposition 1.6. Also Kã,K ◦ ã : Λs−1 → Λs, 0 < s ≤ λ + 2 by the first part
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of the proof. Also

Q̃x =
∂

∂x
Q (x, t′, ξ, a (x, t′)) = ãx ·Qz + Cλ+2s1+δ1,δ ,

and so we conclude that ∂x ◦ R ◦ φ : Λλ+2−µ∞ → Λλ+1, and this completes the proof that

R ◦ φ ∈ O−µp

(−1,λ+2).

1.5. Reduction of the Operators K, K, and T

In the second subsection above, we discussed the behaviour of the operators K, K, and

T in the nonelliptic cone {|τ | < C |ξ|}. Now in general, T is not bounded on Hs
p or Bs,pp

and so Proposition 1.5 need not hold with 1
λ+3 replaced by 0, and neither K nor K need

have any gain. In order to establish sharp mapping properties for these operators in the

next section, we will show here that the boundedness of T , K, or K into Hs
p (or Bs,pp ) for

some p, s satisfying 1 < p <∞ and −1 < s < λ+2, is equivalent to the boundedness of the

corresponding operators φ ◦ T ◦ φ, φ ◦K ◦ φ, or φ ◦ K into Lp ( or B0,p
p ). We continue to

denote by φ and ψ zero order ψdo’s with support in the nonelliptic cone {|τ | < C |ξ|} and

the elliptic cone {|ξ| < C |τ |} respectively.

Define Kν = K ◦ |Dx|ν and Kν = K ◦ |Dx|ν for 0 ≤ ν ≤ 1
2 .

Lemma 1.11. We have

T ◦ ∇x ◦ φ = ∇x ◦ T ◦ φ+BT , Kν ◦ ∇x ◦ φ = ∇x ◦Kν ◦ φ+Bν ,

Kν ◦ ∇x = ∇x ◦ Kν + Bν , K ◦ a ◦ ∇x ◦ φ = ∇x ◦K ◦ a ◦ φ+B∗,
(1.41)

where BT ∈ O
1

λ+3+δ

(−1,λ+1), B
∗ ∈ O

1
λ+3−(1−δ)
(−1,λ+1) and Bν ,Bν ∈ Oν+δ

(−1,λ+1).

Proof. This follows from T ∈ Cλ+2S
1

λ+3

1,δ , Kν ∈ Cλ+2Sν1,δ , Kν ∈ Cλ+2Sν1,δ, and K ◦ a ∈

Cλ+2S
1

λ+3−1

1,δ .

Lemma 1.12. We have ψ◦T ◦φ,ψ◦K ◦a◦φ,ψ◦Kν ◦φ,ψ◦Kν ∈ O0

(−1,λ+2). If Z denotes

either T ◦φ, Kν ◦φ or Kν , then Z is bounded from H
s+ν− 1

p
p → Hs

p or from Bs+ν−
1
p ,p

p → Bs,pp
for some γ ≥ 0, −1 < s < λ + 2 and 1 < p < ∞ if and only if φ ◦ Z ◦ φ is bounded from

Hγ
p → Lp or from Bγ,pp → B0,p

p .

Proof. We have

ψ ◦Kν ◦ φ = ∂−1
t ◦ ψ ◦ ∂t ◦Kν ◦ φ = ∂−1

t ◦ ψ ◦ {|Dx|ν −KaQ ◦ |Dx|ν} ∈ O−1+ 1
λ+3+ν

(−1,λ+2) ,

ψ ◦ Kν = ∂−1
t ◦ ψ ◦ ∂t ◦ Kν ◦ φ = −∂−1

t ◦ ψ ◦ KaQ ◦ |Dx|ν ◦ φ ∈ O−1+ 1
2+ν

(−1,λ+2).

Since 1
λ+3 + ν < 1

2 + ν ≤ 1, we have ψ ◦Kν ◦ φ and ψ ◦ Kν ∈ O0

(−1,λ+2). Now

ψ ◦K ◦ a ◦ φ = ∂−1
t ◦ ψ ◦ ∂t ◦K ◦ a ◦ φ = ∂−1

t ◦ ψ ◦ {a−Ka ◦ a} ◦ φ

= ∂−1
t ◦ ψ ◦

{
a−KaãQ̃

}
◦ φ+ αO−1

(0,λ),

ψ ◦ T ◦ φ = ∂−1
t ◦ ψ ◦ ∂t ◦ T ◦ φ = ∂−1

t ◦ ψ ◦
{
aQ−KaQãQ̃

}
◦ φ,

and KaQãQ̃ is bounded from H1
p to Lp. Indeed, the last assertion follows from the argument

at the top of page 62 in [5] as follows. It suffices to show that KaãQ is bounded on Lp,

but this is a consequence of the argument used to prove Theorem 2.1 in the next section

below, since after the change of variables s = Ax (t) =
∫ t
t0
a (x, θ) dθ as in (2.24), matters
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reduce to the validity of the Hardy inequality (2.25) with weights w =
a(A−1

x (s))
p−1

sp and

v = 1

a(A−1
x (s))

. But w ≤ s−p and v ≥ 1, and so (2.25) holds trivially by (2.27). Thus

ψ ◦ T ◦ φ : H1
p → H1

p . The first two identities in Lemma 1.1 together with Proposition 1.7

show that ψ ◦ T is bounded on Hs
p for −1 < s < λ + 1 and 1 < p < ∞. By interpolation,

ψ ◦ T ◦ φ is bounded on Bs,pp for −1 < s < λ and 1 < p <∞. Finally, the rest of the lemma

follows from Proposition 1.7 and Lemma 1.11. This completes the proof of Lemma 1.12.

§2. Boundedness Properties of K, K and T .

In the previous paper [6], we reduced matters regarding the gain from f in the oblique

derivative problem to the boundedness of the operator

Tf(x, t) =

∫
Rn

eix·ξ
∫ t

0

a(x, t′)Q(x, t′, ξ)e−
∫ t
t′ a(x,θ)Q(x,θ,ξ)dθf∼(ξ, t′)dt′dξ

from a Sobolev space into Lp (or B0,p
p ). Earlier, in the previous section, we observed that

aK ∈ CλS− λ
λ+3

1, 12
, and it follows that T is in CλS

1
λ+3

1, 12
, and so of order 1

λ+3 on Lp Sobolev

spaces (of the appropriate index). This is best possible for all 1 < p < ∞, but if we fix

attention on a particular p, then we can do better, namely T ∈ O
1

p(λ+3) . To see this, we

apply some techniques from harmonic analysis to characterize the boundedness on Lp of the

operators Tα = TQ−α:

Tαf(x, t) =

∫
Rn

eix·ξ
∫ t

0

a(x, t′) (Q(x, t′, ξ))
1−α

e−
∫ t
t′ a(x,θ)Q(x,θ,ξ)dθf∼(ξ, t′)dt′dξ. (2.1)

In [5], we showed that for the case α = 0, T0 = T is bounded on Lp(Rn × (0, 1)) if and

only if a satisfies the A−
p condition,[ 1∫ β

σ
a(x, t)dt

∫ β

σ

a(x, t)p
′
dt
]p−1

≤ C
1

γ − β

∫ γ

β

a(x, t)dt, (2.2)

for all x in Rn and 0 < σ < β < γ < 1 such that
∫ β
σ
a(x, t)dt =

∫ γ
β
a(x, t)dt. This was

accomplished by using the change of variables s = Ax(t) =
∫ t
0
a(x, θ)dθ (for each fixed x)

and the Calderón reproducing formula to reduce the boundedness of T on Lp(Rn × (0, 1))

to the family of vector-valued weighted norm inequalities,∫ Ax(1)

0

( ∞∑
k=0

|M−hk(s)|q
)p/q

wx(s)ds ≤ C

∫ Ax(1)

0

( ∞∑
k=0

|hk(s)|q
)p/q

wx(s)ds, (2.3)

for all sequences {hk}∞k=0 of nonnegative functions on (0, Ax(1)), where M
− denotes the

one-sided Hardy-Littlewood maximal operator,

M−f(s) = sup
0<δ<s

1

δ

∫ s

s−δ
|f(t)| dt,

and wx(s) =
d
dsA

−1
x (s) = 1

a(A−1
x (s))

. Using [10], these inequalities were in turn shown to be

equivalent to the family of A−
p conditions,[1

δ

∫ b+δ

b

wx(s)ds
][1
δ

∫ b

b−δ
wx(s)

1−p′ds
]p−1

≤ C, 0 < δ < b < Ax(1)− δ,

which become (2.2) upon reversing the change of variable s = Ax(t).
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However, a simpler approach is to exploit the fact that for functions f which have been

microlocalized to have support f̂ ⊂ {|ξ| > |τ |}, the Besov space norm ∥f∥B0,p
p

is comparable

to the mixed norm

∥f∥Lp(B0,p
p ) =

{∫
∥f(·, t)∥pB0,p

p (dx)
dt
} 1

p

. (2.4)

From this, it is not hard to reduce matters to the boundedness of Tα on the mixed Lebesgue-

Besov space Lp
(
B0,p
p

)
normed by (2.4).

In the next subsection, we characterize the boundedness of Tα on Lp
(
B0,p
p

)
in terms of

a simple modification of the the A−
p condition (2.2). The proofs are modelled after the

arguments in section 6 of [5].

2.1 Boundedness of Tα

Our main theorem here is

Theorem 2.1. Suppose 1 < p < ∞ and a(x, t) is a bounded nonnegative function on

Rn × (0, 1). Then Tα is bounded on Lp(0,1)
(
B0,p
p (Rn)

)
, i.e.(∫ 1

0

∥Tαf(·, t)∥pB0,p
p
dt
) 1

p ≤ C
(∫ 1

0

∥f(·, t)∥pB0,p
p
dt
) 1

p

,

if and only if a satisfies the A−
p,α condition:[ 1∫ β

σ
a(x, t)dt

∫ β

σ

a(x, t)p
′
dt
]p−1

≤ C
1

γ − β

[∫ γ

β

a(x, t)dt
]1−pα

, (2.5)

for all x in Rn and 0 < σ < β < γ < 1 with
∫ β
σ
a(x, t)dt =

∫ γ
β
a(x, t)dt > 0.

Proof. To show the necessity of the A−
p,α condition, we first prove the apparently weaker

condition [ 1∫ β
σ
a(x, t)dt

∫ β

σ

a(x, t)p
′
dt
]p−1

≤ C
1

δ − γ

[∫ δ

γ

a(x, t)dt
]1−pα

, (2.6)

for all x in Rn and 0 < σ < β < γ < δ < 1 such that
∫ β
σ
a(x, t)dt =

∫ γ
β
a(x, t)dt =∫ δ

γ
a(x, t)dt > 0. For this, fix w in Rn and let r =

∫ β
σ
a(w, θ)dθ =

∫ γ
β
a(w, θ)dθ =∫ δ

γ
a(w, θ)dθ > 0. As in [5], let ϕ̂ ∈ C∞(Rn) have support contained in {ξ : 1

2 ≤ |ξ| ≤ 4}
and satisfy ϕ̂(ξ) = 1 for 1 ≤ |ξ| ≤ 2. Set ϕr(x) = r−nϕ(xr ) so that ϕ̂r(ξ) = ϕ̂(rξ). Letting

ϕr denote the operation of convolution in the x-variable (in Rn × (0, 1) = {(x, t) : x ∈ Rn,

0 < t < 1}), then just as in [5], the real part of the kernel of Tαϕr satisfies the following

estimate for |x− w|, |x′ − w| < cr, t′ ∈ (σ, β) and t ∈ (γ, δ):

Re(Tαϕr)(x, t, x
′, t′) ≥ ca(x, t′)rα−n−1. (2.7)

As in [5], define f by

f(x′, t′) = χB(w,cr)(x
′)χ(σ,β)(t

′)a(w, t′)p
′−1. (2.8)

Combining (2.7) and (2.8) we obtain for |x− w| < cr, t ∈ (γ, δ),

Re(Tαϕrf)(x, t) ≥ crα−1

∫ β

σ

a(x, t′)a(w, t′)p
′−1dt′. (2.9)

where the last integral in (2.9) satisfies∫ β

σ

a(w, θ)p
′
dθ ≤ 2

∫ β

σ

a(x, θ)a(w, θ)p
′−1dθ (2.10)
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for |x− w| < cr.

Now choose η ∈ C∞
c (Rn) such that η ≥ 0, support η ⊂ B(0, 12 ) and

∫
Rn η(x)dx = 1. With

ηr(x) = r−nη
(
x
r

)
, it follows easily from (2.9) and (2.10) that

Re(ηr ∗ Tαϕrf)(x, t) ≥ crα−1

∫ β

σ

a(w, t′)p
′
dt′ (2.11)

for |x− w| < cr, t ∈ (γ, δ), with a perhaps smaller constant c—note that r ≤ (δ − γ)/3 if,

as we may assume, a(x, t) ≤ 1/3. We will also need the following inequality, valid for any

g ∈ B0,p
p (Rn), 1 < p <∞:

∥ηr ∗ g∥Lp =
∥∥∥ ∞∑
k=0

φk ∗ φk ∗ ηr ∗ g
∥∥∥
Lp

≤
∞∑
k=0

∥φk ∗ ηr∥L1 ∥φk ∗ g∥Lp

≤
( ∞∑
k=0

∥φk ∗ ηr∥p
′

L1

) 1
p′
( ∞∑
k=0

∥φk ∗ g∥pLp

) 1
p

≤ ∥ηr∥ ·
B0,p′

1

∥g∥B0,p
p

= ∥η∥ ·
B0,p′

1

∥g∥B0,p
p

≤ C ∥g∥B0,p
p
. (2.12)

Combining (2.11) and (2.12) with the boundedness of Tα on Lp
(
B0,p
p

)
, we obtain(

crα−1

∫ β

σ

a(w, t′)p
′
dt′
)p
crn(δ − γ)

≤
∫ δ

γ

∫
B(w,cr)

|ηr ∗ Tαϕrf(x, t)|pdxdt ≤
∫ 1

0

∥ηr ∗ Tαϕrf∥pLp(dx) dt

≤ C

∫ 1

0

∥Tαϕrf∥pB0,p
p (dx)

dt ≤ C

∫ 1

0

∥ϕrf∥pB0,p
p (dx)

dt

= C

∫ 1

0

( ∞∑
k=0

∥φk ∗ ϕrf∥pLp(dx)

)
dt ≤ C

∫ 1

0

∥f∥pLp(dx) dt

= C

∫ 1

0

∫
Rn

|f(x′, t′)|pdx′dt′ = crn
∫ β

σ

a(w, t′)p
′
dt′. (2.13)

If we rewrite (2.13) as (
rα−1

∫ β

σ

a(w, t′)p
′
dt′
)p−1

≤ C
r1−α

δ − γ
,

and use r =
∫ β
σ
a(w, t′)dt′ =

∫ δ
γ
a(w, t′)dt′, we obtain (2.6). It remains to show that (2.6)

implies the A−
p,α condition (2.5), and this follows using the argument beginning on page 43 of

[5]. This completes the proof that A−
p,α is necessary for the boundedness of Tα on Lp

(
B0,p
p

)
.

Conversely, to show that the A−
p,α condition (2.5) implies the boundedness of Tα on

Lp(B0,p
p ), we begin by using the Calderón reproducing formula to reduce matters to a

Littlewood-Paley decomposition of Tα. Choose ϕ̂0 and ϕ̂1 nonnegative and infinitely dif-

ferentiable on Rn with supports in {ξ : |ξ| ≤ 1} and {ξ : 1
2 ≤ |ξ| ≤ 2} respectively so

that
∞∑
k=0

ϕ̂k(ξ)
2 = 1, for all ξ ∈ Rn, where ϕ̂k(ξ) = ϕ̂1(2

−kξ) for k ≥ 2. Also choose

ψ̂1 ≥ 0, C∞ with support in {ξ : 1
4 ≤ |ξ| ≤ 4} such that ψ̂1 = 1 on the support of ϕ̂1. Set

ψ̂k(ξ) = ψ̂1(2
−kξ). Letting ϕk and ψk denote the operation of convolution in the x-variable

(in Rn × (0, 1) = {(x, t) : x ∈ Rn, 0 < t < 1}) with (ϕ̂k)
∨ and (ψ̂k)

∨, the inverse Fourier
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transforms of ϕ̂k and ψ̂k respectively, we have for any f , g ϵ C∞
c (Rn × (0, 1)),∫ 1

0

∫
Rn

Tαf(x, t)g(x, t)dxdt =

∞∑
k=0

∫ 1

0

∫
Rn

Tαϕ
2
k(x, t)g(x, t)dxdt

=

∫ 1

0

∫
Rn

(Tαϕ
2
0)f(x, t)g(x, t)dxdt

+

∞∑
k=1

∫ 1

0

∫
Rn

[(1− ψk)Tαϕk](ϕkf)(x, t)g(x, t)dxdt

+
∞∑
k=1

∫ 1

0

∫
Rn

(Tαϕk)(ϕkf)(x, t)(ψkg)(x, t)dxdt

= I + II + III. (2.14)

Term I in (2.14) is estimated as in [5]. Note first that by the argument on page 45 of [5],

the kernel of Tαϕ
2
0 satisfies∣∣Tαϕ20(x, t, x′, t′)∣∣ ≤ C(1 + |x− x′|)−(n+ 1

2 )

uniformly in t′ and t. Thus Tαϕ
2
0 is bounded on Lp

(
B0,p
p

)
and

|I| ≤ ∥Tαϕ20f∥Lp(B0,p
p )∥g∥Lp′

(
B0,p′

p′

) ≤ C∥f∥Lp(B0,p
p )∥g∥Lp′

(
B0,p′

p′

) (2.15)

for f , g ∈ C∞
c (Rn × (0, 1)).

To estimate term II in (2.14), we apply Propositions 1.1 and 1.2 to the composition

(I − ψk) ◦ Tαϕk, with M = 1, to obtain that (I − ψk)Tαϕk maps B−µ,p
p (dx) into B0,p

p (dx)

with norm independent of k, t and t′. Thus

|II| ≤
∞∑
k=1

∥(I − ψk)Tαϕk(ϕkf)∥Lp(B0,p
p )∥g∥Lp′

(
B0,p′

p′

)

≤
∞∑
k=1

C∥ϕkf∥Lp(B−µ,p
p )∥g∥Lp′

(
B0,p′

p′

)

≤
∞∑
k=1

C2−kµ∥f∥Lp(B0,p
p )∥g∥Lp′

(
B0,p′

p′

)
= C∥f∥Lp(B0,p

p )∥g∥Lp′
(
B0,p′

p′

) (2.16)

for f , g ϵ C∞
c (Rn × (0, 1)).

To estimate the main term III in (2.14), we need the following inequality, uniformly in

k: ∫ 1

0

∫
Rn

|Tαϕkh(x, t)|pdxdt ≤ C

∫ 1

0

∫
Rn

|h(x, t)|pdxdt, k ≥ 1, (2.17)

for all h ∈ S(Rn × (0, 1)), the subspace of S(Rn+1) whose elements are supported in Rn ×
(0, 1). Assuming (2.17), we have for f , g ϵ C∞

c (Rn × (0, 1)),

|III| ≤
∫ 1

0

∫
Rn

( ∞∑
k=1

|Tαϕk(ϕkf)(x, t)|p
) 1

p
( ∞∑
k=1

|ψkg(x, t)|p
′
) 1

p′
dxdt

≤
{∫ 1

0

∫
Rn

( ∞∑
k=1

|Tαϕk(ϕkf)(x, t)|p
)
dxdt

} 1
p
{∫ 1

0

∫
Rn

( ∞∑
k=1

|ψkg(x, t)|p
′
)
dxdt

} 1
p′
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≤ C
{∫ 1

0

∫
Rn

( ∞∑
k=1

|ϕkf(x, t)|p
)
dxdt

} 1
p
{∫ 1

0

∫
Rn

( ∞∑
k=1

|ψkg(x, t)|p
′
)
dxdt

} 1
p′

by (2.17) applied with h = ϕkf ∈ S(Rn × (0, 1)),

≤ C
(∫ 1

0

∥f(·, t)∥pB0,p
p
dt
) 1

p
(∫ 1

0

∥g(·, t)∥p
′

B0,p′
p′

dt
) 1

p′

= C∥f∥Lp(B0,p
p )∥g∥Lp′

(
B0,p′

p′

). (2.18)

Combining (2.14), (2.15), (2.16) and (2.18) shows that Tα is bounded on Lp
(
B0,p
p

)
, and thus

it remains only to establish (2.17).

To estimate the kernel Tαϕk(x, t, x
′, t′) of Tαϕk, we write, using (2.1),

|Tαϕk(x, t, x′, t′)|

= χ(0,t)(t
′)
∣∣∣∫
Rn

ei(x−x
′)·ξa(x, t′) (Q(x, t′, ξ))

1−α
e−

∫ t
t′ a(x,θ)Q(x,θ,ξ)dθϕ̂k(ξ)dξ

∣∣∣
= χ(0,t)(t

′)
∣∣∣∫
Rn

(( 2−2k −△ξ

2−2k + |x− x′|2
)N

ei(x−x
′)·ξ
)

× a(x, t′) (Q(x, t′, ξ))
1−α

e−
∫ t
t′ a(x,θ)Q(x,θ,ξ)dθϕ̂k(ξ)dξ

∣∣∣
≤ χ(0,t)(t

′) (2−2k + |x− x′|2)−N2nk2−2kNa(x, t′)2k(1−α)e−2k−m
∫ t
t′ a(x,θ)dθ

(2.19)

since | (−△ξ)
ℓ
ϕ̂k(ξ)| ≤ Cℓ2

−2kℓ, 21−m|ξ| ≤ Q(x, θ, ξ) ≤ 2m−1|ξ| for some fixed m, and ϕ̂k
is supported in {ξ : 2k−1 ≤ |ξ| ≤ 2k+1}. Denote by M the Hardy-Littlewood maximal

operator in the x-variable, Mh(x, t) = sup
r>0

r−n
∫
|x−x′|≤r |h(x

′, t)|dx′. Then ([11], p. 63)∫
Rn

2kn[1 + (2k|x− x′|2)]−N |h(x′, t)| dx′ ≤ CNMh(x, t) (2.20)

for N > n
2 . For k ∈ Z+ and a(t) ≥ 0 for 0 < t < 1, define Tαa,k by

Tαa,kg(t) =

∫ t

0

a(t′)2k(1−α)e−2k
∫ t
t′ a(θ)dθg(t′)dt′, 0 < t < 1 (2.21)

for any g integrable on (0, 1). Using (2.19), (2.20) and (2.21) we then have

|Tαϕkh(x, t)|

≤ CN

∫ t

0

a(x, t′)2k(1−α)e−2k−m
∫ t
t′ a(x,θ)dθ

∫
Rn

2kn

[1 + (2k|x− x′|)2]N
|h(x′, t′)|dx′dt′

≤ CN

∫ t

0

a(x, t′)2k(1−α)e−2k−m
∫ t
t′ a(x,θ)dθMh(x, t′)dt′

≤ CNT
α
ax,k−m(Mh)(x, t), (2.22)

where ax(t) = a(x, t).

We now claim that ∫ 1

0

|Tαax,kg(t)|
pdt ≤ C

∫ 1

0

|g(t)|pdt (2.23)

for all sequences of functions {fk}. To see this, let Ax(t) =
∫ t
0
a(x, θ)dθ and make the

change of variable s = Ax(t) =
∫ t
0
a(x, θ)dθ and s′ = Ax(t

′) in (2.23) and (2.21). Then with
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g̃(s) = g(A−1
x (s)) and (Tαax,kg)

∼(s) = Tαax,kg(A
−1
x (s)), we have

(Tαax,kg)
∼(s) =

∫ A−1
x (s)

0

a(x, t′)2k(1−α)e−2k(Ax(t)−Ax(t
′))g(t′)dt′

=

∫ s

0

2k(1−α)e−2k(s−s′)g̃(s′)ds′,

and so with wx(s) =
d
dsA

−1
x (s) = 1

a(A−1
x (s))

so that dt = wx(s)ds, (2.22) is equivalent to∫ Ax(1)

0

∣∣∣∣∫ s

0

2k(1−α)e−2k(s−s′)g(s′)ds′
∣∣∣∣p wx(s)ds ≤ C

∫ Ax(1)

0

|g(s)|pwx(s)ds (2.24)

for all nonnegative functions g on (0, Ax(1)). We now claim that (2.24) follows from the A−
p,α

condition (2.5) and the weighted norm inequality for the Hardy operator (see [8]), namely∫ A

0

∣∣∣∣∫ s

0

h(s′)ds′
∣∣∣∣p w(s)ds ≤ C

∫ A

0

|h(s)|pv(s)ds, (2.25)

for all h ≥ 0 if and only if

sup
0<b<A

(∫ A

b

w(s)ds
)(∫ b

0

v(s)1−p
′
ds
)p−1

<∞. (2.26)

To see that (2.24) follows, replace g(s′) by e−2ks′g(s′) in (2.24) to obtain (2.25) with A =

Ax(1), w(s) = 2pk(1−α)e−p2
kswx(s) and v = e−p2

kswx(s). Thus we must show that (2.26)

holds for these weights, i.e.,

sup
0<b<Ax(1)

(∫ Ax(1)

b

2pk(1−α)e−p2
kswx(s)ds

)(∫ b

0

ep
′2kswx(s)

1−p′ds
)p−1

<∞. (2.27)

We now rewrite theA−
p,α condition (2.5) using the change of variable s = Ax(t) =

∫ t
0
a(x, θ)dθ

to get

δpα
[1
δ

∫ b+δ

b

wx(s)ds
][1
δ

∫ b

b−δ
wx(s)

1−p′ds
]p−1

≤ C (2.28)

for 0 < δ < b < Ax(1) − δ. Set r = 2−k. If 1 < p ≤ 2, then we estimate the product in

(2.27) by

rp(α−1)
( ∞∑
i=0

∫ b+(i+1)r

b+ir

e−ps/rwx(s)ds
)( ∞∑

j=0

∫ b−jr

b−(j+1)r

ep
′s/rwx(s)

1−p′ds
)p−1

≤ rp(α−1)
∞∑
i=0

(∫ b+(i+1)r

b+ir

e−ps/rwx(s)ds
) ∞∑
j=0

(∫ b−jr

b−(j+1)r

ep
′s/rwx(s)

1−p′ds
)p−1

≤ Crp(α−1)
∑
i,j≥0

e−p(i+j)
(∫ b+(i+1)r

b+ir

wx(s)ds
)(∫ b−jr

b−(j+1)r

wx(s)
1−p′ds

)p−1

≤ Crp(α−1)
∑
i,j≥0

e−p(i+j) [(i+ j) r]
p(1−α)

by (2.28) with δ = (i+ j) r

≤ C
∑
i,j≥0

e−p(i+j) (i+ j)
p(1−α) ≤ C.

On the other hand, if 2 ≤ p < ∞, then we raise the product in (2.27) to the power p′ − 1
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and estimate

rp
′(α−1)

( ∞∑
i=0

∫ b+(i+1)r

b+ir

e−ps/rwx(s)ds
)p′−1( ∞∑

j=0

∫ b−jr

b−(j+1)r

ep
′s/rwx(s)

1−p′ds
)

by a constant C as above. This establishes (2.23) with C independent of k.

We thus have∫ 1

0

∫
Rn

|Tαϕkh(x, t)|pdxdt ≤ C

∫ 1

0

∫
Rn

|Tax,k−m(Mh)(x, t)|pdtdx by (2.23),

≤ C

∫ 1

0

∫
Rn

|Mh(x, t)|pdtdx by (2.23)

= C

∫ 1

0

∫
Rn

|Mh(x, t)|pdxdt

≤ C

∫ 1

0

∫
Rn

|h(x, t)|pdxdt

since M is bounded on Lp. This establishes (2.17) and completes the proof of Theorem 2.1.

We now turn to the local estimates for Tα on Bs,pp (Rn+1) that we need in [6]. In this

setting, both Γ and
−→
T have been straightened out and the flow for

−→
T = ∂

∂t through (x, 0)

in Γ is given by −→γ ((x, 0) , t) = (x, t). Thus the A∓
p,α condition becomes

Definition 2.1. The function a satisfies the A∓
p,α condition at the fibre F(y,0), (y, 0) ∈ Γ,

if there are constants r > 0, R− < 0 < R+, such that a (x,R−) ̸= 0 and a (x,R+) ̸= 0 for

x ∈ Rn, |x− y| < r and both of the following conditions hold:[ 1∫ β
σ
a (x, t) dt

∫ β

σ

a (x, t)
p′
dt
]p−1

≤ C
1

γ − β

[∫ γ

β

a (x, t) dt
]1−pα

(2.29)

for all x ∈ Γ, |x− y| < r and all 0 < σ < β < γ < R+ with
∫ β
σ
a (x, t) dt =

∫ γ
β
a (x, t) dt > 0,

and also [ 1∫ γ
β
|a (x, t)| dt

∫ γ

β

|a (x, t)|p
′
dt
]p−1

≤ C
1

β − σ

[∫ β

σ

|a (x, t)| dt
]1−pα

(2.30)

for all x ∈ Γ, |x− y| < r and all R− < σ < β < γ < 0 with
∫ β
σ
|a (x, t)| dt =

∫ γ
β
|a (x, t)| dt >

0.

We shall need to know that for functions f (x, t) with frequencies in the cone {|ξ| > |τ |},
the mixed norm ∥·∥Lp(B0,p

p ) is equivalent to the Besov norm ∥·∥B0,p
p

.

Lemma 2.1. Suppose supp f̂ (ξ, τ) ⊂ {(ξ, τ) ∈ Rn ×R : |ξ| > |τ |}. Then

∥f∥B0,p
p

∼= ∥f∥Lp(B0,p
p ) .

Proof. Let {Φk}∞k=0 (respectively {ϕk}∞k=0) satisfy the usual conditions for the Calderon

reproducing formula in Rn+1 (respectively Rn). Then by the condition on the support of f̂ ,

we have Φkf ∼= ϕkf , and so

∥f∥pB0,p
p

=
∞∑
k=0

∥Φkf∥pLp(Rn+1)
∼=

∞∑
k=0

∥ϕkf∥pLp(Rn+1)

=
∞∑
k=0

∫
R

∥ϕkf (·, t)∥pLp(Rn) dt =

∫
R

∞∑
k=0

∥ϕkf (·, t)∥pLp(Rn) dt = ∥f∥p
Lp(B0,p

p )
.
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Now we can state our characterization of the local boundedness of Tα on Bs,pp in Case II.

Theorem 2.1. Let a(x, t) be a Cλ+2 function with a(x, t) ≥ 0 when t ≥ 0 and a(x, t) ≤
0 when t ≤ 0, let y ∈ Rn and suppose that a ∈ A+̄

p,α at the fibre F(y,0). Let U =

{(x, y) : |x− y| < r,R− < t < R+} where r, R− and R+ are as in (2.29) and (2.30). Let

φ, ψ be C∞ functions supported in U , and suppose that P denotes a multiplier with symbol

supported in the cone {|ξ| > |τ |}. Then if Mφ, Mψ are the operators of multiplication by

φ and ψ respectively, the operator PMφTαMψP is bounded on Bs,pp for −1
2 < s < λ + 2.

Conversely, if φ = ψ = 1 on U , and MφTαMψ is bounded on Bs,pp for some s ∈
(
− 1

2 , λ+ 2
)
,

then a ∈ A+̄
p,α at the fibre F(y,0). In particular, PMφT 1

p(λ+3)
MψP is bounded on Bs,pp for

−1
2 < s < λ+ 2.

Proof. Choose ρ ∈ C∞
c (Rn) with supp ρ ⊂ {x : |x− y| < r} and ρ(x) = 1 on the support

of ψ. Then ρ(x)a(x, t) satisfies A+̄
p,α since for any fixed x, the inequality in A+̄

p,α is unaffected

by multiplying a(x, t) by a positive constant. Thus the operator T ∗
α, obtained from Tα by

replacing a with ρa, is bounded on Lp(B0,p
p ) by Theorem 2.1 together with the same result

scaled to Rn × (−R, 0). Now if supp φ, supp ψ ⊂ U , then PMφTαMψP = PMφT
∗
αMψP is

bounded on Lp(B0,p
p ), and so also on B0,p

p by Lemma 2.1. By Lemma 1.12, we now conclude

that PMφTαMψP is bounded on Bs,pp for −1
2 < s < λ+ 2.

Conversely, if φ = ψ = 1 on U andMφTαMψ is bounded on Bs,pp for some s ∈
(
−1

2 , λ+ 2
)
,

then by Lemma 1.12, it is bounded on B0,p
p . So suppose T̃α = MφTαMψ is bounded on

B0,p
p . The proof of necessity in Theorem 2.1 carries over here with just a few changes, as

follows. With notation as in the proof of Theorem 2.1, we have from (2.9) and (2.10) that

Re(T̃αϕrf)(x, t) = Re(MφTαϕrf)(x, t) ≥ crα−1

∫ β

σ

a(w, t′)p
′
dt′ (2.31)

for |x−w| < cr, t ∈ (γ, δ). Now choose η ∈ C∞
c (Rn+1) such that η ≥ 0, support η ⊂ B(0, 12 )

and
∫
Rn+1 η(x)dx = 1 (note the use of Rn+1 in place of Rn here). With ηr(x) = r−nη

(
x
r

)
,

it follows easily from (2.31) that

Re(ηr ∗ T̃αϕrf)(x, t) ≥ crα−1

∫ β

σ

a(w, t′)p
′
dt′ (2.32)

for |x−w| < cr, t ∈ (γ, δ), with a perhaps smaller constant c—note that r ≤ (δ−γ)/3 if, as

we may assume, a(x, t) ≤ 1/3. If we use the inequality ∥ηr ∗ g∥Lp ≤ C ∥g∥B0,p
p

, valid for any

g ∈ B0,p
p (Rn+1), 1 < p <∞, (this is (2.12) with Rn+1 in place of Rn), the A+̄

p,α condition in

the open set −→γ (UR) can be derived as in the proof of Theorem 2.1.

Finally, a ∈ Cλ+2 implies a ∈ A+̄
p, 1

p(λ+3)

by the following elementary computation using

Lemma 1.4:[ 1∫ β
σ
a(x, t)dt

∫ β

σ

a(x, t)p
′
dt
]p−1

≤ sup
σ≤t≤γ

a (x, t)

≤ C
( 1

γ − σ

∫ γ

σ

a (x, t) dt
)1− 1

λ+3

by (1.11)

≤ C
1

γ − β

[∫ γ

β

a(x, t)dt
]1−pα

for 0 < σ < β < γ since
∫ γ
σ
a (x, t) dt = 2

∫ γ
β
a(x, t)dt, 1

λ+3 = pα and γ − β ≤ γ − σ ≤ 1.
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Similarly for A=
p,α and A‡

p,α. Simple examples show this is sharp. This of course shows that

PMφT 1
p(λ+3)

MψP is bounded on Bs,pp for −1
2 < s < λ+ 2 as required.

2.2. Boundedness of Kν

In [6] we reduced matters regarding the gain from g in the oblique derivative problem to

the boundedness of the operator

Kf(x, t) =

∫
Rn

eix·ξ
∫ t

0

e−
∫ t
t′ a(x,θ)Q(x,θ,ξ)dθf∼(ξ, t′)dt′dξ

from a Besov space into Lp. It is known that if a is C∞ and has type k, then K gains 1
k+1

derivatives, i.e. K ∈ O
1

k+1 . In this subsection, we extend this result to rough a by replacing

the type condition on a with the condition

(Tν) β − α ≤ C

(∫ β

α

|a(x, t)| dt

)ν
for α < β, and x ∈ Rn.

We begin by proving the analogue of Theorem 2.1 for the operators Kν = KQν given by

Kνf(x, t) =

∫
Rn

eix·ξ
∫ t

0

Q(x, t′, ξ)νe−
∫ t
t′ a(x,θ)Q(x,θ,ξ)dθf∼(ξ, t′)dt′dξ. (2.34)

Theorem 2.3. Suppose 1 < p < ∞ and a(x, t) is a bounded nonnegative function on

Rn × (0, 1). Then Kν is bounded on Lp(0,1)
(
B0,p
p (Rn)

)
if and only if a satisfies the (Tν)

condition.

Proof. As in the proof of Theorem 2.1, fix w in Rn and let r =
∫ β
α
a(w, θ)dθ. Then with

ϕr as before, the real part of the kernel of Kνϕr satisfies the following estimate for |x−w|,
|x′ − w| < cr, and t, t′ ∈ (α, β):

Re(Kνϕr)(x, t, x
′t′)

=

∫
Rn

cos((x− x′) · ξ) (Q(x, t′, ξ))
ν
e−

∫ t
t′ a(x,θ)Q(x,θ,ξ)dθϕ̂(rξ)dξ

≥
∫

1
2r≤|ξ|≤ 4

r

cr−νe−
∫ t
t′ a(x,θ)Cr

−1dθdξ ≥ cr−ν−n. (2.35)

Now define f by

f(x′, t′) = χB(w,cr)(x
′)χ(α,β)(t

′). (2.36)

Combining (2.35) and (2.36) we obtain for |x− w| < cr, t ∈ (α, β),

Re(Kνϕrf)(x, t) ≥ c

∫
B(w,cr)

r−ν−n(β − α) ≥ cr−ν(β − α). (2.37)

As in the previous subsection, choose η ∈ C∞
c (Rn) such that η ≥ 0, support η ⊂ B(0, 12 ) and∫

Rn η(x)dx = 1. With ηr(x) = r−nη
(
x
r

)
, it follows immediately from (2.37) that

Re(ηr ∗Kνϕrf)(x, t) ≥ cr−ν(β − α). (2.38)

or |x− w| < cr, t ∈ (α, β), with a perhaps smaller constant c—note that r ≤ (β − α)/3 if,

as we may assume, a(x, t) ≤ 1/3. From (2.36), (2.38), (2.12) and the boundedness of Kνϕr
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on Lp
(
B0,p
p

)
, we now obtain(

cr−ν(β − α)
)p
crn(β − α)

≤
∫
B(w,cr)

∫ β

α

|ηr ∗Kνϕrf(x, t)|pdxdt ≤
∫ 1

0

∥ηr ∗Kνϕrf∥pLp(dx) dt

≤ C

∫ 1

0

∥Kνϕrf∥pB0,p
p (dx)

dt ≤ C

∫ 1

0

∥ϕrf∥pB0,p
p (dx)

dt

= C

∫ 1

0

( ∞∑
k=0

∥φk ∗ ϕrf∥pLp(dx)

)
dt ≤ C

∫ 1

0

∥f∥pLp(dx) dt

= C

∫ 1

0

∫
Rn

|f(x′, t′)|pdx′dt′ = Crn(β − α),

which yields the Tν condition since r =
∫ β
α
a(w, t′)dt′.

To show that the Tν condition implies the boundedness of Kν on Lp
(
B0,p
p

)
, we proceed

as before by using the Calderón reproducing formula on a Littlewood- Paley decomposition

of Kν . Let ϕk and ψk be as in subsection 2.1. We have for any f , g ∈ C∞
c (Rn × (0, 1)),∫ 1

0

∫
Rn

Kνf(x, t)g(x, t)dxdt =
∞∑
k=0

∫ 1

0

∫
Rn

Kνϕ
2
k(x, t)g(x, t)dxdt,

=

∫ 1

0

∫
Rn

(Kνϕ
2
0)f(x, t)g(x, t)dxdt

+
∞∑
k=1

∫ 1

0

∫
Rn

[(1− ψk)Kνϕk](ϕkf)(x, t)g(x, t)dxdt

+
∞∑
k=1

∫ 1

0

∫
Rn

(Kνϕk)(ϕkf)(x, t)(ψkg)(x, t)dxdt

= I + II + III. (2.39)

Term I in (2.39) is handled just as in the previous subsection, obtaining

|I| ≤ C∥f∥Lp(B0,p
p )∥g∥Lp′

(
B0,p′

p′

) (2.40)

for f , g ∈ C∞
c (Rn × (0, 1)).

To estimate term II in (2.39), we apply Propositions 1.1 and 1.2 to the composition

(I − ψk) ◦Kνϕk, with M = 1, to obtain that (I − ψk)Kνϕk maps B−µ,p
p (dx) into B0,p

p (dx)

with norm independent of k, t and t′. Thus

|II| ≤
∞∑
k=1

∥ (I − ψk)Kνϕk(ϕkf)∥Lp(B0,p
p )∥g∥Lp′

(
B0,p′

p′

)

≤
∞∑
k=1

C∥ϕkf∥Lp(B−µ,p
p )∥g∥Lp′

(
B0,p′

p′

)

≤
∞∑
k=1

C2−kµ∥f∥Lp(B0,p
p )∥g∥Lp′

(
B0,p′

p′

)
= C∥f∥Lp(B0,p

p )∥g∥Lp′
(
B0,p′

p′

) (2.41)

for f , g ϵ C∞
c (Rn × (0, 1)).
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To estimate the main term III in (2.39), we need the following inequality, uniformly in

k: ∫ 1

0

∫
Rn

|Kνϕkh(x, t)|pdxdt ≤ C

∫ 1

0

∫
Rn

|h(x, t)|pdxdt, k ≥ 1, (2.42)

for all h ∈ S(Rn × (0, 1)), the subspace of S(Rn+1) whose elements are supported in Rn ×
(0, 1). Assuming (2.42), we have for f , g ϵ C∞

c (Rn × (0, 1)),

|III| ≤
∫ 1

0

∫
Rn

( ∞∑
k=1

|Kνϕk(ϕkf)(x, t)|p
) 1

p
( ∞∑
k=1

|ψkg(x, t)|p
′
) 1

p′
dxdt

≤
{∫ 1

0

∫
Rn

( ∞∑
k=1

|Kνϕk(ϕkf)(x, t)|p
)
dxdt

} 1
p
{∫ 1

0

∫
Rn

( ∞∑
k=1

|ψkg(x, t)|p
′
)
dxdt

} 1
p′

≤ C
{∫ 1

0

∫
Rn

( ∞∑
k=1

|ϕkf(x, t)|p
)
dxdt

} 1
p
{∫ 1

0

∫
Rn

( ∞∑
k=1

|ψkg(x, t)|p
′
)
dxdt

} 1
p′

by (2.42) applied with h = ϕkf ∈ S(Rn × (0, 1)),

≤ C
(∫ 1

0

∥f(·, t)∥pB0,p
p
dt
) 1

p
(∫ 1

0

∥g(·, t)∥p
′

B0,p′
p′

dt
) 1

p′

= C∥f∥Lp(B0,p
p )∥g∥Lp′

(
B0,p′

p′

). (2.43)

Combining (2.39), (2.40), (2.41) and (2.43) shows that Kν is bounded on Lp
(
B0,p
p

)
, and

thus it remains only to establish (2.42).

To estimate the kernel Kνϕk(x, t, x
′, t′) of Kνϕk, we write, using (2.34),

|Kνϕk(x, t, x
′, t′)| = χ(0,t)(t

′)
∣∣∣∫
Rn

ei(x−x
′)·ξ (Q(x, t′, ξ))

ν
e−

∫ t
t′ a(x,θ)Q(x,θ,ξ)dθϕ̂k(ξ)dξ

∣∣∣
= χ(0,t)(t

′)
∣∣∣∫
Rn

((
2−2k −△ξ

2−2k + |x− x′|2

)N
ei(x−x

′)·ξ

)
(Q(x, t′, ξ))

ν

× e−
∫ t
t′ a(x,θ)Q(x,θ,ξ)dθϕ̂k(ξ)dξ

∣∣∣
≤ χ(0,t)(t

′) (2−2k + |x− x′|2)−N2nk2−2kN2kνe−2k−m
∫ t
t′ a(x,θ)dθ

(2.44)

since | (−△ξ)
ℓ
ϕ̂k(ξ)| ≤ Cℓ2

−2kℓ, 21−m|ξ| ≤ Q(x, θ, ξ) ≤ 2m−1|ξ| for some fixed m, and ϕ̂k
is supported in {ξ : 2k−1 ≤ |ξ| ≤ 2k+1}. Denote by M the Hardy-Littlewood maximal

operator in the x-variable, so that∫
Rn

2kn[1 + (2k|x− x′|2)]−N |h(x′, t′)| dx′ ≤ CNMh(x, t′), (2.45)

for N > n
2 . Since a satisfies the Tν condition (2.33), we have

2kνe−2k−m
∫ t
t′ a(x,θ)dθ ≤ 2kνe−2k−mC−1/ν |t−t′|1/ν . (2.46)

Now the right side of (2.46) is an even integrable function of t− t′ satisfying∫ 1

0

2kνe−2k−mC−1/ν |t−t′|1/νdt (or dt′) ≤ Cm,ν

uniformly in k, and so we conclude that∫ 1

0

2kνe−2k−m
∫ t
t′ a(x,θ)dθMh(x, t′)dt′ ≤ Cm,νM̃ (Mh) (x, t), (2.47)
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where M̃ denotes the Hardy-Littlewood maximal operator in the t-variable. Combining

(2.44), (2.45) and (2.47) yields

|Kνϕkh(x, t)| ≤ CN

∫ t

0

2kνe−2k−m
∫ t
t′ a(x,θ)dθ

∫
Rn

2kn

[1 + (2k|x− x′|)2]N
|h(x′, t′)|dx′dt′

≤ CN

∫ t

0

2kνe−2k−m
∫ t
t′ a(x,θ)dθMh(x, t′)dt′

≤ CNM̃(Mh)(x, t). (2.48)

We thus have∫ 1

0

∫
Rn

|Kνϕkh(x, t)|pdxdt ≤ C

∫ 1

0

∫
Rn

|M̃(Mh)(x, t)|pdtdx, by (2.48)

≤ C

∫ 1

0

∫
Rn

|Mh(x, t)|pdtdx

≤ C

∫ 1

0

∫
Rn

|h(x, t)|pdxdt

since both M̃ and M are bounded on Lp. This establishes (2.42) and completes the proof

of Theorem 2.3

In order to state a local version of this result, we recast the definition of the Tν condition

in terms of open sets. Let

UR = {(x, t) ϵRn ×R : |x| , |t| < R} ,
and note that −→γ ((x, s) , t) = (x, s+ t) is the flow for

−→
T = ∂

∂t through (x, s).

Definition 2.2. The function a satisfies the Tν condition in the open set UR if

β − α ≤ C

(∫ β

α

|a (x, t)| dt

)ν
for all −R < α < β < R, and |x| < R.

Now we can state our characterization of the local boundedness of Kν on Bs,pp .

Theorem 2.4. Let a(x, t) be a Cλ+2 function, and suppose that a ∈ Tν in the open set

UR. Let φ, ψ be C∞ functions supported in UR, and suppose that P denotes a multiplier with

symbol supported in the cone {|ξ| > |τ |}. Then if Mφ, Mψ are the operators of multiplication

by φ and ψ respectively, the operator PMφKνMψP is bounded on Bs,pp for − 1
2 < s < λ+ 2.

Conversely, if φ = ψ = 1 on UR, andMφKνMψ is bounded on Bs,pp for some s ∈
(
− 1

2 , λ+ 2
)
,

then a ∈ Tν in the open set UR′ for some R′ > 0.

Proof. The operator Kν is bounded on Lp(B0,p
p ) by Theorem 2.3 together with the same

result scaled to Rn× (−R, 0). Now if supp φ, supp ψ ⊂ UR, then PMφKνMψP is bounded

on Lp(B0,p
p ), and so also on B0,p

p by Lemma 2.1. By Lemma 1.12, we now conclude that

PMφKνMψP is bounded on Bs,pp for − 1
2 < s < λ+ 2.

Conversely, if φ = ψ = 1 on U1 and MφKνMψ is bounded on Bs,pp for some s ∈(
−1

2 , λ+ 2
)
, then by Lemma 1.12, it is bounded on B0,p

p . So suppose K̃ν = MφKνMψ

is bounded on B0,p
p . The proof of necessity in Theorem 2.3 carries over here with just a few

changes, as follows. With notation as in the proof of Theorem 2.3, we have from (2.37) that

Re(K̃νϕrf)(x, t) = Re(MφKνϕrf)(x, t) ≥ cr−ν(β − α) (2.49)

for |x−w| < cr, t ∈ (α, β). Now choose η ∈ C∞
c (Rn+1) such that η ≥ 0, support η ⊂ B(0, 12 )

and
∫
Rn+1 η(x)dx = 1 (note the use of Rn+1 in place of Rn here). With ηr(x) = r−nη

(
x
r

)
,
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it follows easily from (2.49) that

Re(ηr ∗ K̃νϕrf)(x, t) ≥ cr−ν
∫ β

α

a(w, t′)p
′
dt′

for |x−w| < cr, t ∈ (α, β), with a perhaps smaller constant c—note that r ≤ (β − α)/3 if,

as we may assume, a(x, t) ≤ 1/3. If we use the inequality ∥ηr ∗ g∥Lp ≤ C ∥g∥B0,p
p

, valid for

any g ∈ B0,p
p (Rn+1), 1 < p < ∞ (this is (2.12) with Rn+1 in place of Rn), the Tν condition

in the open set UR′ can be derived as in the proof of Theorem 2.3.

2.3. Boundedness of K
In [6], we reduced matters regarding the gain from h in the oblique derivative problem to

the boundedness of the operator

Kf(x, t) =
∫
Rn

eix·ξe−
∫ t
0
a(x,θ)Q(x,θ,ξ)dθf̂ (ξ) dξ

from a Besov space into B0,p
p . In this subsection, we show that if a has type k, then K gains

1
p(k+1) derivatives from h in the Lp scale of smoothness spaces (note that since a vanishes

at the origin, k ≥ 1; for k = 0, this would agree with the classical result for the Poisson

integral in the half space). More generally, we extend this result to fractional γ replacing

the type condition on a with a type conditon at the origin,

(Pγ) |β| ≤ C
∣∣∣∫ β

0

a(x, t)dt
∣∣∣γ for all β ∈ R, x ∈ Rn. (2.50)

We begin by proving the analogue of Theorems 2.1 and 2.3 for the operators Kγ = KQγ

given by

Kγf(x, t) =
∫
Rn

eix·ξQ(x, t′, ξ)γe−
∫ t
0
a(x,θ)Q(x,θ,ξ)dθf̂ (ξ) dξ. (2.51)

Theorem 2.5. Suppose 1 < p < ∞ and a(x, t) is a bounded nonnegative function on

Rn× (0, 1). Then Kγ is bounded from B0,p
p to Lp(0,1)

(
B0,p
p (Rn)

)
if and only if a satisfies the

Ppγ condition.

Proof. As in the proof of Theorem 2.3, fix w in Rn and let r =
∫ β
α
a(w, θ)dθ. Then with

ϕr as before, the real part of the kernel of Kγϕr satisfies the following estimate for |x− w|,
|x′ − w| < cr, and t ∈ (0, β):

Re(Kγϕr)(x, t, x′) =
∫
Rn

cos((x− x′) · ξ) (Q(x, t′, ξ))
γ
e−

∫ t
0
a(x,θ)Q(x,θ,ξ)dθϕ̂(rξ)dξ

≥
∫

1
2r≤|ξ|≤ 4

r

cr−γe−
∫ t
0
a(x,θ)Cr−1dθdξ ≥ cr−γ−n. (2.52)

Now define f by

f(x′) = χB(w,cr)(x
′). (2.53)

Combining (2.51) and (2.52) we obtain for |x− w| < cr, t ∈ (0, β),

Re(Kγϕrf)(x, t) ≥ c

∫
B(w,cr)

r−γ−n ≥ cr−γ . (2.54)

As in the previous subsection, choose η ∈ C∞
c (Rn) such that η ≥ 0, support η ⊂ B(0, 12 ) and∫

Rn η(x)dx = 1. With ηr(x) = r−nη
(
x
r

)
, it follows immediately from (2.54) that

Re(ηr ∗ Kγϕrf)(x, t) ≥ cr−γ (2.55)
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for |x− w| < cr, t ∈ (0, β), with a perhaps smaller constant c—note that r ≤ β/3 if, as we

may assume, a(x, t) ≤ 1/3. From (2.53), (2.55), (2.12) and the boundedness of Kγϕr from

B0,p
p to Lp

(
B0,p
p

)
, we now obtain(

cr−γ
)p
crnβ ≤

∫
B(w,cr)

∫ β

0

|ηr ∗ Kγϕrf(x, t)|pdxdt ≤
∫ 1

0

∥ηr ∗ Kγϕrf∥pLp(dx) dt

≤ C

∫ 1

0

∥Kγϕrf∥pB0,p
p (dx)

dt ≤ C ∥ϕrf∥pB0,p
p (dx)

= C
∞∑
k=0

∥φk ∗ ϕrf∥pLp(dx) ≤ C ∥f∥pLp(dx)

= C

∫
Rn

|f(x′, t′)|pdx′ = Crn,

which yields the Ppγ condition since r =
∫ β
0
a(w, t′)dt′.

To show that the Ppγ condition implies the boundedness of Kγ from B0,p
p to Lp

(
B0,p
p

)
,

we proceed as before by using the Calderón reproducing formula on a Littlewood- Paley

decomposition of Kγ . Let ϕk and ψk be as in subsection 5.1. We have for any f ∈ C∞
c (Rn)

and g ∈ C∞
c (Rn × (0, 1)),∫ 1

0

∫
Rn

Kγf(x, t)g(x, t)dxdt =
∞∑
k=0

∫ 1

0

∫
Rn

Kγϕ2kf(x, t)g(x, t)dxdt,

=

∫ 1

0

∫
Rn

(Kγϕ20)f(x, t)g(x, t)dxdt

+
∞∑
k=1

∫ 1

0

∫
Rn

[(1− ψk)Kγϕk](ϕkf)(x, t)g(x, t)dxdt

+
∞∑
k=1

∫ 1

0

∫
Rn

(Kγϕk)(ϕkf)(x, t)(ψkg)(x, t)dxdt

= I + II + III. (2.56)

To estimate term I in (2.56), we proceed as in the previous section to obtain

|I| ≤ C∥f∥B0,p
p

∥g∥
Lp′

(
B0,p′

p′

) (2.57)

for f ∈ C∞
c (Rn) and g ∈ C∞

c (Rn × (0, 1)).

To estimate term II in (2.56), we apply Propositions 1.1 and 1.2 to the composition

(I − ψk) ◦ Kγϕk, with M = 1, to obtain that (I − ψk)Kγϕk maps B−µ,p
p (dx) into B0,p

p (dx)

with norm independent of k and t. Thus

|II| ≤
∞∑
k=1

∥ (I − ψk)Kγϕk(ϕkf)∥Lp(B0,p
p )∥g∥Lp′

(
B0,p′

p′

)

≤
∞∑
k=1

C∥ϕkf∥B−µ,p
p

∥g∥
Lp′

(
B0,p′

p′

)

≤
∞∑
k=1

C2−kµ∥f∥B0,p
p

∥g∥
Lp′

(
B0,p′

p′

)
= C∥f∥B0,p

p
∥g∥

Lp′
(
B0,p′

p′

) (2.58)
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for f ∈ C∞
c (Rn) and g ∈ C∞

c (Rn × (0, 1)).

To estimate the main term III in (2.56), we need the following inequality, uniformly in

k: ∫ 1

0

∫
Rn

|Kγϕkh(x, t)|pdxdt ≤ C

∫
Rn

|h(x)|pdx, k ≥ 1, (2.59)

for all h ∈ S(Rn). Assuming (2.59), we have for f ∈ C∞
c (Rn) and g ∈ C∞

c (Rn × (0, 1)),

|III| ≤
∫ 1

0

∫
Rn

( ∞∑
k=1

|Kγϕk(ϕkf)(x, t)|p
) 1

p
( ∞∑
k=1

|ψkg(x, t)|p
′
) 1

p′
dxdt

≤
{∫ 1

0

∫
Rn

( ∞∑
k=1

|Kγϕk(ϕkf)(x, t)|p
)
dxdt

} 1
p

×
{∫ 1

0

∫
Rn

( ∞∑
k=1

|ψkg(x, t)|p
′
)
dxdt

} 1
p′

≤ C
{∫

Rn

( ∞∑
k=1

|ϕkf(x)|p
)
dx
} 1

p
{∫ 1

0

∫
Rn

( ∞∑
k=1

|ψkg(x, t)|p
′
)
dxdt

} 1
p′

by (2.59) applied with h = ϕkf ∈ S(Rn),

≤ C ∥f∥B0,p
p

(∫ 1

0

∥g(·, t)∥p
′

B0,p′
p′

dt

) 1
p′

= C∥f∥B0,p
p

∥g∥
Lp′

(
B0,p′

p′

). (2.60)

Combining (2.56), (2.57), (2.58) and (2.60) shows that Kγ is bounded from B0,p
p to Lp

(
B0,p
p

)
,

and thus it remains only to establish (2.59).

To estimate the kernel Kγϕk(x, t, x′) of Kγϕk, we write, using (2.51),

|Kγϕk(x, t, x′)|

=
∣∣∣∫
Rn

ei(x−x
′)·ξ (Q(x, t, ξ))

γ
e−

∫ t
0
a(x,θ)Q(x,θ,ξ)dθϕ̂k(ξ)dξ

∣∣∣
=
∣∣∣∫
Rn

(( 2−2k −△ξ

2−2k + |x− x′|2
)N

ei(x−x
′)·ξ
)
(Q(x, t, ξ))

γ
e−

∫ t
0
a(x,θ)Q(x,θ,ξ)dθϕ̂k(ξ)dξ

∣∣∣
≤ (2−2k + |x− x′|2)−N2nk2−2kN2kγe−2k−m

∫ t
0
a(x,θ)dθ (2.61)

since | (−△ξ)
ℓ
ϕ̂k(ξ)| ≤ Cℓ2

−2kℓ, 21−m|ξ| ≤ Q(x, t, ξ) ≤ 2m−1|ξ| for some fixed m, and ϕ̂k
is supported in {ξ : 2k−1 ≤ |ξ| ≤ 2k+1}. As in subsection 5.1, denote by M the Hardy-

Littlewood maximal operator in the x-variable, so that∫
Rn

2kn[1 + (2k|x− x′|2)]−N |h(x′)| dx′ ≤ CNMh(x), (2.62)

for N > n
2 . Since a satisfies the Ppγ condition (see (2.50) with γ replaced by pγ), we have

2kγe−2k−m
∫ t
0
a(x,θ)dθ ≤ 2kγe−2k−mct

1
pγ
. (2.63)

Combining (2.61), (2.62) and (2.63) yields

|Kγϕkh(x, t)| ≤ CN2kγe−2k−mct
1
pγ

∫
Rn

2kn

[1 + (2k|x− x′|)2]N
|h(x′)|dx′

≤ CN2kγe−2k−mct
1
pγ
Mh(x). (2.64)
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We thus have∫ 1

0

∫
Rn

|Kγϕkh(x, t)|pdxdt ≤ C
(∫ 1

0

∣∣∣2kγe−2k−mct
1
pγ
∣∣∣pdt)∫

Rn

|Mh(x)|p dx,

≤ C

∫
Rn

|Mh(x)|p dx ≤ C

∫
Rn

|h(x)|pdx,

since ∫ 1

0

∣∣∣2kγe−2k−mct
1
pγ
∣∣∣pdt = 2kpγ

∫ 2k

0

e−2−mcsd
( s
2k

)pγ
≤ Cp,γ ,

and M is bounded on Lp. This establishes (2.59) and completes the proof of Theorem 2.5.

Now, as at the end of the previous subsection, we recast the definition of the Pγ condition

in terms of open sets. Recall that

UR = {(x, t) ∈ Rn ×R : |x| , |t| < R} ,

and that −→γ ((x, s) , t) = (x, s+ t) is the flow for T⃗ = ∂
∂t through (x, s).

Definition 2.3. The function a satisfies the Pγ condition in the open set UR if

|β| ≤ C
∣∣∣∫ β

0

a (x, t) dt
∣∣∣γ for all −R < β < R, and |x| < R.

Now we can state our characterization of the local boundedness of Kγ on Bs,pp .

Theorem 2.6. Let a(x, t) be a Cλ+2 function, and suppose that a ∈ Ppγ in the open set

UR. Let φ , ψ be C∞ functions supported in UR, and suppose that P denotes a multiplier with

symbol supported in the cone {|ξ| > |τ |}. Then if Mφ, Mψ are the operators of multiplication

by φ and ψ respectively, the operator PMφKγMψ is bounded Bs,pp on for −1
2 < s < λ + 2.

Conversely, if φ = ψ = 1 on UR, andMφKγMψ is bounded on Bs,pp for some s ∈
(
− 1

2 , λ+ 2
)
,

then a ∈ Ppγ in the open set UR′ for some R′ > 0.

Proof. The operator Kγ is bounded on Lp(B0,p
p ) by Theorem 2.5 together with the same

result scaled to Rn × (−R, 0). Now if supp φ, supp ψ ⊂ UR, then PMφKγMψ is bounded

on Lp(B0,p
p ), and so also on B0,p

p by Lemma 2.1. By Lemma 1.12, we now conclude that

PMφKγMψ is bounded on Bs,pp for −1
2 < s < λ+ 2.

Conversely, if φ = ψ = 1 on UR and MφKγMψ is bounded on Bs,pp for some s ∈(
−1

2 , λ+ 2
)
, then by Lemma 1.12, it is bounded on B0,p

p . So suppose K′
γ = MφKγMψ

is bounded on B0,p
p . The proof of necessity in Theorem 2.5 carries over here with just a few

changes, as follows. With notation as in the proof of Theorem 2.5, we have from (2.54) that

Re(K′
γϕrf)(x, t) = Re(MφKγϕrf)(x, t) ≥ cr−γβ (2.65)

for |x−w| < cr, t ∈ (0, β). Now choose η ∈ C∞
c (Rn+1) such that η ≥ 0, support η ⊂ B(0, 12 )

and
∫
Rn+1 η(x)dx = 1 (note the use of Rn+1 in place of Rn here). With ηr(x) = r−nη

(
x
r

)
,

it follows easily from (2.65) that

Re(ηr ∗ K′
γϕrf)(x, t) ≥ cr−γ

∫ β

α

a(w, t′)p
′
dt′

for |x − w| < cr, t ∈ (0, β), with a perhaps smaller constant c— note that r ≤ β/3 if, as

we may assume, a(x, t) ≤ 1/3. If we use the inequality ∥ηr ∗ g∥Lp ≤ C ∥g∥B0,p
p

, valid for any

g ∈ B0,p
p (Rn+1), 1 < p <∞, (this is (2.12) with Rn+1 in place of Rn), the Ppγ condition in

the open set UR′ can be derived as in the proof of Theorem 2.5.
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2.4. Boundedness of K in Hölder Spaces

We study K when a satisfies the Tν condition:

|t− t′| ≤ C
∣∣∣∫ t

t′
a(x, θ)dθ

∣∣∣ν (2.66)

for all x ∈ Rn and all t, t′ ∈ R with tt′ ≥ 0. Denote the unit ball in Rn by B. Using the

argument in [4] we have the following lemma.

Lemma 2.2. Suppose ν > 0 and a satisfies the Tν condition (2.66). Then there is a

constant Cν such that for every ϵ > 0,∫ t

0

∫
|x−x′|<ϵ

|K(x, x′, t, t′)| dx′dt′ ≤ Cνϵ
ν , (2.67)

∫ t

0

∫
B

|K(x+ h, x′, t, t′)−K(x, x′, t, t′)| dx′dt′ ≤ Cν |h|ν , (2.68)

and if in addition a(x, t)a(x, t+ η) ≥ 0, then∫ t+η

t

∫
B

|K(x, x′, t, t′)| dx′dt′ ≤ Cν |η| ln |η|−1
, (2.69)

∫ t

0

∫
B

|K(x, x′, t+ η, t′)−K(x, x′, t, t′)| dx′dt′ ≤ Cν |η| ln |η|−1
. (2.70)

If we apply the argument used in the proof of Corollary 1.2, we now obtain

Theorem 2.7. If λ > 0, and in addition a satisfies the Tν condition (2.66), then K maps

Λs to Λs+ν for all s > 0 with s+ ν ≤ λ+ 2.
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